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0 ABSTRACT
In this paper we propose a model for  grasping

with  an industrial parallel-jaw gripper. Two points on
the part are candidate ‘grip points’ if they are
accessible and are resistant to frictional slip and
torque.  We formalize these conditions geometrically
on a polygonal slice through the part's center of mass.
We describe an efficient algorithm for computing and
ranking all grip points for an n-sided polygonal slice.
The algorithm is part of a design and simulation system
that can rapidly provide feedback to designers;  thus it
must run quickly and reliably.  We have implemented
the algorithm in a Java applet with a graphical user
interface that allows Internet users to define a part; the
applet then computes, ranks, and displays the set of
computed grip points.  To try the applet, please visit:

http://ford.ieor.berkeley.edu/grip/

1 INTRODUCTION
Parallel-Jaw gripping is an important aspect of

automated assembly but grip points are often chosen in
an ad-hoc manner. Our aim is to develop an efficient
algorithm that will directly compute grip points for
picking up a polyhedral part with a parallel-jaw robotic
gripper.   In particular we consider the common case
where the gripper is held by a SCARA-type robot arm
with 4 degrees of freedom.

We define a grip by two points on the
boundary of the part;  we refer to the line connecting
those points as the grip axis.  Robot kinematics require
the grip axis to lie in a horizontal plane.  This reduces
to gripping a 2-dimensional, polygonal part formed by
the intersection of the 3D part with a horizontal plane
through its COM

FIG 1.  A 3D part being sliced through the COM and
the resulting 2D polygonal part.
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FIG 2.  Computed Grip Point for Parallel-Jaw Gripper.

We consider all pairs of polygon edges and
find the best grip, if one exists, for each pair.  Our
algorithm runs in O(n3) time for an n-sided polygonal
part.

The algorithm has been implemented in a Java
applet available on the WWW.  The applet allows users
to experiment with their own parts and provides a
graphical user interface to adjust  parameters such as
center of mass, friction angle, vertex uncertainty, and
grip ranking criteria.

FIG 3.  Screenshot of Grip Applet

1.1 Problem Definition
We make the following assumptions.  Contacts

between the part and gripper are modeled as two point-
like  “soft fingers”  that can apply force within the
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friction cone at the point of contact and torque about the
grip axis.

In addition to gripping on edges we allow one
or both of the grip points to be placed at a concave
vertex if it will not slip.  We will treat this situation
analogously to gripping at edges by constructing a
virtual  edge with  infinitesimal length  at each concave
vertex.   For each virtual edge, we construct an effective
friction cone that is the Minkowski sum of the friction
cones of its neighboring edges as shown in Figure 4.
The normal of the virtual edge is centered on the
effective friction cone.

FIG 4.  A virtual edge at a concave vertex.

We use the following 5 criteria to define  grip points:
1. Grip points should either lie on an edge at least a
distance ε from any convex vertex or lie at a concave
vertex.  Grips near a convex vertex could fail due to
small uncertainties in part or gripper orientation.
2. The grip axis should lie within the friction cone at
each edge so that the tips do not slip with respect to the
part. The friction cone is defined by the halfangle α,
α=arctan(µ), where µ is the coefficient of friction.
3. The grip should have a minimal dependence on
friction.
4.  The grip should also minimize the amount of torque
required to avoid rotation when the part is lifted.
Torque is calculated by the cross product of the weight
and the radius vector to the COM.  Thus torque is
proportional to δ, the distance from the grip axis to the
COM.
5.  Both grip points must be accessible to the gripper.
A point is accessible if it is possible to reach the point
from infinity in the approaching direction of the grip
axis.
A problem instance includes as input:
a. The location of n part vertices and the COM in  (x,y)
coordinates.
b. The friction angle α.
c. The parameter, ε, which represents the radius of an
uncertainty disk centered on each vertex.
The output is  all calculated grip points sorted by either
frictional dependence or torque and the values δ, φj, and
φk which quantify those criteria.

The number of grips for a part can range from
0 to O(n2).  For example an isosceles triangle with a
friction cone angle less than 30o will have no grip
points.

1.2 Related Work
Space does not permit a thorough review of

the robot gripping literature; for thorough reviews
please see [1], [2], [3], [4], [5].

Mishra, Schwartz, and Sharir 87 show that 4
fingers are necessary for form closure of a 2D lamina.
Nguyen 88, and Markenskoff and Papadimitriou 89,
each develop algorithms to determine grip points to
achieve form closure grips on a polygon with 4
frictionless fingers.

