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Abstract

As improvements in fabrication technology for MEMS

(microelectromechanical systems) increase the avail-

ability and diversity of these micromachines, engineers

are de�ning a growing number of tasks to which they

can be put. The idea of carrying out tasks using large

coordinated systems of MEMS units motivates the de-

velopment of automated, algorithmic methods for de-

signing and controlling these groups of devices. We

report here on progress towards algorithmic MEMS,

taking on the challenge of design, control, and pro-

gramming of massively-parallel arrays of microactua-

tors.

We report on these developments in this focused sur-

vey paper, based on the research results originally re-

ported in our 1994 paper [24] and developed further

in [19, 20, 26, 21, 17, 18, 24, 12, 14, 15, 9]. We describe

how arrays of MEMS devices can move and position

tiny parts, such as integrated circuit chips, in 
exible

and predictable ways by oscillatory or ciliary action.

The theory of programmable force �elds can model this

action, leading to algorithms for various types of mi-

cromanipulation that require no sensing of where the

part is. Experiments support the theory. We also re-

port on how the theory and results can be generalized

to the macroscopic scale [11, 10].

1 Introduction

The recent, rapid innovations and improvements in

microfabrication technology have resulted in an ever-

growing complexity of available MEMS devices, man-

dating the use of automated, algorithmic methods

Figure 1: Sensorless parts orienting using force vec-

tor �elds: The part reaches unique orientation after two

subsequent squeezes. There exist such orienting strate-

gies for all polygonal parts. See www.cs.dartmouth.edu/

~brd/demo/MicroManipulation for an animated simula-

tion.

for their design and control. This paper surveys

our progress towards algorithmic MEMS, by taking

on the challenge of design and control of massively-

parallel micro actuator arrays. Our goal is to im-

plement task-level, sensorless manipulation strategies

with arrays of microfabricated actuators. The theory

of programmable force �elds1 [19] arguably represents

the �rst systematic attack on massively-parallel, dis-

1The theory of programmable force �elds for micro ma-
nipulation tasks was introduced in [24].
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Figure 2: Sensorless sorting using force vector �elds: parts

of di�erent sizes are �rst centered and subsequently sepa-

rated depending on their size.

tributed manipulation based on geometric and physical

reasoning. Applications such as parts-feeding can be

formulated in terms of the force �elds required. Hence,

programmable force �elds act as an abstraction bar-

rier between applications requiring array micromanip-

ulation and their implementation with MEMS devices.

Such abstraction barriers permit hierarchical design,

and allow application designs with greater indepen-

dence from underlying device technology.

We are interested in the algorithmic content of

MEMS control strategies. This paper surveys our work

on showing how to quantify it, by analyzing the com-

plexity of (1) computing a manipulation plan, (2) the

generated plans (i.e., force �eld sequences) and (3) the

individual �elds. We survey our results on obtaining

upper and lower complexity bounds on plans and �elds,

and in �nding trade-o�s between these di�erent kinds

of complexity. We review how to solve the problems

of planning and control of micro actuator arrays for

a wide range of tasks, and present a tutorial on algo-

rithms that automatically generate manipulation plans

for translating, orienting, centering, and sorting small

parts [17, 19].

When a part is placed on the array, the programmed

vector �eld induces a force and moment upon it. Over

time, the part may come to rest in a dynamic equilib-

rium state. By chaining together sequences of vector

�elds, the equilibrium states of a part in the �eld may

be cascaded to obtain a desired �nal state|for exam-

ple, this state may represent a unique orientation or

pose of the part (see Figures 1 and 2a-b). The re-

sulting strategies work from any initial con�guration

(pose) of the part, require no sensing, and enjoy e�-

cient planning algorithms. A system with such a be-

havior exhibits the feeding property [2]:

A system has the feeding property over a set

of parts P and a set of initial con�gurations

I if, given any part P 2 P , there is some

output con�guration q such that the system

can move P to q from any location in I.

In Section 5 we present several force vector �elds that

possess the feeding property. Some of these �elds are

more powerful part feeders, as they allow the choice of

a speci�c output con�guration q. Our work on pro-

grammable force �elds is related to nonprehensile ma-

nipulation [32, 61, 35]: in both cases, parts are manip-

ulated without form or force closure.

Even though our �elds are typically not smooth, it

is possible to de�ne a potential for certain �elds (as a

unique path integral), and to show that when an ar-

ray (R2) potential exists, it always lifts to a smooth

con�guration space (R2 � S
1) potential for the ma-

nipulated part [19]. Vector �elds with potential have

been shown to be theoretically well-suited for manipu-

lation strategies, by classifying a sub-family of poten-

tial �elds in which every part has stable equilibria [19].

Hence, such �elds have been proposed for manipula-

tion tasks in which we desire to cascade equilibria in

order to uniquely pose or orient a part (for details see

[24, 19, 20]). The theory of programmable force �elds

permits calculation of stable equilibria for macroscopic

parts in potential �elds2 (see Figure 15). In our ex-

2While this question has been well-studied for a point
mass in a �eld, the issue is more subtle when lifted to a
body with �nite area, due to the moment covector. See
[19] for details.
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periments, we employed vector �elds with potential for

parts-orientation and -posing tasks, and the theory was

used to predict the equilibrium poses of speci�c parts

(Figure 14). The poses predicted by the equilibrium

analysis were observed in our experiments (Figures 13-

left).

Perhaps surprisingly, the theory also predicts the ex-

istence of pathological �elds which do not induce well-

behaved equilibria. In particular, there exist perfectly

plausible vector �elds which induce no stable equilib-

rium in very simple parts. Although these �elds are

very simple, they result in limit cycles and quite com-

plex behavior. We implemented such �elds on an or-

ganic micro cilia array (see Section 3.2) [59, 26, 21].

Vector �elds without potential were employed to cast

parts into limit cycles, e.g. \in�nite" rotation using a

skew-symmetric squeeze �eld. The predicted behav-

ior (Figure 16) for such \unstable" vector �elds was

also observed (Figure 13-right). This shows that rather

complex|but potentially useful|behavior can be gen-

erated using very simple �elds.

We survey recent experiments in implementing this

theory using microfabricated actuator arrays [19, 26,

21]. In these experiments, strategies were programmed

in a �ne-grained SIMD fashion by specifying planar

force vector �elds. These programmable �elds were

implemented by moving the individual actuators in a

cyclic, gait-like fashion. Motion in non-principal (e.g.

diagonal) directions was e�ected by a pairwise coupling

of the actuators to implement virtual actuators and

virtual gaits, (analogous to the virtual legs employed

by Raibert's hopping and running robots [52]). The

tasks of parts-translation, -rotation, -orientation, and

-centering were demonstrated using small IC dice.

