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Abstract

We consider the family of area bisectors of a polygon (possi-
bly with holes) in the plane. We say that two bisectors of a
polygon P are combinatorially distinct if they induce di�er-
ent partitionings of the vertices of P . We show that there are
simple polygons with n vertices that have 
(n2) combina-
torially distinct area bisectors (matching the obvious upper
bound), and we present an output-sensitive algorithm for
computing an explicit representation of all the bisectors of a
given polygon. Our study is motivated by the development
of novel, exible feeding devices for parts positioning and
orienting. The question of determining all the bisectors of
polygonal parts arises in connection with the development
of e�cient part positioning strategies when using these de-
vices.

1 Introduction

Let P be a polygon in the plane, possibly with holes, and
having n vertices in total. We denote by V the set of vertices
of P . For a directed line � in the plane, we denote by hl(�)
(resp. hr(�)) the open half-plane bounded by � on the left-
(resp. right-) hand-side of �. The line � is an area bisector
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of P if the area of P \hl(�) is equal to the area of P \hr(�).
A line � partitions V into three sets (two of which may

be empty): V \ hl(�), V \ �, and V \ hr(�). We say that
two area bisectors of P are combinatorially distinct if the
partitioning of V as above induced by the two bisectors is
di�erent. We say that two area bisectors of P are combi-
natorially equivalent if they induce the same partitioning of
V . We assume that the polygon P is connected, and non-
degenerate in the sense that the complement of P has the
same boundary as P .

An obvious upper bound on the number of distinct area
bisectors of a polygon with n vertices is O(n2)|each com-
binatorial equivalence class of area bisectors is determined
by a pair of vertices of the polygon. In Section 4 we show
that a polygon with n vertices can have 
(n2) distinct area
bisectors. (Note that the polygon in our construction is sim-
ple.)

We devise an output-sensitive algorithm for computing
an explicit representation of all the area bisectors of a given
polygon, by constructing the bisector curve � de�ned in a
plane dual to the plane containing the polygon: the curve
� is the union of points dual to area bisectors in the primal
plane. Our algorithm proceeds by constructing the zone of
the curve � in an arrangement of lines [5] in the dual plane,
where each line of the arrangement is the dual of a vertex of
the polygon. A sketch of the algorithm is given in Section 5.

Area bisectors were considered by D��az and O'Rourke [4].
However, their focus is on the continuous version of the ham-
sandwich cut problem, and of a problem they introduce of
orthogonal four-sections; see [4] for more details. The prob-
lem that we study here can be viewed as a continuous version
of the well-known k-set problem [5].

2 Motivation: Programmable Vector Fields

Programmable vector �elds can be used to control a variety
of exible planar part feeders. These devices often exploit
exotic actuation technologies such as arrayed, microfabri-
cated motion pixels [2] or transverse vibrating plates [1].
These new automation designs promise great speed, exi-
bility, and dexterity|we believe they may be employed to
orient, singulate, sort, and feed parts. However, since they
have only recently been invented, programming and control-
ling them for manipulation tasks is challenging.

In [3], we devise a technique for analyzing programmable
vector �elds called equilibrium analysis, lower bounds (i.e.,
impossibility results) on what the devices cannot do, and
results on a classi�cation of control strategies yielding design
criteria by which well-behaved manipulation strategies may
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be developed. Equilibrium analysis is a fundamentally
geometric problem. To illustrate, let us make the following
assumptions. Suppose that (1) Each motion pixel is very
small relative to the part we wish to manipulate, and hence
a dense array of pixels may be modeled as a 2-dimensional
vector �eld. (2) The part to be manipulated is essentially
laminar. (3) The part is connected.

A squeeze �eld is de�ned by making all the actuators
push normally towards a common squeeze line. In [3], we
show that under certain dynamic and mechanical assump-
tions, we can compute a sequence of squeeze �elds guaran-
teed to bring any part into unique moment equilibrium. No
sensing is required, but a clock is required to switch between
�elds.