When friction is introduced, Blake and Taylor
[6] addressed the problem of determining optimum
force closure grips on 2D smooth curves.  They do so
by determining local extrema of a
friction function related to the angle between the grip
axis and the part normal.  Our criteria 2 and 3 are
similar but we add consideration of accessibility and
torque based on part COM.

Mirtich and Canny [7] consider grasping
polygonal parts and assume that rounded fingertips
transform polygons to form a smooth curve.  Their
analysis leads to the criterion of finding the maximal
chord, which, when applied to a polygonal part, finds
grip points at opposing vertices. Montana [8] noted in
their development of contact stability that this grip is
inherently unstable to small perturbations or slippage.

Nguyen 88 develops a model of soft fingers
that we use for our gripper tips. Brost 91 shows how to
generate the set of possible friction cones for vertex-
vertex intersections, which we adapt to model a gripper
tip in contact with a concave vertex.

   Rao, Kreigman, and Goldberg [9] consider a
related problem: determining grip points such that the
part passively rotates to a new orientation when the part
is lifted.  Our grip model  modifies and extends that
model to define a class of grip points that also take
accessibility into account.

2 FIVE CRITERIA FOR GRIPS
We consider each pair of polygon edges, ej and

ek.  Let I be the point where the two edges would
intersect if they were extended. Construct a weighted
bisector of the angle, βj,k, between edges ej and ek such
that the angle between edge ej and the bisector is
defined by:
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The angle between edge ek and the bisector is defined
by
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FIG 5.  A pair of edges, ej and ek, and the construction
of the weighted bisector.

We can parameterize the grip points by their
distance from I along the lines formed by the edges.
We use sj for the distance along ej and sk along ek.

2.1 ε, radius of vertex uncertainty disks
No grip point may be placed within a specified

distance, ε, from any convex vertex.  If an edge consists
of all points from sj,start to sj,end then any grip point must
satisfy

(sj,start + ε)  ≤ sj,grip ≤  (sj,end - ε) (3)
This insures that the grip will not miss the specified
edge due to uncertainties in part geometry and gripper
orientation.
2.2 Friction cones

All grips should have a grip axis that lies
within the friction cone of each edge.  If φj is the angle
between the normal to edge ej and the grip axis and φk is
similarly defined then

φj ≤ αj   AND   φk ≤ αk (4)
This will prevent the part from slipping during
gripping.
2.3 Dependence on friction

A grip should have the minimum dependence
on friction.  This is done by minimizing φj AND
minimizing φk.  In order to strike a balance between
minimizing φj and φk we now define φ as the angle
between the grip axis and the normal to the weighted
bisector.  We note that when φ = 0 the following is true:
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FIG 6

In other words, the grip axis is the same
fraction of the friction cone away from the normal for
both edges.  The intuitive case is two edges with the
same friction cone angle and the grip should have the
same angle at both faces.  Also, when φ = 0 it is not
possible to decrease φj without increasing φk.  This is
not true when φ > 0. Therefore the third criteria is

φ = min. (6)

2.4 Torque
We also want to minimize the amount of

torque that the tips must provide when the part is lifted.
The torque is weight times δ therefore minimum torque

is ensured by      δ = min.            (7)

2.5 Accessibility
Finally, we need to consider whether a pair of

grip points can be reached by the gripper.  We use a
critical point analysis for edges within the convex hull
to determine accessibility cones.  These cones limit the
grips considered to only those which are accessible.
2.6 Graphical Representation

For any pair of grips we can consider the 2D
space of grips defined by (sj,sk).  Associated with each
grip is a value of δ and a value of φ.  It is therefore
possible to determine φ=φ(sj,sk) and δ=δ(sj,sk).  We
omit the derivations for lack of space but give the
equations below
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The graph of this function has contour lines, or
iso-φ lines, that are radial with slopes
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except for the case of two parallel edges in which case
the contour lines are parallel.  Note that the φ = 0 line
has a slope of

)cos(

)cos(

j

km
γ
γ

= .                        (10)

For calculating δ it is necessary to know the
location of the COM.  We will parameterize its location
by D and L.  D is the perpendicular distance from the
weighted bisector and L is the distance along the
weighted bisector.
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We can overlay the contour graphs of the two
functions to allow us to take both friction and torque
into consideration simultaneously.  The first two
criteria, ε and the friction cones, bound a region of grips
that are possible. First, only the rectangular region
satisfying (sj,start+ε) ≤ sj ≤ (sj,end-ε) AND (sk,start+ε) ≤ sk ≤
(sk,end-ε) is included.  This region may be truncated by
either or both of two φ lines that represent the edges of
the friction cones.  Those lines are defined by φ =
MIN(γj+αj , γk+αk) and    φ = MIN(γj-αj , γk-αk). In

general the region of possible grips looks like this.
FIG 7.  The region of possible grips on the φ  and δ
contour graphs.