The theory of programmable force �elds and virtual

gaits gives a method for controlling a very large num-

ber of distributed actuators in a principled, geomet-

ric, task-level fashion. Whereas many control theories

for multiple independent actuators break down as the

number of actuators becomes very large, our systems

will only become more robust as the actuators become

denser and more numerous.

2 Research Growth

When we began working in MEMS in 1991, it was

not immediately clear what fundamental algorithmic or

computational problems arose in this new area. Even

after obtaining our �rst results on the theory of pro-

grammable force vector �elds in 1993 [22], the received

view in the community was that the chief computa-

tional issues in MEMS arose in (1) design, and (2)

simulation. Indeed, it is these problems that motivated

our initial e�orts (see, e.g., [5, 6, 8, 7]): in 1990, Ralph

Merkle of Xerox PARC and Kris Pister of Berkeley

urged us to apply our results on the design and simu-

lation [33] of snap fasteners to MEMS [51].

At that time, work on force �elds for manipulation

had been limited to the arti�cial potential �elds �rst

developed by Khatib, Koditschek, and Brooks.3 While

potential �elds have been widely used in robot con-

trol [42, 43, 56, 53], micro-actuator arrays present us

with the ability to explicitly program the applied force

at every point in a vector �eld. Whereas previous work

had developed control strategies with arti�cial poten-

tial �elds, our �elds are non-arti�cial (i.e., physical).

Arti�cial potential �elds require a tight feedback loop,

in which, at each clock tick, the robot senses its state

and looks up a control (i.e., a vector) using a state-

indexed navigation function (i.e., a vector �eld). In

contrast, physical potential �elds employ no sensing,

and the motion of the manipulated object evolves open-

loop (for example, like a particle in a gravity �eld).

This alone makes our application of potential �eld the-

ory to micro-devices a di�erent, and algorithmically

challenging enterprise. Such �elds can be composed

using addition, sequential composition, or \parallel"

composition by superposition of controls.

After our �rst paper appeared in January 1994 [24],

it became clear that there exist deep and challeng-

ing algorithmic problems in MEMS and programmable

vector �elds, at the intersection of combinatorial algo-

rithms, geometry, dynamical systems, and distributed

3A notable exception are the three-dimensional force
�elds used by Jo�e and his collaborators at JPL [39], where
AC magnetic �elds are used to orient and assemble ferro-
magnetic parts { in 3D!
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systems. A 
urry of papers has emerged on new algo-

rithms, new analysis, and new arrayed devices for pro-

grammable vector �elds. During the next few years,

the authors continued working with Noel MacDon-

ald at the Cornell Nanofabrication Facility to develop

and test new arrays of MEMS microactuators for pro-

grammable vector �elds [18, 18, 19, 20, 23]. At the

same time, we worked with Greg Kovacs' group at the

National Nanofabrication Facility at Stanford, to de-

velop a control system for MEMS organic ciliary arrays,

and to perform manipulation experiments with these

arrays to manipulate IC dice using array-induced force

�elds [21, 26]. In parallel, we worked with Ken Gold-

berg at Berkeley and Vivek Bhatt at Cornell to gener-

alize the theory to macroscopic devices, by developing

algorithms for transversely vibrating plates in order to

implement programmable vector �elds [11, 10]. Finally,

Danny Halperin, working with the authors, developed

new upper and lower bounds, output-sensitive algo-

rithms, and a precise computational-geometric anal-

ysis of the area bisectors arising in squeeze-�eld algo-

rithms [14, 15, 16].

Other groups have also been active in developing

new devices, analysis, and algorithms. Ken Goldberg

worked with John Canny's group at Berkeley, to con-

tinue research on using vibrating plates for manipula-

tion, showing that longitudinal vibrations can generate

a rich vocabulary of programmable vector �elds [55]. In

addition, they developed sophisticated dynamic mod-

els and dynamic simulators for both MEMS devices

and macroscopic vibrating plates [54]. Lydia Kavraki

explored the power of continuous vector �elds, and

demonstrated an elliptical potential �eld capable of

posing any part into one of two equilibrium states [40].

Peter Will and his colleagues at ISI have explored

a number of di�erent MEMS array designs, as well

as algorithms and analysis for programmable vector

�elds [45, 28, 30, 29]. Andy Berlin, David Biegelsen,

P. Cheung, and Warren Jackson at Xerox PARC have

developed a novel MEMS microactuator array based

on controllable air jets, with integrated control and

sensing circuitry [4, 27]. Working at CMU, Bill Mess-

ner and Jonathan Luntz developed a small room whose


oor is tiled with controllable, programmable, macro-

Figure 3: Prototype M-Chip. A large unidirectional ac-

tuator array (scanning electron microscopy). Each actu-

ator is 180 � 240 �m2 in size. Detail from a 1 in2 array

with more than 11,000 actuators. For more pictures on

device design and fabrication see www.cs.dartmouth.edu/

~brd/demo/MicroActuators.

scopic wheels that can be driven and steered to ma-

nipulate large objects such as boxes [46]. Such a sys-

tem can implement programmable vector �elds. To-

gether with Howie Choset, they analyzed the resulting

dynamical system to obtain interesting results on con-

trollability and programmable vector �eld algorithms

based on conservative vs. non-conservative �elds [47].

Daniela Rus has developed three-dimensional recon�g-

urable tilings of actuators that could deliver 3D pro-

grammable vector �elds for manipulation and locomo-

tion [44]. Working with the Berkeley Sensors and Actu-

ators Group (BSAC), Karl B�ohringer and Ken Gold-

berg explored how MEMS devices employing electro-

static fringing �elds can be used to implement pro-

grammable force �elds for parts manipulation and self-

assembly [13, 25].

In short, there has been an explosion of new and

exotic arrayed devices for both MEMS manipulation

and macroscopic manipulation. The theory of pro-

grammable vector �elds has been applied and extended

to a variety of devices and systems. It is somewhat

remarkable that the same analysis tools, �elds, and al-

gorithms apply to such a wide range of systems.

3 Experimental Devices and Setup

Several groups have described e�orts to apply

MEMS (micro electro mechanical system) actuators to
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Figure 4: Released asymmetric actuator for the M-Chip

(scanning electron microscopy). Left: Dense grid (10 �m

spacing) with aluminum electrode underneath. Right: Grid

with 5�m high poles.