In order to be in equilibrium, the forces and moments
must balance. Force equilibrium, under our assumptions, is
equivalent to: the squeeze line must be an area bisector of the
polygon. The number of equilibria critically impacts both
the complexity of plan generation, and plan size. Therefore,
it is important to bound the number of equilibria for a given
part or class of parts. In [3] we show that every convex part
has at most O(n) equilibria, and every non-convex part has
O(rn2) equilibria (r is the maximum number of edges of P
intersected by any line), under squeeze �elds.

In this paper, we show how to analyze the number of
area bisectors, and hence bound the number of force equi-
libria. Our algorithm for computing area bisectors can be
used as a preliminary step in designing alignment plans (see
Section 6).

3 Properties of Area Bisectors

In this section we state several properties of area bisectors
of polygons. The proofs can be found in the full version of
the paper.1

Lemma 3.1 Let P be a non-degenerate polygon with n ver-
tices. (1) There exist O(n2) combinatorially distinct ways in
which a line can partition P . (2) Let A and B be the inter-
sections of an area bisector � with the boundary of the convex
hull of P . As the slope of � varies from �1 to +1, A and
B progress monotonically counterclockwise on the boundary
of the convex hull of P . (3) For every slope �x there exists a
unique bisector � of P with slope �x.

Lemma 3.2 Let P be a polygon with n vertices. Let s be a
point in R

2
and let � be a line that intersects r edges of P .

The area bisectors of P that are combinatorially equivalent
to � and pass through s are determined by the roots of a
polynomial equation of degree r.

In the full version of the paper we show that the bisectors
of a polygon P can be described by a piece-wise algebraic
curve, where each piece is described by a polynomial whose
degree depends on the number of edges of P intersected by
the corresponding bisectors.

4 Lower Bound

As argued above, a polygon with n vertices can have at most
O(n2) combinatorially distinct area bisectors. In this section
we give an example of a simple polygon with n vertices where
the bound 
(n2) is attained.

Consider Figure 1. All the vertices vi; v
0
i; ui and u

0
i lie on

a circle whose center is at c. The vertices wj lie very close

1Forthcoming as a Technical Report, Computer Science De-
partment, Cornell University.
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Figure 1: A simple polygon with n vertices that has 
(n2)
combinatorially distinct bisectors.

to c on a small circle whose center is c as well, along two
convex polygonal chains.

We �x an integer m (that we will determine later; for
the polygon in the �gure m = 3). The distance between the
vertices vi and vi+1 is the same for i = 1; : : : ;m, and it is the
same as the distance between v0i and v

0
i+1 for i = 1; : : : ;m.

The area of all triangles viuivi+1 for i = 1; : : : ;m is the
same and is equal to the area of all triangles v0iu

0
iv

0
i+1 for

i = 1; : : : ;m. There are 2m vertices wj near c and they
are equally spaced on a small circle centered at c. As can
be easily veri�ed, for every pair of vertices vi and v

0
i, there

is a bisector passing through these points that passes also
through the center point c. We next claim that as we rotate
the bisector from vi to vi+1 it will move o� the center c and
sweep m vertices wj. The reason is that the angle 6 uivivi+1
is larger than the angle 6 u0iv

0
iv

0
i+1. Hence, as the bisector

rotates, it will proceed `faster' on the bottom part of our
polygon than on the top part and therefore will sweep half
of the vertices wj on its way. Finally m is chosen such that
(roughly) n = 6m+8. The number of distinct area bisectors
is evidently 
(m2) = 
(n2).

5 Output-Sensitive Algorithm

It is convenient to study the algorithmic problem in a dual
plane: a line y = 2�xx� �y in the primal plane is transformed
into the point (�x; �y) in the dual plane. A point (x; y) in the
primal plane is transformed into the line �y = 2x�x� y in the
dual. The dual of an object o will be denoted by o�. If O is
a set of objects in the plane, O� will denote the set of dual
objects.

Let P be a polygon with n vertices as de�ned in the In-
troduction, namely connected, non-degenerate and possibly
with holes. In the dual plane every vertex v of P is trans-
formed into a line v� which is the collection of all points
dual to lines in the primal plane that pass through v.