The dependence on friction criteria and the
torque criteria can indicate an optimum grip from the
region of possible grips.  However, these two criteria
are not always in agreement therefore two separate
optimizations can occur.  One branch emphasizes
friction, one emphasizes torque.  When they do not
yield the same result our algorithm performs both
optimizations.

3 ALGORITHM
Our algorithm uses basic geometry and simple

conditional tests quickly determine grip points
according to the criteria explained above.  The
algorithm runs in O(n3) time.  The friction test runs in
O(n2) time for the whole part.  Then the grip points
section runs in O(1) tine for each of the O(n2) pair of
edges.  Finally the  accessibility section runs in O(n3)
time for the part as a whole.  The flow chart below
outlines the basic operation.

F riction tes t

Pair of edges

Candidate pair of edges

Minimize friction and torque

Rejected pair of edges

Grip with minimum 
friction and torque

Minimize torqueMinimize friction

Grip with
minimum friction

Grip with
minimum torque

Check accessibility and adjust grip as  necessary

All accessible, locally optimized grips

S ort List of grip points for accessible,
locally optimized grips sorted by

friction or torque

yes

no

no

yes

Rejected pair
of edges

Best grip for pair 

Repeat for all 
pairs of edges

FIG 8

3.1 Friction Test
For each edge pair we first run a short test to

reject pairs that could not contain a grip.  If the angle,
β, between the edges ej and ek is greater than the sum of
the friction cone angles for each edge, βj,k > (αj + αk),
then no grip on this pair of edges can meet the friction
criteria.  In practice this significantly reduces the
number of candidate pairs of edges.

 FIG 9.  A part with n=4 has 6 pairs of edges but only 2
candidate pairs to be considered in the main algorithm.

3.2 Grip Points
For each edge our objective is to determine the

best pair of grip points.  First, it is helpful to shrink ej

and ek by ε at each end so that the entire length of the
remaining edges meets the ε criteria.  We use the term
“endpoints” to refer to the new beginning and end to
distinguish them from the vertices.
3.2.1 Minimizing Friction and Torque

We first check whether there is a grip that
minimizes both friction and torque or equivalently has
δ = 0 AND φ = 0.  Construct a line that goes through
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the COM and is perpendicular to the weighted bisector.
If this line intersects both edges then the intersections
define grip points on the pair.

FIG 10 φ = 0  and δ = 0 Grip

When the line fails to hit one or both edges
then we must adjust this first attempt to meet all
criteria.  In general, at this point, it is possible to
minimize either frictional dependence or torque but not
both at the same time.  We therefore determine two
grips for the pair of edges.  One grip has minimum
friction and the other has minimum torque.  Note that
the minimum friction grip also has the least torque of
all grips with that friction and similarly, the minimum
torque grip has the least friction of all grip with that
torque.
3.2.2 Minimizing Friction

We first determine the grip that minimizes the
dependence on friction.  Define a “critical edge” as an
edge not intersected by the line perpendicular to the
bisector through the COM.  Then define a “critical
point” as the end point of the critical edge nearest to
that line.

FIG 11.  Critical Points and Edges

We check for a grip with φ = 0 through a
critical point.  If none exists then the φ min grip has one
grip point at a critical point and the other at one of the
endpoints of the other edge.  We check those
possibilities to find φ = min then check that the criteria
φj ≤ αj AND φk ≤ αk are met.  If not then there is no grip
for this pair of edges.

FIG 12.  a has φ =0     b has φ=min         c has φ=min

3.2.3 Minimizing Torque
We now determine the grip that minimizes the

necessary torque provided by the gripper tips.  First
note that if there is not a friction minimizing grip then
there is also not a torque minimizing grip.  We will use
the same critical edges and critical points defined
earlier.

We check for a grip with a grip axis through
the COM and a critical point.  If none exists then the
δ = min grip has grip points at a critical point and an
endpoint of the opposite edge.  We check these
possibilities and check that φj ≤ αj AND φk ≤ αk are
satisfied.  If not, we perturb the grip axis to have a
direction that satisfies the friction criteria and check
grips with that direction at each endpoint.  One will be
the δ = min grip.

FIG 13.  a has δ=0    b has δ=min    c hasδ=min within
                                                            the friction cones

3.3 Accessibility
Finally we check if a grip is accessible.  A grip

is accessible if both grip points are reachable from
infinity in the direction of the grip axis.  Extend the grip
axis and check for intersections with edges of the part
besides the candidate pair.  This can be done in O(n)
time for each grip.