Figure 5: Released M-Chip actuator consisting of single-

crystal silicon with 5 �m high tips, suspended 5�m above

the silicon substrate.

positioning, inspection, and assembly tasks with small

parts [50, 3, 37, 24, 45, for example]. However, the

fabrication, control, and programming of micro-devices

that can interact and actively change their environment

remains challenging. Problems arise from

1. the limited range of motion and force that can be

generated with microactuators,

2. the lack of su�cient sensor information with re-

gard to manipulation tasks,

3. design limitations and geometric tolerances due to

the fabrication process, and

4. uncertain material properties and the lack of ade-

quate models for mechanisms at very small scales.

In the following subsections we describe two di�erent

types of actuator arrays: single-crystal silicon (SCS)

electrostatic actuators, and combined thermobimorph

and electrostatic organic micro cilia.

Figure 6: M-Chip prototype motion pixel consisting of

actuators oriented in four di�erent directions.

3.1 Single-crystal silicon electrostatic actua-

tors

We now survey recent work on single-crystal silicon

electrostatic MEMS actuators, conducted in collabora-

tion with Noel MacDonald at the Cornell Nanofabrica-

tion facility [18, 18, 19, 20, 24, 23].

The M-Chip (Manipulation Chip, see Figure 3)

is fabricated using a Scream (Single-Crystal Silicon

Reactive Etching and Metallization) process developed

in the Cornell Nanofabrication Facility [60, 58]. The

Scream process is low-temperature, and does not in-

terfere with traditional VLSI [57]. Hence it opens

the door to building monolithic microelectromechani-

cal systems with integrated microactuators and control

circuitry on the same wafer.

The design is based on microfabricated torsional res-

onators [49, 48]. Each unit device consists of a rectan-

gular grid etched out of single-crystal silicon suspended

by two rods that act as torsional springs (Figure 4).

The grid is about 200�m long and extends 120�m on

each side of the rod. The rods are 150�m long. The

current asymmetric design has 5�m high protruding

tips on one side of the grid that make contact with an

object lying on top of the actuator (Figure 5). The

other side of the actuator consists of a denser grid

above an aluminum electrode. If a voltage is applied

between silicon substrate and electrode, the dense grid

above the electrode is pulled downward by the resulting

electrostatic force. Simultaneously the other side of the

device (with the tips) is de
ected out of the plane by
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Figure 7: Portion of a polyimide cilia array (SEM micro-

graph). Four orthogonally-oriented actuators are integrated

into a motion pixel, which covers a surface area of approx-

imately 1:1 � 1:1mm2.

several �m. Hence an object can be lifted and pushed

sideways by the actuator.

Because of its low inertia (resonance in the high kHz

range) the M-Chip can be driven in a wide frequency

range from DC to several 100 kHz AC. The actuators

need not be operated at resonance: They can also be

servoed to periodically \hit" an object on top, hence

applying both lateral and vertical forces. Calculations,

simulations and experiments have shown that the force

generated with a torsional actuator is approximately

10�N , which corresponds to a force-per-area ratio of

100�N=mm2, large enough to levitate e.g. a piece of

paper (1�N=mm2) or a silicon wafer (10�N=mm2).

Each actuator can generate motion in one speci�c

direction if it is activated; otherwise it acts as a pas-

sive frictional contact. Figure 3 shows a small sec-

tion of a unidirectional actuator array, which consists

of more than 11,000 individual actuators. The com-

bination and selective activation of several actuators

with di�erent motion bias allows us to generate vari-

ous motions in discrete directions, spanning the plane

(Figure 6). In initial manipulation experiments, small

pieces of glass (size: several mm2, mass: about 1mg)

were lifted within the motion range of the actuators

(several �m) and pushed sideways by several 100�m.

The fabrication process and mechanism analysis are

described in more detail in [24, 23, 17].

3.2 Combined thermobimorph and electro-

static polyimide cilia arrays

(Curled out of plane when not heated)

Tip

TiW Resistor

High CTE
Polyimide

Wet Etch
AccessVias

Electrostatic
Plate

Low CTE
Polyimide

Encapsulation/
Stiffening Layer

Bas
e

Figure 8: Organic thermal and electrostatic microactua-

tor. Half of the upper polyimide and silicon nitride encapsu-

lation/sti�ening layer are shown removed along the cilium's

axis of symmetry to show details.

Figure 9: Polyimide cilia motion pixel (SEM micrograph).

Four actuators in a common center con�guration make up

a motion pixel. Each cilium is 430 �m long and bends up

to 120 �m out of the plane.

We now survey recent work on using MEMS or-

ganic cilliary arrays [59] for massively parallel microa-

nipulation, conducted in collaboration with John Suh

and Greg Kovacs at the Stanford University National

Nanofabrication facility [21, 26].

At Stanford, surface micromachining techniques

were used to create organic micro cilia arrays, con-

sisting of polyimide as the primary structural material

and aluminum as a sacri�cial layer. The fabrication

process (developed at the Center for Integrated Sys-

tems, Stanford University) was designed to be compat-

ible with CMOS or BiCMOS circuits which could be

pre-fabricated on a silicon substrate [59].

Actuator cilia. Each cilium consists of two layers of

polyimide with di�erent thermal expansion coe�cients.
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The cilium also contains a Titanium-Tungsten (Ti:W)

resistive heater loop for thermal actuation, Aluminum

electrodes for electrostatic (low-power) hold-down, and

a silicon nitride encapsulation/sti�ening layer (Fig-

ure 8). For a detailed description of the fabrica-

tion process see [59]. Vertical and horizontal displace-

ments of the cilia tips are a function of the thermal

mismatch in the actuator layers. For room tempera-

ture, these values can be calculated as �v � 120�m

and �h � 20�m [59]. Inspection under the scanning

electron microscope (SEM) has veri�ed these calcula-

tions.

The lifting capacity of an actuator can be estimated

as the force required to de
ect the actuator's tip to

the substrate. The actuator load capacity has been

calculated as Fl = 76�m, which gives a force-per-area

ratio of 4� 76�N=(1:1mm)2 � 250�N=mm2.

Chip layout. The cilia array is composed of cells

(motion pixels, each 1:1� 1:1mm2) which contain four

orthogonally-oriented actuators (Figure 9). On the

current cilia chip, the motion pixels are arranged in

an 8� 8 array which occupies approximately 0:77 cm2

of a 1 cm2 die. The four actuators of each pixel are

independently activated by four thermal and four elec-

trostatic control lines. Four 8� 8 chips are diced and

packaged together to make a quad-shaped 16� 16 cilia

array device, with a total of 1024 cilia. The device it-

self is attached to a hybrid package which is placed on

a heat sink and thermo-electric cooler (Peltier e�ect

module). The total input power to the chip can ex-

ceed 4W , and without active cooling the package can

become very hot. To observe the experiments, a long

working distance microscope is connected to a CCD

camera, and a video cassette recorder is used to mon-

itor and record both the movements of an individual

cilium and the objects conveyed by the array.

