
In P. Agarwal, L. Kavraki, M. Mason, editors, Robotics: The Algorithmic Perspective, A. K. Peters, Ltd. 1998.

Shape Tolerance in Feeding and Fixturing

Jingliang Chen�, University of California at Berkeley, USA

Ken Goldberg, University of California at Berkeley, USA

Mark H. Overmars, University of Utrecht, The Netherlands

Dan Halperin, Tel Aviv University, Isreal.

Karl F B�ohringer, University of California at Berkeley, USA

Yan Zhuang, University of California at Berkeley, USA

Abstract

Parts are not ideal. Designers and machinists cope

with variation in part shape by specifying tolerance

zones around a nominal part geometry: all parts that

�t within the zone form a tolerance class. In this paper

we consider the issue of shape tolerance in two con-

texts. First, we consider the problem of feeding (ori-

enting) convex polygonal parts on a conveyor belt with

a part-speci�c sequence of fence angles [1]. Second,

we consider the problem of �xturing convex polygonal

parts using a right angle �xture and one clamp [2]. The

challenge is to de�ne appropriate tolerance classes and

to argue that a solution { a feeding strategy or a �xture

{ is guaranteed for all parts in the tolerance class.

We propose two new parametric tolerance classes.

For each, we give an O(n) time algorithm for testing if

an n-sided part is in the class. For feeding we give an

O(n2) time algorithm to compute the maximum radius

of a circular tolerance zone around each vertex. Nu-

merical experiments provide evidence that this bound

is tight. For �xturing we give an O(1) time algorithm

to compute the maximum dimensions of rectangular

tolerance zones. We implemented both algorithms and

report experimental results.

1 Introduction

Geometric tolerance is increasingly important as parts

and products shrink, yielding relatively larger varia-

tions in part shape. Such variations are inevitable due

to physical fabrication; all parts vary at some micro-

scopic level. New processes such as MEMS (Micro Elec-

�jlchen@ieor.berkeley.edu

ε

12345678901234567890123456789012123456789012345678901
12345678901234567890123456789012123456789012345678901
12345678901234567890123456789012123456789012345678901
12345678901234567890123456789012123456789012345678901
12345678901234567890123456789012123456789012345678901
12345678901234567890123456789012123456789012345678901
12345678901234567890123456789012123456789012345678901
12345678901234567890123456789012123456789012345678901
12345678901234567890123456789012123456789012345678901
12345678901234567890123456789012123456789012345678901
12345678901234567890123456789012123456789012345678901
12345678901234567890123456789012123456789012345678901
12345678901234567890123456789012123456789012345678901
12345678901234567890123456789012123456789012345678901
12345678901234567890123456789012123456789012345678901
12345678901234567890123456789012123456789012345678901
12345678901234567890123456789012123456789012345678901
12345678901234567890123456789012123456789012345678901
12345678901234567890123456789012123456789012345678901
12345678901234567890123456789012123456789012345678901
12345678901234567890123456789012123456789012345678901
12345678901234567890123456789012123456789012345678901
12345678901234567890123456789012123456789012345678901
12345678901234567890123456789012123456789012345678901
12345678901234567890123456789012123456789012345678901
12345678901234567890123456789012123456789012345678901
12345678901234567890123456789012123456789012345678901
12345678901234567890123456789012123456789012345678901
12345678901234567890123456789012123456789012345678901
12345678901234567890123456789012123456789012345678901
12345678901234567890123456789012123456789012345678901
12345678901234567890123456789012123456789012345678901
12345678901234567890123456789012123456789012345678901
12345678901234567890123456789012123456789012345678901
12345678901234567890123456789012123456789012345678901
12345678901234567890123456789012123456789012345678901
12345678901234567890123456789012123456789012345678901
12345678901234567890123456789012123456789012345678901
12345678901234567890123456789012123456789012345678901
12345678901234567890123456789012123456789012345678901
12345678901234567890123456789012123456789012345678901
12345678901234567890123456789012123456789012345678901
12345678901234567890123456789012123456789012345678901
12345678901234567890123456789012123456789012345678901
12345678901234567890123456789012123456789012345678901
12345678901234567890123456789012123456789012345678901
12345678901234567890123456789012123456789012345678901
12345678901234567890123456789012123456789012345678901
12345678901234567890123456789012123456789012345678901
12345678901234567890123456789012123456789012345678901
12345678901234567890123456789012123456789012345678901
12345678901234567890123456789012123456789012345678901
12345678901234567890123456789012123456789012345678901
12345678901234567890123456789012123456789012345678901
12345678901234567890123456789012123456789012345678901
12345678901234567890123456789012123456789012345678901
12345678901234567890123456789012123456789012345678901
12345678901234567890123456789012123456789012345678901
12345678901234567890123456789012123456789012345678901
12345678901234567890123456789012123456789012345678901
12345678901234567890123456789012123456789012345678901
12345678901234567890123456789012123456789012345678901
12345678901234567890123456789012123456789012345678901
12345678901234567890123456789012123456789012345678901
12345678901234567890123456789012123456789012345678901
12345678901234567890123456789012123456789012345678901
12345678901234567890123456789012123456789012345678901
12345678901234567890123456789012123456789012345678901
12345678901234567890123456789012123456789012345678901
12345678901234567890123456789012123456789012345678901
12345678901234567890123456789012123456789012345678901
12345678901234567890123456789012123456789012345678901
12345678901234567890123456789012123456789012345678901

1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234

1234567890123456789012345678901212345678901234567890123456789012123456789012345678
1234567890123456789012345678901212345678901234567890123456789012123456789012345678
1234567890123456789012345678901212345678901234567890123456789012123456789012345678
1234567890123456789012345678901212345678901234567890123456789012123456789012345678

Clamp

Fixturing

Fence Feeding

ε

ε

ε

Figure 1: Tolerance classes for feeding and �xturing.

tro Mechanical Systems) and stereo lithography impose

relatively large variations in part geometry. Character-

izing allowable shape tolerance is important for prod-

uct functionality; it is less widely recognized that vari-

ations in part shape can also cause manufacturing pro-

cesses to fail. In this paper we consider two speci�c

manufacturing processes, fence feeding and modular

�xturing, and develop new algorithms for character-

izing shape tolerance in these contexts.