At this point it may seem simplest to eliminate
any grip that is not accessible.  We note, however, that
it may be possible to perturb a grip to be sub-optimal
but accessible.  We therefore run an algorithm that
perturbs the grip to the best accessible grip.  The
procedure runs at O(n3) for the part as a whole and in
fact only needs to run when an optimal grip has failed
the accessibility test.
3.3.1 Accessibility Cones

First, find the convex hull of the part.  Any
grip failing the test must have one or both edges within
a concavity. Within that concavity, find the set of all
convex vertices and add the vertices of both edges of
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the candidate pair.  Connect every pair of points in the
set with a line.  This operation yields at most one line
from every vertex to every vertex in the part even when
run for all candidate pairs and is therefore O(n2).
Eliminate any line that does not intersect both edges in
the candidate pair.  Extend the lines and eliminate any
line that intersects any edge besides the edges of the
candidate pair.  This is an O(n) operation for each line
totaling O(n3) for the part.

FIG 14. a: Part, Convex Hull and Inaccessible Grip.  b:
Critical Vertices and Action Cones.   c: Modified Action
Cones, [1]Accessible φ=min Grip, and [2] Accessible
δ=min Grip.

The remaining pairs of lines form
“accessibility cones”.  A critical vertex and a range of
angles characterize each accessibility cone.  If a grip is
to reach the edge at an angle that is within the range of
angles of an accessibility cone then the critical vertex of
that cone is the point that it must clear.  Truncate each
range of angles to include only those angles within the
friction cones of both edges to form “modified
accessibility cones”.  If there are no remaining cones
then there is no accessible grip for that pair of edges.

We must again divide our consideration to
both friction minimizing and torque minimizing grips.
If the grip that failed the accessibility test was torque
minimizing then only the torque optimization is run.
Similarly for the friction minimizing grip.
3.3.2 Accessible and Friction Minimizing Grip

Find the modified accessibility cones that
include the angle φ = 0.  There will be either two or
zero.  If there are two then the line with φ = 0 through
the critical vertices of one of those cones is the grip axis
of the  accessible, friction minimizing grip.  If there are
zero then the edge of the accessibility cone with the
minimum φ is the grip axis of the accessible, friction
minimizing grip.
3.3.3 Accessible and Torque Minimizing Grip

The COM either lies within zero or two
modified accessibility cones.  If it lies within two then

the grip axis of the accessible, friction minimizing grip
is through the critical vertex of one of those
accessibility cones and the COM. If the COM is in none
then the nearest side of the nearest accessibility cones
the grip axis of the accessible, torque minimizing grip.
Note that it is possible that the algorithm finds no grips.

4 IMPLEMENTATION
The implementation lets users define a part

and visualize the grips generated. Java’s Abstract
Windowing Toolkit (AWT) package provides various
GUI components, such as buttons, menus, etc. Anyone
with a Java-enabled browser can run and test the
algorithm.  The following sections describe the user
interface and the runtime performance of the algorithm.
4.1 User Interface

The user interface is designed so that parts and
parameters can be intuitively defined and grips can be
easily viewed.  The Java applet is divided into three
columns. The left column contains the control panel
where the user can change the friction angle, ε, and the
gripper’s width.  These parameters take effect once the
user clicks on the button labeled “Compute Grip”
located at the bottom of the applet.  The center column
of the applet shows the polygonal slice of the part.  It is
the drawing area where the user can define new parts. It
also gives a graphical representation of the grips
generated by the algorithm.  The right column contains
a list of all the generated grips.  The user can view each
grip by clicking on an item in the list.  Below that list is
where relevant information about the current grip is
given.
4.2 Performance

Table 1 gives running time of the applet on an
Intel Pentium Pro/200 running Symantec Visual Café's
JVM.

Table 1
Part

Description
# of

Vertices
Running
time (ms)

# of Grips
Generated

    
8 220 7

   
19 490 11

  
23 1270 22

   
35 2970 7

    
71 3890 14
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5 CONCLUSION
We have presented an efficient algorithm for

determining grip points for a 2D polygonal part.  The
algorithm finds local minima in frictional dependence
and required torque while taking into account
uncertainties and accessibility.   The algorithm appears
to be relatively robust to the challenging test cases
provided by  Internet users.  We invite reviewers to try
the applet for themselves.

Currently we consider only the 2D polygon
that passes through the part’s COM and we verify
accessibility only in the grip plane.  Further work is
needed to identify the optimal slice of the 3D part and
to check the accessibility of grip points when
obstructions exist above or below the grip axis.

The grip algorithm is being ported to C++ and
will be included in a simulation package that  aids in
the rapid design, visualization, and programming of
industrial  assembly systems.
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