Controller. The manipulation results described be-

low were accomplished with the cilia array device in-

terfaced to an IBM 486 personal computer. The PC

provides speed control via the drive pulse frequency

and directional control interactively via keyboard or

mouse, or by actuator programs that can be speci�ed

phase 2

up (off) down (on)

21

phase 1

news neWs

motion

motion

North

East

West

South

Figure 10: Two-phase gait. The W actuator is repeatedly

switched on and o�, while the other actuators always remain

on, resulting in a news neWs sequence.

using the MEMSA (MEMS Array) language4 which we

developed at Stanford. The control software includ-

ing the MEMSA interpreter was written in PASCAL.

Thermal and electrostatic control line signals are sent

via the PC parallel port to D-type 
ip-
ops which ac-

tivate power transistors. Currently up to 4 cilia arrays

can be controlled simultaneously by using a multiplexer

with 2 address bits.

4 Low-level Control: Actuator Gaits

We now survey some basic concepts of actuator gaits

using MEMS arrays for massively parallel microanipu-

lation, developed in collaboration with Jonathan Suh

and Greg Kovacs at the Stanford University National

Nanofabrication facility [21, 26].

To induce motion on a part that is placed on the ar-

ray, the cilia are actuated in a cyclic, gait-like fashion.

In each cycle, the part is moved in a certain direction

4MEMSA (named after MENSA) is the language for
smart manipulation surfaces.



In P. Agarwal, L. Kavraki, M. Mason, editors, Robotics: The Algorithmic Perspective, A. K. Peters, Ltd. 1998.

K. F. B�ohringer and B. R. Donald

up (off) down (on)

motion

21

news neWs

motion

3 4

nEWs nEws

Figure 11: Four-phase gait consisting of the four-pattern

sequence news neWs nEWs nEws.

by the motion of the actuators that are in contact with

it. The speed of the moving part depends on the (hor-

izontal) displacement of the actuators per cycle as well

as the frequency of cycle repetition. It also depends on

the surface properties and weight of the moving part.

Task: translation of parts in principal direc-

tions. The simplest gait is the two-phase gait, in

which all actuators of the same orientation repeatedly

stroke the part while the remaining actuators are held

down. Assuming that the orthogonal cilia within a mo-

tion pixel are oriented at the principal compass points,

let us use capital letters NEWS to denote the North,

East, West, and South actuators in the up position,

and lower-case letters news to denote the actuators in

the lowered position. Then the two-phase gait to e�ect

down (on)up (off)

motion

1 2

news neWS

motion

3 4

NEWS NEws

Figure 12: Diagonal (virtual) gait consisting of the four-

pattern sequence news neWS NEWS NEws. The N and E cilia,

and the W and S cilia, are coupled to form virtual cilia in

North-East and South-West directions.

motion in the East direction would be news neWs (see

Figure 10).

The four-phase gait consists of four di�erent actu-

ation phases news neWs nEWs nEws such that motion

is induced during upward as well as downward strokes

of the cilia (Figure 11, see also [3]). Note that the

forces exerted on the moving part depend on the state

of the motion pixel: e.g. in the transition from phase 1

to phase 2 the cilium W moves up while the opposing

cilium e remains down. We denote the lateral force

exerted on the part in this con�guration fW;e. Analo-

gously, during transitions 2{3, 3{4, and 4{1 we observe

lateral forces fE;W, fw;E, and fe;w, respectively. fW;e and

fe;w are in positive x-direction, while fE;W and fw;E are
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negative. Furthermore, from this analysis it follows

that jfW;ej � jfe;wj � jfE;Wj � jfw;Ej � 0. Hence we ex-

pect a relatively large motion step �xW;e during transi-

tion 1{2, and a smaller step �xe;w during transition 4{

1, while during the other transitions the part remains

at its current location. This behavior has been ob-

served in our experiments, where �xW;e was measured

between 3�m and 10�m depending on input power,

frequency, surface properties and weight of the part.

�xW;e was usually about twice as large as �xe;w.

Task: translation of parts in arbitrary direc-

tions. Motion in non-principal (e.g. diagonal) direc-

tions is e�ected by a pairwise coupling of two cilia

of each pixel, implementing virtual cilia analogous to

Raibert's concept of virtual legs for hopping and run-

ning robots [52]. Hence, several cilia can be coordi-

nated to emulate a virtual cilium, which generates a

force corresponding to the vector sum of its compo-

nents. The diagonal gait to e�ect motion in the North-

East direction would be news neWS NEWS NEws where

the virtual cilia are NE and WS. Consequently, we ob-

tain a virtual gait that moves the part in a diagonal

direction. Note that in a section view through the ar-

ray looking in the North-West direction, this gait looks

virtually identical to the four-phase gait depicted in

Figure 11.

Motion in arbitrary directions can be induced by

alternating gaits that interleave principal (or virtual)

gaits of di�erent directions. For example, a transla-

tion at 25� from the x-axis requires motion in the y-

direction and x-direction at a ratio of tan 25� � 1 : 2.

Our control software determines the exact alternation

analogously to the Bresenham line scan algorithm [36],

which rasterizes lines at arbitrary angles, resulting in

di�erent �elds that are interlaced in time.

Experiments and results. In collaboration with

Jonathan Suh and Greg Kovacs at the Stanford Uni-

versity National Nanofabrication facility [21, 26], a

large number of translation experiments have been per-

formed in which two-phase and four-phase gaits were

used to implement principal and virtual gaits. These

experiments show that a �rst-order dynamical system

models the device-part interaction well.5 Therefore,

when describing and predicting the motion of parts in

force vector �elds, we have based our theory on a �rst-

order system (see Section 5).

Silicon chips were moved with a motion resolution

of a few �m and speeds up to 200�m=sec. Four-phase

gaits proved more e�ective than two-phase gaits, be-

cause during the downward motion in the two-phase

gait, the part tends to slip backwards. The four-phase

gait avoids this e�ect, because other cilia hold the part

in place during the transition 3{4. In the subsequent

downward motion in the transition 4{1, the part is also

moved forward (Figure 11).

The diagonal gait also has the lowest power con-

sumption (not considering electrostatic hold-down),

due to the fact that its duty cycle for cilia hold-down

is lowest (50%), compared to 75% for the principal

four-phase gait, and 87.5% for the two-phase gait.