We build on the geometric algorithms for feeding and

�xturing that assume exact part geometry as input.

In P. Agarwal, L. Kavraki, M. Mason, editors, Robotics: The Algorithmic Perspective, A. K. Peters, Ltd. 1998.

For each process, we de�ne a tolerance class �(P; ")

based on a nominal part P and a variation parameter

" as shown in Figure 1. Both classes are de�ned so

that we can check membership in linear time. Given

a nominal part P , we compute a solution, a feeding

strategy or �xture. We then compute the largest al-

lowable " such that the solution will work for all parts

in �(P; "):

2 Related Work

A part feeder is a device that accepts parts in random

orientation and outputs them in a unique orientation.

Currently, the design of parts feeders is a black art

that is responsible for up to 30% of the cost and 50%

of workcell failures [3, 4]. An algorithm for feeding

polygonal parts was proposed in [5] and subsequently

re�ned in a series of papers [6, 7, 1]. The model we

consider here orients parts of a given shape as they are

pushed by a sequence of fences. Thus a solution is a

sequence of fence angles.

A �xture is a device that locates and holds parts dur-

ing assembly, inspection, or machining. Modular �x-

turing systems typically include a lattice of holes with

precise spacing and an assortment of precision locating

and clamping modules that can be rigidly attached to

the lattice. The model we consider here clamps parts

with a right angle �xture and one translating clamp

[2]. For �xturing, a solution is an orientation for the

part and a position for the clamp.

For reviews of semantic issues in tolerancing, see

[8, 9, 10]. Parametric tolerance models allow certain

parameters to vary within a given range. On the other

hand, geometric tolerance zones require only that the

part �t within a de�ned region or zone [8]. Actual part

geometry can be quite gnarly while remaining within

the zone. It is extremely di�cult to characterize part

behavior under these conditions although bounds on

behavior of kinematic pairs has been the subject of a

study by Joskowicz, Sacks and Srinivasan [11].

Yap and Chang [12] consider geometric metrology:

given a set of sample points on the boundary of a closed

curve, decide if the curve lies within a given geometric

tolerance zone. Even for a (one-dimensional) line seg-

ment, conservative classi�cation policies may not exist;

the authors illustrate that deterministic policies and

statistical decision rules can be non-trivial even in one

dimension. The parametric tolerance models de�ned

below permit exact classi�cation in linear time.

Latombe, Wilson and Cazals consider tolerancing in

the context of assembly [13]. They propose a paramet-

ric tolerance model similar to ours in that they assume

part edges are straight. To make the analysis man-

ageable, they add the requirement that edges/faces

maintain their relative orientation: i.e., edges in the

tolerance class always remain parallel to the nominal

edge. For a given set of tolerance speci�cations, the au-

thors give polynomial time algorithms to decide if an

assembly sequence exists for an assembly of polygonal

or polyhedral parts. For our applications, we explic-

itly compute the radius of an allowable tolerance zone

around each vertex.

Perhaps the work closest to ours is Akella and Mason

[14, 15]. They consider fence and push-squeeze plans

for orienting polygonal parts based on a similar frame-

work. One di�erence is that their parametric tolerance

class de�nes a circular tolerance zone around the cen-

ter of mass. They note that determining a bound on

the possible center of mass of a uniform mass polygon,

in terms of bounds on its vertices, is an open problem.

We �nesse this problem by de�ning a tolerance class

whereby vertices are de�ned relative to a coordinate

frame at the center of mass.

Given the radius of a circular tolerance zone around

each vertex and the center of mass, Akella and Mason

compute action ranges and uses breadth-�rst search of

an AND/OR tree to check if a solution exists. We

extend their framework for feeding with a new model

for shape tolerance; rather than testing if a given radius

will succeed, we estimate the maximum radius of the

tolerance zones.

Donald [16] considered parametric shape variation

in the context of motion planning by adding dimen-

sions to con�guration space. Our work is a step toward

bounding variation in these dimensions. Brost and Pe-

ters [17] propose a di�erent model of shape tolerance

In P. Agarwal, L. Kavraki, M. Mason, editors, Robotics: The Algorithmic Perspective, A. K. Peters, Ltd. 1998.

for modular �xturing where contact normals are al-

lowed to vary within a cone of given half angle. Kavraki

considered variation in part shape in the context of ori-

enting parts with an elliptical planar force �eld. She

was able to bound the �nal orientation of a part in

terms of the shape di�erence between parts P and P 0:

P � P 0 [P 0 � P [18].

In this paper, we de�ne parametric tolerance classes

for feeding and �xturing. We give algorithms for �nd-

ing bounds on the size of the tolerance zone and algo-

rithms for checking if a part is in the class.

3 Shape Tolerance for Feeding

Polygonal parts can be fed (oriented) as they come into

contact with fences on a conveyor belt [19, 20, 21, 1].

Let P be the nominal convex polygonal part with n

vertices and center of mass c. We assign a �xed coor-

dinate frame to P , with c as the origin of the coordinate

frame and the x-axis aligned with the desired nominal

�nal orientation of the part after feeding.

All directions are expressed relative to this coordi-

nate frame as shown in Figure 2. Vertices are counter-

clockwise labeled v1 : : : vn and ei is the edge connecting

vi and vi+1; the edge en connects vn and v1. Let �vi
be the direction of the ray cvi in the coordinate sys-

tem and �ei be the direction of the normal from c to

the line containing the edge ei. Let �ri = �ei � �vi,

�li = �vi+1 � �ei ; these angles play a crucial role in

our analysis.

3.1 A Tolerance Class for Feeding

For feeding, we de�ne a parametric tolerance class

�(P; ") based on a nominal part P with center of mass

c, as shown in Figure 3. We assume that part edges are

always straight. Each vertex of P has a circular toler-

ance zone of radius ". A part P 0 with center of mass c0

is in �(P; ") if we can position and orient P 0 such that

c0 is aligned with c and all of P 0's vertices are inside the

tolerance zones around the corresponding vertices of P .

(Note that we assume a given assignment of vertices.)