As expected, diagonal (virtual) gaits induced the

largest and fastest motion because all four cilia of each

pixel were activated, whereas in principal gaits only

two cilia are actively used, while the others have to be

held down continuously (Figure 11).

5 High-level Control: Vector Fields

We believe that vector �elds can be used as an ab-

straction barrier between applications requiring array

micro-manipulation and MEMS devices implementing

the requisite mechanical forces. That is, applications

such as parts-feeding can be formulated in terms of the

vector �elds required. This then serves as a speci�-

cation which the underlying MEMS device technology

5While experiments with our MEMS arrays indicate
they may be modelled as �rst order (heavily-damped or
essentially quasi-static) systems, it is easy to imagine fu-
ture MEMS arrays that are highly dynamic and which
would require a detailed analysis of dynamic equilibria. In-
deed, our vibrating plates exhibit more dynamics, although
empirically the quasi-static analysis has been adequate so
far [11, 10]. Some experimental evidence for quasi-staticity
is discussed in [21, 26], and the e�ect of dynamics on the
quasi-static model is discussed in [20]. Research on dynamic
analysis of programmable vector �elds is an active research
area; see, e.g., [54, 55, 28, 30, 29, 47].
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l

l

l

l
Figure 13: Manipulation of silicon chips in programmable

vector �elds induced by a micro cilia array (microscope

video images). Left: The chip is aligned with the verti-

cal squeeze line l (marked by a dark line for clari�cation).

Right: Rotating a square-shaped chip counterclockwise in a

skewed squeeze �eld.

must deliver. Conversely, the capabilities of MEMS

array technologies for actuation can be formulated in

terms of the vector �elds they can implement. For ex-

ample, limitations in force magnitude are naturally ex-

Figure 14: Simulation of the alignment task with a squeeze

�eld as shown in Figure 13-left.

pressed in vector �eld terms, as \small" vector �elds.

Restrictions in directional selectivity and magnitude

control can also be manifested as restrictions on the

vector �eld abstraction (resulting in discretization in

orientation or modulus). This means that MEMS de-

signers can potentially ignore certain details of the ap-

plication process, and instead focus on matching the re-

quired vector �eld speci�cation. Then, once the capa-

bilities of MEMS actuator arrays were published as vec-

tor �elds and tolerances, an application designer could

look in a catalog to choose a device technology based on

the �eld speci�cation it promises to implement. This

would free application engineers from needing to know

much about process engineering, in the same way that

software and algorithm designers often abstract away

from details of the hardware. Such an abstraction bar-

rier could permit hierarchical design, and allow appli-

cation designs with greater independence from the un-

derlying device technology. At the same time, abstrac-

tion barriers could allow MEMS array technologies to

be designed simultaneously with the (abstract) vector

�eld control. This development pattern could be sim-

ilar to the concurrent design of VLSI processors with

their compilers, as is common in computer architecture.

We now survey some basic concepts and theory in

high-level (algorithmic) control, and describe experi-

ments to test the validity of the theory. The experimen-

tal results surveyed below in Sec. 5 were conducted in

collaboration with Jonathan Suh and Greg Kovacs at

the Stanford University National Nanofabrication facil-

ity [21, 26]. In this survey, we emphasize the geometric

and algorithmic aspects of the problem, as well connec-

tions and synergy with experimental work on design,

fabrication, and programming of MEMS arrays.
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P1

P2

c1

squeeze line

c2

l

Figure 15: Equilibrium condition: To balance force and

moment acting on P in a unit squeeze �eld, the two areas

P1 and P2 must be equal (i.e., l must bisect the part), and

the line connecting the centers of area c1 and c2 must be

perpendicular to the squeeze line l.

5.1 Squeeze �elds

In [24], the authors proposed a family of control strate-

gies called squeeze �elds and a planning algorithm for

parts-orientation (see Figures 1 and 15).

De�nition 1 [19] Given a straight line l, a squeeze

�eld f is a two-dimensional force vector �eld in which,

at each point, a unit force points perpendicularly to-

wards l (on l the force is zero).

We refer to the line l as the squeeze line, because l

lies in the center of the squeeze �eld.

Assuming quasi-static motion, an object will trans-

late and rotate to an equilibrium con�guration, as char-

acterized in Figure 15. To predict the equilibria, we

assume a uniform force distribution over the surface of

P , which is a reasonable assumption for a 
at part that

is in contact with a large number of elastic actuators.

De�nition 2 A part P is in translational equilibrium

if the forces acting on P are balanced. P is in orienta-

tional equilibrium if the moments acting on P are bal-

anced. Total equilibrium is simultaneous translational

and orientational equilibrium.

Claim 3 [19] Every squeeze �eld f (see De�ni-

tion 5.1) has potential, of the form U(z) =

Z
�

f � ds,

where � is an arbitrary path to z from a �xed refer-

ence point. If dz denotes the perpendicular distance of

z from the squeeze line, then U(dz) = jdzj.

Claim 4 [19] Let P be a connected polygonal part with

�nite contact area and n vertices. Then in any squeeze

�eld, P has E = O(kn2) orientation equilibria, where

k is the maximum number of edges that a bisector of P

can cross. If P is convex, then the number of equilibria

is O(n).

Equilibria can be calculated numerically using the

method in Figure 15: Given an arbitrary part at a

�xed orientation, we translate it until its left and right

sections have equal size. If the respective centers of

gravity lie on a line perpendicular to the squeeze line,

then the part is in equilibrium. For polygonal parts

there exist analytical methods to compute the equi-

libria exactly (see [19] for a detailed algorithm and a

derivation of the O(kn2) bound).

Claim 5 [19] Let P be a polygon whose interior is

connected. There exists a sensorless alignment strategy

consisting of a sequence of squeeze �elds that uniquely

orients P up to symmetries.

Proof: Claim 4 states that a squeeze �eld brings a

polygon P into one of E = O(kn2) orientation equi-

libria. We de�ne the squeeze function as this map-

ping from original orientation to equilibrium orienta-

tion. Hence, from Claim 4 it follows that the image of

the squeeze function is a set of E discrete values. Given

such a squeeze function, Goldberg has presented an al-

gorithm for sensorless manipulation of polygons [38]

that constructs an orienting strategy with O(E) steps

in O(E2) time. The output of this algorithm is a se-

quence of squeeze directions. When the corresponding

squeeze �elds are applied to the part P , the set of pos-

sible orientations is successively reduced until a unique

orientation (up to symmetry) is reached. For details

see [19] and [38]. 2

Task: orienting and aligning parts

If a part is placed in a squeeze �eld, it will trans-

late and rotate until a stable equilibrium is reached
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Figure 16: Unstable square-shaped part in a skewed

squeeze �eld (� = �1). The square with center on the

squeeze line will rotate inde�nitely. Moreover, it has no

stable equilibrium in this �eld.

(Claim 4). Parts may exhibit several equilibria, hence

after one squeeze the part orientation may be ambigu-

ous. This ambiguity can be removed with the strate-

gies of Claim 5: by executing a sequence of squeezes

at particular angles, the part is uniquely oriented (see

Figure 1).

Experiments and results. The long, thin part de-

picted in Figures 13-left and 14 exhibits a unique sta-

ble equilibrium (modulo 180� �eld symmetry). When

placed in a squeeze �eld, its longitudinal axis aligns

with the squeeze line. This dynamic process is pre-

dicted by simulation in Figure 14, and veri�ed in ex-

periment (see Figure 13-left). This part alignment ex-

periment has also been performed with similar results

for several other small pieces of glass and silicon of a

few mm length and several mg of mass.

5.2 Skewed squeeze �elds

De�nition 6 [19] A skewed �eld fS is a vector �eld

given by fS(x; y) = �sign(x)(1; �), where 0 6= � 2 R.

Claim 7 [19] No skewed squeeze �eld has a potential.

In a skewed squeeze �eld, it is easy to �nd a circular

path along which the work integral is non-zero (e.g.,

along a circle with center on the squeeze line).

Claim 8 [19] A skewed �eld induces no stable equilib-

rium on a disk-shaped part (for all � 6= 0).

Force equilibrium is only possible if the center of the

disk coincides with the squeeze line. In this position

the disk experiences a non-zero moment if � 6= 0.

Claim 9 A diagonally skewed �eld (� = �1) induces

no stable equilibrium on a square-shaped part.

For a proof see [19].

Task: rotating parts

According to Claims 8 and 9, certain parts will rotate

inde�nitely in skewed squeeze �elds (Figure 16). Note

that even though our cilia device has more degrees of

freedom, two areas of constant force are su�cient to

implement a skewed �eld, resulting in a very simple

task-level rotation strategy. In particular, the rota-

tion algorithm resulting from the application of skew-

symmetric squeeze �elds is considerably simpler than

rotation algorithms proposed in the MEMS literature

(for example, the vortices suggested by Fujita [37] or by

Liu and Will [45]). Vortices require at least four areas

of the array to be pushing in di�erent directions. That

is, vortices can be implemented using four triangular

or rectangular regions, upon each of which the vector

�eld is constant. Skewed �elds perform the same task

with only two regions of constant force.

Experiments and results. Figure 13-right shows

video frames of a 3 � 3mm2 IC chip rotating on the

squeeze line of a skewed �eld. During the experiments

of approximately 10 min, several full rotations of the

part were performed.

5.3 Radial �elds

De�nition 10 A radial �eld f is a two-dimensional

force vector �eld such that f(z) = �z=jzj if z 6= 0, and

f(0) = 0.

Claim 11 [19] A radial �eld has a potential, U(z) =

jzj.

Claim 12 [19] Given a polygonal part P in a radial

�eld f , there exists a unique pivot point v of P such

that P is in equilibrium if and only if v coincides with

the center of the radial �eld.
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Claim 13 [19] Let P be a polygonal part with n ver-

tices, and let k be the maximum number of edges that a

bisector of P can cross. There are at most E = O(kn)

stable equilibria in a �eld of the form R+ �S if S is a

squeeze �eld, and � is su�ciently small and positive.

Proofs of the previous claims, and a numerical algo-

rithm to compute the pivot point is given in [19]. Note

that Claim 13 results in strategies for unique part pos-

ing in O(E2) = O(k2n2) steps.

Task: centering parts

Radial �elds can be used to center a part. With

the current four-quadrant cilia device, we have imple-

mented an approximation of an ideal radial �eld similar

to the �eld in Figure 2-b. Note that this approximate

radial �eld has a potential.

Experiments and results. Small silicon and glass

parts were centered using our cilia device. In this ex-

periment, high positioning accuracy (in the �m range)

was hard to achieve, because the center of the radial

�eld coincides with the the location of the dice edges.

Manual packaging of the four cilia chips leaves small

gaps and non-planarities at these junctions. The next

generation cilia device will overcome this problem, be-

cause it will allow us to implement the radial �eld with

a single chip. Furthermore, because of its full pixel-

wise programmability, the new chip will allow us to

closely approximate ideal radial �elds.

6 Polygon Bisectors & Force Equilibria

In the previous section we introduced vector �elds for

high-level control of micro actuator arrays. In particu-

lar, it was stated that in a squeeze �eld, polygonal parts

have a (usually very small) �nite number of orientation

equilibria (see Claim 4). Because of this result, squeeze

�elds play a key role in manipulation strategies. In this

section, we survey recent research on the combinatorial,

geometric, and algorithmic properties of squeeze �elds,

by analyzing the area bisectors of a part. The results

in Sec. 6 were obtained in collaboration with Danny

Halperin [14, 15, 16].

There is a direct relationship between equilibria in

squeeze �elds and area bisectors. Recall Figure 15: a

part is in force equilibrium if and only if the squeeze

line bisects the part into two sections of equal area.

De�nition 14 [14] Let P be a polygon in the plane,

possibly with holes, and having n vertices in total. We

denote by V the set of vertices of P . For a directed line

� in the plane, we denote by hl(�) (resp. hr(�)) the

open half-plane bounded by � on the left- (resp. right-)

hand-side of �. The line � is an area bisector of P if

the area of P \ hl(�) is equal to the area of P \ hr(�).

A line � partitions V into three sets (two of which

may be empty): V \hl(�), V \�, and V \hr(�). We say

that two area bisectors of P are combinatorially distinct

if the partitioning of V as above induced by the two

bisectors is di�erent. We say that two area bisectors

of P are combinatorially equivalent if they induce the

same partitioning of V . We assume that the polygon

P is connected, and non-degenerate in the sense that

the complement of P has the same boundary as P .

An obvious upper bound on the number of distinct

area bisectors of a polygon with n vertices is O(n2)|

each combinatorial equivalence class of area bisectors

is determined by a pair of vertices of the polygon. In

Section 6.2 we describe how a polygon with n vertices

can have 
(n2) distinct area bisectors [14]. (Note that

the polygon in this construction is simple.)