We assume that topologies of the convex hull of all the

parts in �(P; ") are the same. We can test whether or

v2 v3

v4

v5

v6

v1

e1

e2

e3

e4

e5

e6

c

αv6 αe5

αv5

αv4αv3
αv2

αe2

αv1 αl5

αr2

Figure 2: Notation for feeding

not a polygon P 0 is in �(P; ") by computing an angular

interval

0

i for each vertex v
0

i such that rotating P
0

by

! 2

0

i will move v
0

i into the " disk around vi, or will

keep it inside the disk if it is already inside the disk. If

[i

0

i 6= ;, then P
0

2 �(P; "). The complexity of this

test is O(n).

3.2 The Push Function and Push Plans

As shown in 4, the push function characterizes the me-

chanics of a part pushed by a frictionless planar fence

[22, 5]. We adopt the notation of [1]. In most cases,

parts will start to rotate when pushed. We de�ne the

push direction as the direction of the normal from c

to the pushing fence. If pushing in a certain direc-

tion does not cause the part to rotate, we refer to the

corresponding push direction of as an equilibrium push

direction. There are two types of equilibrium push di-

rection, stable equilibrium push direction and unstable

equilibrium push direction. If pushing does change the

orientation, then this rotation changes the orientation

of the pushing device relative to the part. We assume

that pushing continues until the part stops rotating

and settles in a stable equilibrium pose.

Edge ei is called a stable edge if �ei corresponds to

a stable equilibrium push direction, and ei is called

unstable otherwise. Similarly vertex vj is called an

In P. Agarwal, L. Kavraki, M. Mason, editors, Robotics: The Algorithmic Perspective, A. K. Peters, Ltd. 1998.

c'c

v1ε

ε

c c'

v2
v'2 v3

v'1

v'3

v1

v'1

v2

v'2
v3 v'3

Figure 3: Check if candidate part P 0 2 �(P; ")

.

equilibrium vertex if �vj corresponds to an equilibrium

push direction. In the case of a convex polygon, all

stable push directions correspond to stable edges and

all the equilibrium push directions corresponding to

vertices are unstable. Edge ei is stable if and only

if �ri > 0 and �li > 0.

The push function p : [0; 2�) ! [0; 2�) links every

orientation � to the orientation p(�) in which the part

P settles after being pushed by a jaw with initial push

direction �. During the pushing, the rotation of the

part causes the push direction of the jaw to change.

The �nal orientation p(�) of the part is the push direc-

tion of the jaw after the part has settled. The equilib-

rium push directions are the �xed points of p and, as

we stated above, they all correspond to stable edges.

The push function p of a polygonal part consists of

steps, which are intervals I � [0; 2�) such that for all

� 2 I, p(�) = C for some constant C 2 I; see Figure 4.

The steps of the push function are easily constructed

from the �li 's and �ri 's. The interval I is bounded by

two consecutive unstable equilibrium push directions.

All directions strictly inside the interval map onto the

stable equilibrium push directions corresponding to a

stable edge. (Note that the direction C itself maps onto

C because it is the direction of the stable edge.) As a

result, the number of steps in the push function equals

the number of stable edges.

In preparation for the next section, we de�ne for

each stable edge ei two open intervals l(ei) = f� <

�ei jp(�) = �eig and r(ei) = f� > �eijp(�) = �eig.

We refer to these intervals as ei's left and right envi-

ronment respectively. The interval l(ei) corresponds

to the half-step left of �ei and r(ei) corresponds to the

half-step right of �ei (Figure 4). The open intervals

l(ei) and r(ei) are maximal intervals without equilib-

rium orientation.

0
0 π 2π

π

2π

el(e) r(e)ii i

p()

φ

φ

Figure 4: The push function for a polygonal part. Each

step corresponds to a stable edge and is bounded by two

consecutive unstable equilibrium push directions which cor-

respond to the directions of equilibrium vertices.

We use the abbreviation p� to denote the (shifted)

push function de�ned by

p�(�) = p((� + �) mod 2�)

for all � 2 [0; 2�). Note that p�(�) is the �nal orien-

tation of a part in initial orientation � after a reorien-

tation by � followed by a push. We can now de�ne a

push plan.

In P. Agarwal, L. Kavraki, M. Mason, editors, Robotics: The Algorithmic Perspective, A. K. Peters, Ltd. 1998.

De�nition3.1 A push plan is a sequence �1; : : : ; �m
such that p�m � : : :� p�1(�) = � for all � 2 [0; 2�) and

some �xed � 2 [0; 2�).

3.3 Push Planning Algorithms

Goldberg [5] showed that a push plan exists for any

polygonal part and gave an O(n2) algorithm for �nd-

ing the shortest such plan. Chen and Ierardi [7] gave a

di�erent algorithm based on �nding a basic pushing ac-

tion that repeatedly applies one critical pushing angle

to orient the part. The critical pushing angle depends

on the length of the two largest open left half intervals

in the push function. The same is true for right in-

tervals but, without loss of generality, we only consider

left push plans here. Let 	 be a range of angles de�ned

by the di�erence in length of these half intervals. Any

angle in 	 will serve as the critical pushing angle. This

range can compensate for variation in part shape.

Consider the open intervals l(ei) de�ned in the pre-

vious section. Let � be the length of the longest inter-

val in the set. We assume, without loss of generality,

that e1 in P is a stable edge with jl(e1)j = �, and we

only consider the case in which P has no second sta-

ble edge ei (i 6= 1) satisfying jl(ei)j = �. Each basic

action consists of a reorientation of the jaw by an an-

gle of �(� � �), with � > 0 such that � � � > jl(ei)j

for any stable edge ei 6= e1, and a subsequent applica-

tion of the jaw. (The same arguments will apply for

r(ei) with reorientation by an angle of ��� instead of

�(�� �).)

Note that a reorientation of the jaw by �(���) cor-

responds to a change of the push direction by � � �.

Every basic action puts the part into a stable equilib-

rium orientation. If P is a polygonal part, then the

stable equilibrium orientations occur at isolated points

in [0; 2�). After each basic action, the number of pos-

sible part orientation is �nite. Let us label the m sta-

ble edges es1 ; : : : ; esm in order of increasing edge index

with s1 = 1. After the �rst application of the jaw,

the part P can be in the orientation of any stable edge

es1 ; : : : ; esm . Chen and Ierardi show that every next

basic action eliminates the last stable edge in the se-

quence. So an m + 1 step push plan p��� � : : : � p���

su�ces to put P into orientation �e1.