We review an output-sensitive algorithm [14] for

computing an explicit representation of all the area bi-

sectors of a given polygon, by constructing the bisector

curve � de�ned in a plane dual to the plane containing

the polygon: the curve � is the union of points dual

to area bisectors in the primal plane. The algorithm

proceeds by constructing the zone of the curve � in

an arrangement of lines [34] in the dual plane, where

each line of the arrangement is the dual of a vertex

of the polygon. A sketch of the algorithm is given in

Section 6.3.

Area bisectors were considered by D��az and

O'Rourke [31]. However, their focus is on the contin-

uous version of the ham-sandwich cut problem, and of
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a problem they introduce of orthogonal four-sections;

see [31] for more details. The problem discussed here

can be viewed as a continuous version of the well-known

k-set problem [34].

In the remainder of this section, we analyze the num-

ber of area bisectors, and hence bound the number of

force equilibria. The algorithm for computing area bi-

sectors can be used as a preliminary step in designing

alignment plans (see Section 6.4).

6.1 Properties of area bisectors

In this section we review several properties of area bi-

sectors of polygons. Some of the proofs have been omit-

ted here; they can be found in [16].

Lemma 15 [14] Let P be a non-degenerate polygon

with n vertices. (1) There exist O(n2) combinatorially

distinct ways in which a line can partition P . (2) Let

A and B be the intersections of an area bisector � with

the boundary of the convex hull of P . As the slope of �

varies from �1 to +1, A and B progress monoton-

ically counterclockwise on the boundary of the convex

hull of P . (3) For every slope �x there exists a unique

bisector � of P with slope �x.

Lemma 16 [14] Let P be a polygon with n vertices.

Let s be a point in R
2 and let � be a line that inter-

sects r edges of P . The area bisectors of P that are

combinatorially equivalent to � and pass through s are

determined by the roots of a polynomial equation of de-

gree r.

It can be shown [16] that the bisectors of a polygon P

can be described by a piece-wise algebraic curve, where

each piece is described by a polynomial whose degree

depends on the number of edges of P intersected by

the corresponding bisectors.

6.2 Lower bound

As argued above, a polygon with n vertices can have at

most O(n2) combinatorially distinct area bisectors. In

this section we present an example of a simple polygon

with n vertices where the bound 
(n2) is attained [14].

Consider Figure 17. All the vertices vi; v
0
i; ui and u

0
i

lie on a circle whose center is at c. The vertices wj lie

v3

v4

v0
1

v0
2

v0
4

u0

1

c

v0
3

u3

u0

2

u2

u0

3

wj

v1

u1

v2

Figure 17: A simple polygon with n vertices that has 
(n2)

combinatorially distinct bisectors.

very close to c on a small circle whose center is c as

well, along two convex polygonal chains.

We �x an integerm (that we will determine later; for

the polygon in the �gurem = 3). The distance between

the vertices vi and vi+1 is the same for i = 1; : : : ;m,

and it is the same as the distance between v0i and v
0
i+1

for i = 1; : : : ;m. The area of all triangles viuivi+1 for

i = 1; : : : ;m is the same and is equal to the area of

all triangles v0iu
0
iv

0
i+1 for i = 1; : : : ;m. There are 2m

vertices wj near c and they are equally spaced on a

small circle centered at c. As can be easily veri�ed,

for every pair of vertices vi and v
0
i, there is a bisector

passing through these points that passes also through

the center point c. We next claim that as we rotate

the bisector from vi to vi+1 it will move o� the center c

and sweep m vertices wj . The reason is that the angle
6 uivivi+1 is larger than the angle 6 u0iv

0
iv

0
i+1. Hence,

as the bisector rotates, it will proceed `faster' on the

bottom part of our polygon than on the top part and

therefore will sweep half of the vertices wj on its way.

Finally m is chosen such that (roughly) n = 6m +

8. The number of distinct area bisectors is evidently


(m2) = 
(n2).

6.3 Output-sensitive algorithm

It is convenient to study the algorithmic problem in a

dual plane: a line y = 2�xx � �y in the primal plane is

transformed into the point (�x; �y) in the dual plane. A
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point (x; y) in the primal plane is transformed into the

line �y = 2x�x � y in the dual. The dual of an object o

will be denoted by o�. If O is a set of objects in the

plane, O� will denote the set of dual objects.

Let P be a polygon with n vertices as de�ned in the

Introduction, namely connected, non-degenerate and

possibly with holes. In the dual plane every vertex v of

P is transformed into a line v� which is the collection

of all points dual to lines in the primal plane that pass

through v.

For any given direction there is a unique area bi-

sector. We denote the oriented bisector of P that

makes an angle � with the positive x-axis by B(�),

and (because of symmetry) con�ne ourselves to the

range [��=2; �=2) for �. We denote the collection of

points dual to area bisectors of P in that range by �.

Note that any � (besides ��=2) corresponds to an �x-

coordinate in the dual plane.

The curve � is a piece-wise algebraic and �x-monotone

curve (this is proved in [16]). We call � the bisector

curve of P , as it gives a complete speci�cation of all

the area bisectors of the polygon P . We denote by �

the number of maximal connected algebraic pieces in

�, where the function describing each piece is de�ned

by the �xed set of edges that the corresponding set of

bisectors cross. In this section we describe an output-

sensitive algorithm from [14] to compute �. Since we

aim for output-sensitivity, we cannot a�ord to compute

the entire arrangement A(V �) whose complexity may

be 
(n2). We will discover the maximal pieces of �

in their order along �, using two primitive operations:

ray shooting among the lines V �, and intersection of

an algebraic curve with a straight line.

We choose an arbitrary direction �0 2 [��=2; �=2)

and look for the area bisector of P in that direction.

This requires O(n logn) time since the polygon may

have holes. Next, we obtain the set of edges crossed by

B(�0). We denote by E(�) the set of edges crossed by

B(�). The set E(�0) determines a function � := �(�0)

describing the bisector curve � in a neighborhood of �0,

as long as the set of edges crossed by the bisector does

not change. In the dual plane the function � describes

the curve � as long as we do not leave the face of A(V �)

p = (B(�0))�

f

p1
`1

`2

exit point

f

�

(a) (b)

Figure 18: Ray shooting to determine the face f contain-

ing p (a), and then �nding the maximal pieces of � inside

f and its exit points from f (b).

which contains the point p := (B(�0))
�.

Our next step is to construct the face f that contains

the point p in A(V �). We describe this procedure as-

suming f is bounded; the extension to unbounded faces

is straightforward. We prepare in advance a data struc-

ture R(V �) that supports e�cient ray shooting among

the lines V �. We shoot a ray from p in the upward ver-

tical direction and identify the line `1 2 V
� supporting

the edge of f above p. See Figure 18(a). We next pro-

ceed in clockwise direction along the boundary of f .