3.4 E�ect of Shape Tolerance on the Push

Function

When part geometry changes, it a�ects the push func-

tion in two ways. First, it will change the value of �li
and �ri , that is, it will change the length of one or more

open half intervals. Second, some critical change on

the value of �li and �ri may cause a stable edge in the

nominal part to become unstable. Also, it may cause

an unstable edge to become stable. Since the number

of steps of the push function is equal to the number

of stable edges, this will combine several half intervals

into a bigger one or break one half interval into several

smaller ones. We refer to this as a topological change

of the push function. It may dramatically change the

ranking of the jl(ei)j's. An example of a polygon with

tight topological constraints is shown in Figure 5. e1 is

the stable edge with the largest �li . However, if the co-

ordinates of v1 undergo a small change, it may cause e1
to become unstable. A possible topological change of

the push function for this polygon is shown in Figure 6.

c

v3
v2

v1

v4

v5

v6

v7

v8

Figure 5: Example of a polygon with tight topological con-

straint.

Using Chen and Ierardi's algorithm, we can �nd a

push plan that is valid for all the parts in the tolerance

class �(P; ") if

� for every part in �(P; "), e1 is the stable edge with

In P. Agarwal, L. Kavraki, M. Mason, editors, Robotics: The Algorithmic Perspective, A. K. Peters, Ltd. 1998.

2πφπ0
0

π

2π

e1

e2

e2

2πφ

π

π
0

0

2π

Figure 6: Topological change of the push function for the

part in Figure 5when v1 is moved.

the largest left half interval, and

� if each member P 0 2 �(P; ") is characterized by

a pushing angle set 	0, and the intersection of all

	0 is nonempty.

We can state this di�erently. If the lower bound

of jl(e01)j for any part P 0 2 �(P; ") is larger than the

upper bound of all other left half intervals, then there

will be a push plan which will work for all the parts in

the tolerance class.

3.5 Algorithm to Compute "

We now compute the radius of a tolerance class for

which a common push angle exists. The algorithm

takes as input the geometry of the nominal part and

computes the largest " such that there exists a plan to

feed all the parts in �(P; "), and a push angle � that

de�nes the plan.

Initially, we assume that there is no topological

change on the push function within the tolerance class

�(P; "), and study the relationship between jl(e0i)j and

" where ei is a stable edge. Afterward, we address the

issue of topological changes in the push function.

c

εε

β

α li

v'
i+1

vi+1
v'
i

v''i
v
i

β'

β''
i

i

i

Figure 7: Case 1. vi is an equilibrium vertex thus l(ei) =

�li .

There are two cases we need to consider, according

to whether vi is an equilibrium vertex or not.

Case 1. As shown in Figure 7, vi is an equilibrium

vertex, thus l(ei) = �li . Let �i = �=2 � �li . First we

derive a lower bound on l(ei). We start by making the

following observations:

1. Minimizing �li is equivalent to maximizing �i. As

shown in Figure 7 and by de�nition �li+�i = �=2.

2. For every v0i within the " disk around vi, the maxi-

mum �i is achieved when e
0
i is tangent to the " disk

around vi+1. So given the vertex v
0
i, the maximum

value of � among all P 0 2 �(P; ") and v0i 2 P 0 is

well de�ned. The problem now becomes to �nd

the point v0i that can maximize �i.

3. For any v0i inside the " disk around vi, there is a

point v00i on the " disk around vi such that �
00
i > �i.

Thus we need only consider points on the bound-

ary of the circular tolerance zone.

In P. Agarwal, L. Kavraki, M. Mason, editors, Robotics: The Algorithmic Perspective, A. K. Peters, Ltd. 1998.

c

k

q

ε

vi

v'i

vi+1

v'i+1

θ

Figure 8: Relationship between min(jl(e0i)j) and " in case

1. 6 cv0iq =
, 6 kv0ivi+1 = �, 6 vi+1v
0
iv

0
i+1 = �.

A point v0i on the circle around vi can be represented

by a single variable �. v0iv
0
i+1 is tangent to the " disk

around vi+1 since this maximizes �0
i when we �x v0i.

To derive the relationship between �0
i and ", we draw a

straight line v0iq parallel to vic with cq perpendicular to

v0iq and v0ik parallel to vivi+1 with vi+1k perpendicular

to v0ik. Let 6 cv0iq =
, 6 kv0ivi+1 = �, 6 vi+1v
0
iv

0
i+1 = �.

We have:

�0
i =
 + �i + � + � (1)

Lemma 1 When we only consider points on the " ball,

the relationship between min(jl(e0i)j) and " can be ex-

pressed as

min(jl(e0i)j) = jl(ei)j

� arcsin
" sin(�i � �)q

(jcvij � " cos(�i � �))2 + "2 sin2(�i � �)

� arcsin
"(1 + sin �)q

(jeij � " cos �)2 + "2 sin2 �
; (2)

where � is the value in [0; 2�) that minimizes the right-

hand side.

Proof. From Figure 8:

 = arcsin
jcqj

jcv0ij

= arcsin
" sin(�i � �)q

(jcvij � " cos(�i � �))2 + "2 sin2(�i � �)

� = arcsin
"

jv0iv
0
i+1j

= arcsin
"q

(jeij � " cos �)2 + "2 sin2 �

� = arcsin
" sin �

jv0iv
0
i+1j

= arcsin
" sin �q

(jeij � " cos �)2 + "2 sin2 �

For any given ", we can �nd the value of � that max-

imize
 + � + �. Using Equation 1, the relationship

between min(jl(e0i)j) and " as stated in the lemma fol-

lows.

We can then show

Lemma 2 When we only consider points on the " ball,

the relationship between max(jl(e0i)j) and " can be ex-

pressed as

max(jl(e0i)j) = jl(ei)j

+arcsin
" sin(�i � �)q

(jcvij � " cos(�i � �))2 + "2 sin2(�i � �)

+ arcsin
"(1 + sin �)q

(jeij � " cos �)2 + "2 sin2 �
; (3)

where � is the value in [0; 2�) that maximizes the right-

hand side.

Case 2. As shown in Figure 9, vi is not an equilibrium

vertex. Thus l(ei) is de�ned by �ei and �vj , where vj
is the last equilibrium vertex (j 6= i) (namely, when we

proceed clockwise from vi along the boundary of P vj
is the �rst equilibrium vertex that we encounter).