From the point p1 2 `1 we shoot a ray in A(V �) along

`1, and identify the line `2 supporting the next edge on

the boundary of f , and so on until we have returned

to `1 and thus have identi�ed the entire face f .

Now we determine the maximal connected pieces of

f \ �. For each edge on boundary of f we compute

the intersection of its supporting line v� with �. This

computation is equivalent to �nding the bisectors that

pass through the vertex v, and intersecting the edges

in E(�0). By Lemma 16, this reduces to solving a poly-

nomial equation of degree r, where r is the number of

edges in E(�0). We denote the time required to �nd

these roots by  (r).

We order the resulting intersections along the �x-axis.

Since the curve � is �x-monotone, this ordered list of in-

tersections provides a description of the curve � inside

f , and indicates what are the neighboring faces that �

crosses. We mark each of these additional faces by the

point where � crosses out of f . We call each such point

an exit point. See Figure 18(b).
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Since f has already been constructed, we know for

each exit point of � the line that contains it. There-

fore we can construct each new face using ray shooting

queries and proceed as above. We keep a data struc-

ture that describes all the faces of A(V �) that have

already been constructed so that we do not construct

the same face twice.

The algorithm stops when we have identi�ed all the

intersection points of � with lines in V �, and so we

have also identi�ed the zone of � in A(V �), namely all

the face of A(V �) crossed by �.

Further details on the algorithm can be found in [16].

We summarize the algorithmic result in the following

theorem.

Theorem 17 [14] Let P be a non-degenerate polygon

(possibly with holes) with n vertices, and such that any

line crosses at most r edges of P . For any " > 0 we

can �nd a complete speci�cation of the area bisectors

of P in time O(�2=3n2=3+" + ��(�) (r)), where � and

 (r) are as de�ned above, and �() is the functional

inverse of Ackermann's function. If P is rectilinear,

then the algorithms runs in time O(�2=3n2=3+"). The

space required by the algorithm is O(�2=3n2=3+").

6.4 Moment equilibria and alignment plans

Recall from the beginning of this section that bisectors

correspond to force equilibria of P in a squeeze �eld.

For total equilibrium, the moment acting on the part

has to be taken into account as well. In particular,

not all of the force equilibrium con�gurations will be

moment equilibria. For each maximal piece b of the

bisector curve � there exists only a �nite number of

moment equilibria (we omit the proof here):

Claim 18 [14] Let P be a polygon whose interior is

connected. Let � be a bisector of P that intersects r

edges of P . There exist O(r) lines �0 that are combi-

natorially equivalent to � such that P is in total equilib-

rium when �0 coincides with the center line of a squeeze

�eld.

It follows that a squeeze �eld induces a �nite number

of total equilibria on a polygonal part P .

Much remains to be done. We have found that in

practice, no non-symmetric part has more than 4 to-

tal equilibria (i.e., force and moment). Finding tight

bounds on the number of total equilibria|that is, tak-

ing moment into account|will be critical in the future.

7 Conclusions

Table 1 summarizes �elds and algorithms for manipu-

lation tasks with programmable vector �elds, and in-

cludes some additional recent results.

Less di�cult tasks such as translation can be

achieved with relatively simple �elds and without any

planning. More complex tasks such as centering or

unique orienting require increasingly complex �elds.

However, planning complexity is e.g. higher for se-

quences of squeeze �elds, and lower for the more com-

plex combined radial + squeeze �elds (for a thorough

discussion of these �elds see [19]). This illustrates a

tradeo� between mechanical complexity (the dexter-

ity and controllability of actuator arrray elements) and

computational complexity (the algorithmic di�culty of

synthesizing a strategy).

Universal feeder-orienter (UFO) devices. Our

research leads to the question about the existence of a

\universal feeder-orienter" (UFO) device that uniquely

poses a part without the need of a clock, sensors, or

programming [19, 20]. It was shown in [19] that every

connected polygonal part P with n vertices has a �-

nite number of stable orientation equilibria when P is

placed into a squeeze �eld S. Based on this property

we were able to generate manipulation strategies for

unique part alignment. We then showed that by using

a combined radial and squeeze �eld R+�S, the number

of equilibria can be reduced to O(k n). Using elliptic

force �elds f(x; y) = (�x; �y) such that � 6= � and

�; � 6= 0, this bound can be reduced to two [41, 40].

An \inertial" squeeze �eld f(x; y) = (�sign(x)x2; 0)

uniquely orients a part modulo �eld symmetry � [21].

In a stable equilibrium, the part's major principal axis

of inertia lines up with the squeeze line to minimize the

second moment of inertia.

Does there exist a universal �eld that, for every part
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task �eld(s) complexity
�elds planning plan steps

translate constant constant magnitude | 1
and direction

center radial constant magnitude, | 1
continuous directions

uniquely orient seq. of squeezes piecewise constant O(k2n4) O(k n2)
mag. and dir.

inertial smooth magnitude O(1) O(1)
piecewise constant dir.

uniquely pose seq. of radial+squeeze piecewise continuous O(k2n2) O(k n)
mag. and dir.

elliptic smooth mag. and dir. O(1) O(1)
UFO continuous mag. and dir. | 1

Table 1: Fields and algorithms for manipulation tasks with programmable vector �elds.

P , has only one unique equilibrium (up to part sym-

metry)? Such a �eld could be used to build a universal

parts feeder [1] that uniquely positions a part without

the need of a clock, sensors, or programming.

In [19], we proposed a combined radial and \grav-

itational" �eld R + �G which might have this prop-

erty. � is a small positive constant, and G is de�ned

as G(x; y) = (0;�1). This device design is inspired by

the \universal gripper" in [1]. Such a �eld could be

obtained from a MEMS array that implements a unit

radial force �eld. Instead of rectangular actuators in a

regular grid, triangular actuators could be laid out in

a polar-coordinate grid. The array could then be tilted

slightly to obtain the gravity component. Hence such a

device would be relatively easy to build. Alternatively,

a resonating speaker, or a vibrating disk-shaped plate

that is �xed at the center, might be used to create a

radial force �eld. Extensive simulations show that for

every part we have tried, one unique total equilibrium

is always obtained. We are working toward a rigorous

proof of this experimental observation.

Algorithmic MEMS In this paper, we have sur-

veyed a family of ideas in Algorithmic MEMS, relat-

ing to programmable force �elds. Naturally, in such a

young and dynamic �eld, we expect a myriad of new

geometric and algorithmic problems to emerge in the

next few years.
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