In this case, we argue the following

Lemma 3 When we only consider points on the " ball,

the relationship between jl(e0i)j and " can be expressed

as

(
min(jl(e0i)j) = jl(ei)j � arctan "

jcvjj
� arctan 2"

jeij

max(jl(e0i)j) = jl(ei)j+ arctan "
jcvjj

+ arctan 2"
jeij

(4)

Proof. We observe that jl(e0i)j = jl(ei)j+�vj ��v0

j
+

�e0

i
� �ei :

In P. Agarwal, L. Kavraki, M. Mason, editors, Robotics: The Algorithmic Perspective, A. K. Peters, Ltd. 1998.

c

ε
vi+1

v'i+1

vi

v'i

vj

v'j

Figure 9: Case 2. v2 is not an equilibrium vertex thus

l(ei) = �ei � �vj where vj is the last equilibrium vertex

(j 6= i).

Since � arctan "
jcvjj

� �vj � �v0

j
� arctan "

jcvjj
and

� arctan 2"
jeij

� �e0

i
� �ei � arctan 2"

jeij
, the relationship

between jl(e0i)j and " as stated in the lemma follows.

Combining both cases, we �nd that for every sta-

ble edge ei, if there is no topological change on the

push function, we can express the relationship between

jl(e0i)j and " as Equation 2, 3 or 4. They form a set

of nonlinear constraints. From these constraints, we

can compute the largest " zone numerically in which

min(jl(e1)j � max(jl(ei)j for all i 6= 1 and ei is a stable

edge.

Now we consider topological changes on the push

function. As we discussed before, it is caused by criti-

cal change on the value of �li and �ri . Since in Case 1

jl(ei)j = �li , we already know the relationship between

�i and ". Each possible critical change on the value of

�li and �ri can be expressed as a linear constraint on ".

Given ", we can determine which topological changes

of the push function can occur. Thus we can �rst ig-

nore the topological constraints, and compute ". Then

we check whether " is valid for all the topologically dif-

ferent situations that are possible within �(P; "). If

not, we decrease " to exclude the �rst topological class

which violates the tolerance condition. We repeat until

no more violations occur.

Before considering topological constraints, the algo-

rithm runs in time O(n). Since there are O(n) topo-

logical constraints and each takes O(n) time to handle,

the overall complexity for computing " is O(n2).

3.6 Convexity

Intuition suggests that if the condition above holds for

all extrema in the tolerance zone, then the condition

will hold for any part in the tolerance class. Unfortu-

nately, this is not the case for feeding. We construct

a counterexample, illustrated in Figure 10, where the

size of the left half interval shrinks, then grows as we

move a vertex continuously from vi+1 to v
00

i+1:

c

β

α li

vi+1

β' β''

v
i

vi+2

v'i+1
v''i+1

Figure 10: Counterexample where convexity does not hold.

Let c be the COM of a nominal part with adjacent

edges ei and ei+1 de�ned by vi; vi+1; vi+2 respectively.

We construct cvi+2 such that it is parallel to vivi+1 and

jvi+1vi+2j > jcvi+1j. Next, extend vivi+1 to v
00

i+1 such

that jcv
00

i+1j = jvi+1vi+2j and jcvi+1j = jv
00

i+1vi+2j. Let

v
0

i+1 be the midpoint of vi+1v
00

i+1. Let l(ei+1), l(e
0

i+1)

and l(e
00

i+1) be the left environment of the correspond-

ing edge. Since jl(ei+1)j+� = �=2, jl(e
0

i+1)j+�
0

= �=2,

jl(e
00

i+1)j+ �
00

= �=2 and �
0

> � = �
00

, then jl(e
0

i+1)j <

jl(ei+1)j = jl(e
00

i+1)j. Thus, when we move vertex vi+1
to v

0

i+1, jl(ei+1)j initially shrinks, then grows back to

its original size.

For a polygon where jl(ei+1)j is the critical half inter-

val, the same push plan will work for vi+1 and v
00

i+1 but

may not work for v
0

i+1: This demonstrates that, in the

context of feeding, we cannot naively assume convexity

and test only extrema in the tolerance zone.

In P. Agarwal, L. Kavraki, M. Mason, editors, Robotics: The Algorithmic Perspective, A. K. Peters, Ltd. 1998.

3.7 Implementationand ExperimentalResults

We implemented the algorithm and ran it on 9 nominal

parts, six of which are shown in Figure 11.

(a)

1

2

3

(b)

1

2 3

4

(c)

1

2
3

4

5

(d)

1

2

3
4

5

6

(e)

1

2
3 4

5

6

7

(f)

1

2

3
4 5

6

7
8

Figure 11: Nominal polygons and their tolerance zones.

The numbers indicate part edges.

To test that the resulting tolerance zones were cor-

rect, we generated 1000 random variations for each part

by allowing vertices to vary uniformly within each tol-

erance zone. As expected, the nominal plan worked

for all parts in the tolerance class. Zero failures are

indicated in the second column in Table 1.

We then increased the tolerance zone by a factor of

1:1; 1:2; 1:3;1:4 respectively, and in each case generated

1000 random variations as above. Here, as expected,

the nominal plan sometimes fails since some polygons

lie outside the tolerance zone. Although the percentage

is small, this numerical experiment suggests that the

tolerance zone we compute provides a tight bound.

Small changes in part geometry can cause large

changes in the tolerance class. For example, the two

8-sided parts in Figure 12 are identical except for the y

coordinate of vertex v1, which in (a) is �0:1 and in (b)

is �2:3. Note that the radius of the tolerance class in

(b) is signi�cantly larger than in (a)! This is because

the part in (a) has a tight topological constraint. This

suggests that if we change the design of part from (a)

to (b), it will be much more robust to variations in part

shape.

(# of edges) 1.0" 1:1" 1:2" 1:3" 1:4"

3 0 0.7 1.2 3.9 5.8

4 0 0.2 0.9 2.1 3.0

5 0 0.7 1.8 4.3 5.6

6 0 0.3 0.9 3.6 5.2

7 0 0.0 0.5 2.1 3.0

8 0 0.2 1.1 2.5 6.0

9 0 0.3 0.9 2.1 5.0

10 0 0.4 1.4 2.4 5.3

17 0 0.1 0.5 1.7 3.0

Table 1: Results for 9 nominal parts, 5000 trials each. For

each part and tolerance radius, the table lists the percentage

of polygons that cannot be fed with the nominal plan. The

�rst column corresponds to polygons in the computed toler-

ance class (no failures). The other columns are polygons

outside the tolerance class.

4 Shape Tolerance in Fixturing

Wentink, van der Stappen and Overmars [2] show that

any convex polygon without parallel edges can be im-

mobilized by a right angle �xel and a single point con-

tact provided with a clamp. Let P be a convex poly-

gon. When placed in the �xture, it has a horizontal

edge contact and a vertical point contact on the right

angle �xel. We assume that the contacts are friction-

less. This is a conservative assumption since any �xture

computed assuming zero friction also holds in presence

of friction. We label the two endpoints of the edge

contact as v1 and v2, the point contact as vp, and the

vertices of the edge to which we apply the clamp as

vc1 and vc2. Edge vc1vc2 is called the clamp edge; see

Figure 13 for an illustration. If we draw vertical lines

from v1 and v2, they intersect the horizontal line from

vp at points f1 and f2 respectively. We refer to the line

segment f1f2 as the �xturing segment since the condi-

tion for the right angle �xel and clamp to immobilize

the part is that the normal of the clamp edge at the

clamp contact point intersects the �xturing segment.

For details see [2].

In P. Agarwal, L. Kavraki, M. Mason, editors, Robotics: The Algorithmic Perspective, A. K. Peters, Ltd. 1998.

−10 0 10

−10

−5

0

5

10

(a)

2

3
4

5

6

78

1

−10 0 10

−10

−5

0

5

10

(b)

2

3
4

5

6

78

1

Figure 12: Computed tolerance zones for two similar poly-

gons.

4.1 A Tolerance Class for Fixturing

As before, let P be a convex polygonal part. Its n

vertices are counterclockwise labeled v1 : : : vn. Edge

v1v2 is the edge that we place on the horizontal arm of

the right-angle �xel. We assume that a �xed coordinate

frame is attached to P . We choose the midpoint of the

edge v1v2 as the origin which we denote by c, and align

the x-axis with the edge v1v2. All the coordinates are

expressed relative to this frame (Figure 14).

Now we de�ne the parametric tolerance class

�(P; "). Again, we assume that part edges are always

straight. For �xturing, we replace the circles around

1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234

123456789012345678901234567890121234567890123456789012345678901212345678901234567890
123456789012345678901234567890121234567890123456789012345678901212345678901234567890
123456789012345678901234567890121234567890123456789012345678901212345678901234567890
123456789012345678901234567890121234567890123456789012345678901212345678901234567890

v1 v2

vc2

vc1

vp f1 f2

Clamp

Figure 13: Fixturing with a right angle �xel and a point

clamp.

v3 vc1

c

=
εε

2ε

f'2(ε)
f2

v1 v2

f'1(ε)

f1

v4= vc2

v5= vp

Figure 14: Description of the part and its shape uncer-

tainty in �xturing.

vertices with boxes and line segments. This is more

natural for �xturing because horizontal and vertical

shifts play a more prominent role than rotation. Let P

be the nominal part, and let P 0 be a candidate. Let c0

denote the center of the edge v01v
0
2 of P 0. We say that

P 0 2 �(P; ") if we can place part P 0 such that c0 is co-

incident with c, the bottom edges are aligned, and all

the vertices of P 0 are within a square of size " around

the corresponding vertices of the nominal part P . It is

easy to check if a candidate P 0 2 �(P; ") in O(n) time.

An example is shown in Figure 14.

In P. Agarwal, L. Kavraki, M. Mason, editors, Robotics: The Algorithmic Perspective, A. K. Peters, Ltd. 1998.

4.2 E�ect of Shape Variations

A �xture design with a right angle �xel is described

by the edge of the part that must touch the bottom

arm of the �xel, and the height of the clamp. A part

P 0 is loaded into the �xture design by placing it with

edge v1v2 on the horizontal arm, shifting it to the left

until it hits the vertical arm, and shifting the clamp

horizontally until it touches the part. A part P 0 is said

to be �xtured by a particular �xture design, if, after

loading it, it is indeed immobilized. A �xture design is

considered valid for the tolerance part set �(P; ") if it

�xtures each part in the set and the clamp will touch

the part at the same edge for each part.

When the part shape changes in the tolerance class,

the �xturing segment may change in height and length,

the clamp contact point may move horizontally and its

normal may rotate. Also, the vertex vp that makes the

contact at the vertical arm of the �xel may be changed.

In this paper, we restrict our tolerance zone such that

this last type of change does not happen and we only

consider the case where v1, v2, vp, vc1, and vc2 are

distinct vertices.

4.3 Convexity

For �xturing as well we show that convexity does

not necessarily help in analyzing the tolerance zone.

Namely, we show that it is insu�cient to analyze a �x-

ture at the extrema of a tolerance zone, as its behavior

can change between extrema.

Assume that we have two polygons P and P 00 that

are the same except for the location of one vertex which

is at position A in P and at position A00 in P 00. Now

assume both P and P 00 can be held with the same �x-

ture. Convexity would suggest that as we move the

vertex from A to A00 along the line segment AA00, the

resulting polygons will also be held with the same �x-

ture. If convexity holds, then we only need to consider

combinations of all the vertices of the tolerance boxes

to check if for a certain " a valid �xture design exists.

Unfortunately, this is not always true, as the following

counterexample shows (see Figure 15).

As illustrated in the �gure, we move the vertex vc2
to v00c2. We denote by � and �00 the normals at the

vc2

µ

Clamp

Q

v'c2

v''c2

vc1

vp

v1 v2

f1 f2

µ'' µ''''

Figure 15: A counterexample: convexity is violated.

clamp contact point of edge vc1vc2 and vc1v
00
c2 respec-

tively. The two normals intersect at point Q. It is easy

to construct a polygon such that Q is on the �xturing

segment. Since � and �00 both intersect the �xturing

segment at Q, the monotonicity should imply that for

every point v0c2 on the line segment vc2v
00
c2, the normal

�0 must also intersect the �xturing segment atQ. (Oth-

erwise it is easy to construct a polygon such that the

�xturing segment is so small that it does contain Q but

not the other intersection point.) But this is obviously

false. So, we have shown that the x-coordinate of the

intersection of the normal at the clamp contact point

and the �xture line segment does not always change

monotonically. Thus a valid �xture for polygons with

vertex at vc2 and v00c2 may not be valid for every polygon

with its vertex on vc2v
00
c2.

4.4 An Algorithm to Compute max "

Since we assume that v1,v2,vp,vc1 and vc2 are distinct

vertices, a �xture is valid for �(P; ") if and only if for

every P 0 2 �(P; "), the normal at the clamp lies be-

tween f1(") and f2(") (see Figure 14). Now consider

the edge at which we apply the clamp. The normal

at the clamp point will intersect the �xture segment

at some position x. We next show that the toleranced

edge that achieves the maximum (or minimum) x must

be such that at least one endpoint is coincident with

one of four extreme points that de�ne the two toler-

ance boxes at its endpoints. Consider Figure 16. This

In P. Agarwal, L. Kavraki, M. Mason, editors, Robotics: The Algorithmic Perspective, A. K. Peters, Ltd. 1998.

demonstrates graphically that for any edge l2 in the

tolerance zone which does not have an endpoint at one

of the four extreme points (ABCD). We can always

move the edge parallel to itself until one of the endpoint

reaches the boundary, and get a larger (smaller) x. So

we have shown that the maximum or minimum of x

will be achieved only when at least one endpoint of the

edge is coincident with one of the four extreme points

(ABCD). Note that, as we have shown before, it is

not necessary that both endpoints are extreme points.

A

B

C

D

Clamp

l1 l2 l3

µ1 µ2 µ3

x1 x2 x3

Figure 16: Boundary condition.

Now let us �x one of the endpoints of the edge and

look at the relationship between the orientation of the

clamp edge and the x-coordinate of intersection of the

normal and the �xture segment. As indicated in Fig-

ure 17, let y be the vertical distance from the �xed

endpoint to the �xture segment, and let h be the ver-

tical distance from the clamp to the �xture segment.

Let x1 be the x-coordinate of the �xed endpoint, x2 the

x-coordinate of the clamp contact point, and x3 the x-

coordinate of intersection between the normal and the

�xture segment. Finally, let � be the orientation of the

clamp edge.

Because the normal is perpendicular to the clamp

edge, we have

y � h

x2 � x2
=

x2 � x3
h

= tan � (5)

From Equation 5 , we eliminate x2 and get

x3 = x1 + (y � h) cot � � h tan � (6)

Take the derivative of x3 on � and set it to be 0,

�
y � h

sin2 �
�

h

cos2 �
= 0 (7)

Solving Equation 7, we get

� = arctan

r
1�

y

h
(8)

x2x1

x3

y

Clamp

h

θ

θ

Figure 17: Relationship between � and x3 when we �x one

endpoint of the clamp edge.

Equation 8 has at most one solution in [0; �=2]. So,

given ", for each �xed endpoint we only need to con-

sider at most three directions: the maximal and min-

imal � within the tolerance zone and the solution of

Equation 8. Also we only need to consider four �xed

endpoints (the corners of the tolerance box) at each

side of the clamp edge. Looking at this carefully, we

get a total of 8 clamp edges and 2 points (f1(") and

f2(")) within the tolerance zones that might de�ne the

maximum or minimum position of the intersection of

the normal and the �xture edge. (The 8 edges are the

four tangent lines of the two tolerance boxes plus, for

each of the 4 extreme vertices (2 per box), the angle

that comes out of Equation 8.) This leads to a system

with a constant number of equations from which we

can compute the largest " in which the �xture design

will work for all parts in �(P; ") (assuming no topo-

logical change). Since only �ve vertices are relevant in

the calculation of ", the complexity of this algorithm is

O(1).

In P. Agarwal, L. Kavraki, M. Mason, editors, Robotics: The Algorithmic Perspective, A. K. Peters, Ltd. 1998.

4.5 Implementationand ExperimentalResults

We implemented the above algorithm and ran similar

test as we did in feeding on 4 nominal parts(as shown

in Figure 18, the results are listed in Table 2. The

numerical experiment suggests that the tolerance zone

we compute provides a tight bound.

(a)

Clamp

(b)

Clamp

(c)

Clamp

(d)

Clamp

Figure 18: Nominal polygons and their tolerance zones.

Polygon 1.0" 1:1" 1:2" 1:3" 1:4"

a 0 0.1 0.1 0.6 1.3

b 0 0.1 0.3 1.3 2.9

c 0 0.2 0.2 0.8 1.9

d 0 0.0 0.1 0.4 1.4

Table 2: Results for 4 nominal parts, 5000 trials each. For

each part and tolerance radius, the table lists the percent-

age of polygons that cannot be immobilized by the nominal

plan. The �rst column corresponds to polygons in the com-

puted tolerance class (no failures). The other columns are

polygons outside the tolerance class.

The same part may have very di�erent tolerance

zones for di�erent �xture plans. For example, the two

parts in Figure 19 are identical, but the clamp height

is di�erent. Note that the radius of the tolerance class

in (b) is signi�cantly larger than in (a)! This suggests

that if we change the �xture plan from (a) to (b), it

will be much more robust to variations in part shape.

5 Conclusion and Future Work

In general, it is very di�cult to characterize the range

of mechanical behavior for the uncountable set of parts

in a tolerance class. This is especially true for geo-

metric tolerancing, where there is no limit on the part

edges within the zone. For example, it is easy to see

that a part that meets the geometric zone speci�cation

can wind up in a broad range of �nal orientations when

pushed with a fence. It is not at all clear how to bound

this range.

Recently there has been renewed interest in paramet-

ric tolerance classes and associated algorithms. Fast

checking algorithms are very useful during the design

cycle. Ideally, part geometry can be monitored in real

time as is currently done with VLSI CAD design rule

checking.

This paper contributes by rigorously characterizing

two new parametric tolerance classes. For each, we give

an O(n) time algorithm for testing if an n-sided part is

in the class. For feeding we give an O(n2) algorithm to

compute the radius of the largest allowable tolerance

zone around each vertex. For �xturing we give an O(1)

algorithm to compute the dimensions of rectangular

tolerance zones. We implemented both algorithms and

illustrate with experimental results.

In both cases the tolerance class is de�ned with re-

spect to the context. For feeding, since the center of

mass plays an important role in fence mechanics, it

was very helpful to de�ne variations in shape with re-

spect to a coordinate frame attached to the center of

mass. Similarly for �xturing, where variations in shape

are relative to the part edge that is in contact with

the edge �xel. This suggests an alternative to de�ning

shape tolerance in the abstract.

E�cient algorithms are necessary to provide rapid

feedback to designers. As the examples in Figures 12

and 19 indicate, small changes in part or �xture geom-

etry can imply large changes in tolerance sensitivity. In

a Computer Aided Design system, low complexity al-

gorithms such as those described in this paper can run

in the background to rapidly indicate tolerance e�ects.

Future research is required to anticipate and suggest

In P. Agarwal, L. Kavraki, M. Mason, editors, Robotics: The Algorithmic Perspective, A. K. Peters, Ltd. 1998.

(a)

Clamp

(b)

Clamp

Figure 19: Shape tolerance computation for �xturing. Intuition suggests that the clamp position in (a) would be more robust

to shape variation than the clamp position (slightly lower) in (b). However, the algorithm computes a smaller allowable

epsilon box in (a) than in (b). This illustrates that small changes in �xture design can produce counterintuitive e�ects on

shape tolerance.

changes in part geometry that can improve tolerance

sensitivity.

Last, the issue of convexity arose repeatedly in this

study. We found that intuition often failed us: we

guessed that if a solution exists at all extrema, it would

hold everywhere in between. To our surprise, we dis-

covered counterexamples. Our results and methodol-

ogy for constructing counterexamples may be appli-

cable in other contexts such as assembly and motion

planning.

Acknowledgements

This work was supported in part by NSF Awards IRI-

9612491 and Presidential Faculty Fellow Award IRI-

9553197 to Prof. Goldberg and by NATO Travel Grant

CRG 951224 (joint with M. Overmars).

Work on this paper by D. Halperin has been sup-

ported in part by an Alon Fellowship, by ESPRIT IV

LTR Project No. 21957 (CGAL), by the USA-Israel

Binational Science Foundation, by The Israel Science

Foundation founded by the Israel Academy of Sciences

and Humanities, and by the Hermann Minkowski {

Minerva Center for Geometry at Tel Aviv University.

References

[1] R. P. Berrety, M. Overmars, F. Van der Stappen, and
K. Goldberg. On fence design and the complexity of
push plans for orienting parts. In 13th Symposium
on Computational Geometry, Nice, France, June 1997.
ACM.

[2] M. Overmars, C. Wentink, and Frank van der Stap-
pen. Fixture planning. In Second Workshop on Al-
gorithmic Foundations of Robotics, Toulouse, France,
July 1996.

[3] James L. Nevins and Daniel E. Whitney. Computer-
controlled assembly. Scienti�c American, 1978.

[4] Geo�rey Boothroyd, Corrado Poli, and Laurence E.
Murch. Automatic Assembly. Marcel Dekker, Inc.,
1982.

[5] Ken Goldberg. Orienting polygonal parts without sen-
sors. Algorithmica, 10(2):201{225, August 1993. Spe-
cial Issue on Computational Robotics.

[6] Anil Rao and Ken Goldberg. Manipulating algebraic
parts in the plane. IEEE Transactions on Robotics
and Automation, 11(4), August 1995.

[7] Yui-Bin Chen and Doug Ierardi. The complexity of
oblivious plans for orienting and distinguishing polyg-
onal parts. Algorithmica, 14, 1995.

In P. Agarwal, L. Kavraki, M. Mason, editors, Robotics: The Algorithmic Perspective, A. K. Peters, Ltd. 1998.

[8] A. A. G. Requicha. Toward a theory of geometric
tolerancing. IJRR, 2(4), 1983.

[9] U. Roy, C. Liu, and T. Woo. Review of dimension-
ing and tolerancing: Representation and processing.
Computer-Aided Design, 23(7), 1991.

[10] H. Voelker. A current perspective on tolerancing and
metrology. Manufacturing Review, 6(4), 1993.

[11] L. Joskowicz, E. Sacks, and V. Srinivasan. Kinematic
tolerance analysis. In Second Workshop on Algorith-
mic Foundations of Robotics, Toulouse, France, July
1996.

[12] C. Yap and Ee-Chien Chang. Geometric tolerancing:
Theory, issues, and computation. In Second Workshop
on Algorithmic Foundations of Robotics, Toulouse,
France, July 1996.

[13] J. C. Latombe, R. H. Wilson, and F. Cazals. Assembly
sequencing with toleranced parts. In Third Symposium
on Solid Modelling and Applications, 1995.

[14] S. Akella. Robotic Manipulation for Parts Trans-
fer and Orienting: Mechanics, Planning, and Shape
Uncertainty. PhD thesis, The Robotics Institute,
Carnegie Mellon University, December 1996. Robotics
Institute Technical Report CMU-RI-TR-96-38.

[15] S. Akella and M. T. Mason. Parts orienting with shape
uncertainty. In Submitted to ICRA 98, October 1997.

[16] Bruce R. Donald. Error Detection and Recovery in
Robotics. Springer-Verlag, 1987.

[17] R. C. Brost and R. R. Peters. Automatic design of 3d
�xtures and assembly pallets. In IEEE International
Conference on Robotics and Automation, 1996.

[18] Lydia Kavraki. Part orientation with programmable
vector �elds: Two stable equilibria for most parts. In
IEEE International Conference on Robotics and Au-
tomation, Albuquerque, New Mexico, April 1997.

[19] Michael A. Peshkin and Art C. Sanderson. Planning
robotic manipulation strategies for workpieces that
slide. IEEE Journal of Robotics and Automation, 4(5),
October 1988.

[20] S. Akella, W. Huang, K. Lynch, and M. Mason. Pla-
nar manipulation on a conveyor by a one joint robot
with and without sensing. In Second Workshop on Al-
gorithmic Foundations of Robotics, Toulouse, France,
July 1996.

[21] J. Wiegley, K. Goldberg, M. Peshkin, and
M. Brokowski. A complete algorithm for designing
passive fences to orient parts. Assembly Automation,
17(2), August 1997.

[22] Matthew T. Mason. Mechanics and planning of ma-
nipulator pushing operations. International Journal
of Robotics Research, 5(3), Fall 1986.