For any given direction there is a unique area bisector.
We denote the oriented bisector of P that makes an angle �
with the positive x-axis by B(�), and (because of symmetry)
con�ne ourselves to the range [��=2; �=2) for �. We denote
the collection of points dual to area bisectors of P in that
range by �. Note that any � (besides ��=2) corresponds to
an �x-coordinate in the dual plane.

The curve � is a piece-wise algebraic and �x-monotone
curve (this is proved in the full version of the paper). We
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Figure 2: Ray shooting to determine the face f containing
p (a), and then �nding the maximal pieces of � inside f and
its exit points from f (b).

call � the bisector curve of P , as it gives a complete speci�-
cation of all the area bisectors of the polygon P . We denote
by � the number of maximal connected algebraic pieces in
�, where the function describing each piece is de�ned by
the �xed set of edges that the corresponding set of bisectors
cross. In this section we describe an output-sensitive algo-
rithm to compute �. Since we aim for output-sensitivity,
we cannot a�ord to compute the entire arrangement A(V �)
whose complexity may be 
(n2). We will discover the max-
imal pieces of � in their order along �, using two primitive
operations: ray shooting among the lines V �, and intersec-
tion of an algebraic curve with a straight line.

We choose an arbitrary direction �0 2 [��=2; �=2) and
look for the area bisector of P in that direction. This re-
quires O(n log n) time since the polygon may have holes.
Next, we obtain the set of edges crossed by B(�0). We de-
note by E(�) the set of edges crossed by B(�). The set
E(�0) determines a function � := �(�0) describing the bi-
sector curve � in a neighborhood of �0, as long as the set
of edges crossed by the bisector does not change. In the
dual plane the function � describes the curve � as long as
we do not leave the face of A(V �) which contains the point
p := (B(�0))�.

Our next step is to construct the face f that contains
the point p in A(V �). We describe this procedure assuming
f is bounded; the extension to unbounded faces is straight-
forward. We prepare in advance a data structure R(V �)
that supports e�cient ray shooting among the lines V �. We
shoot a ray from p in the upward vertical direction and iden-
tify the line `1 2 V

� supporting the edge of f above p. See
Figure 2(a). We next proceed in clockwise direction along
the boundary of f . From the point p1 2 `1 we shoot a ray
in A(V �) along `1, and identify the line `2 supporting the
next edge on the boundary of f , and so on until we have
returned to `1 and thus have identi�ed the entire face f .

Now we determine the maximal connected pieces of f\�.
For each edge on boundary of f we compute the intersec-
tion of its supporting line v� with �. This computation is
equivalent to �nding the bisectors that pass through the ver-
tex v, and intersecting the edges in E(�0). By Lemma 3.2,
this reduces to solving a polynomial equation of degree r,
where r is the number of edges in E(�0). We denote the
time required to �nd these roots by  (r).

We order the resulting intersections along the �x-axis.
Since the curve � is �x-monotone, this ordered list of in-
tersections provides a description of the curve � inside f ,
and indicates what are the neighboring faces that � crosses.
We mark each of these additional faces by the point where
� crosses out of f . We call each such point an exit point.

See Figure 2(b).
Since f has already been constructed, we know for each

exit point of � the line that contains it. Therefore we can
construct each new face using ray shooting queries and pro-
ceed as above. We keep a data structure that describes all
the faces of A(V �) that have already been constructed so
that we do not construct the same face twice.

The algorithm stops when we have identi�ed all the in-
tersection points of � with lines in V �, and so we have also
identi�ed the zone of � in A(V �), namely all the face of
A(V �) crossed by �.

Further details on the algorithm can be found in the full
version of the paper. We summarize the algorithmic result
in the following theorem.

Theorem 5.1 Let P be a non-degenerate polygon (possibly
with holes) with n vertices, and such that any line crosses
at most r edges of P . For any " > 0 we can �nd a complete
speci�cation of the area bisectors of P in time O(�2=3n2=3+"+
��(�) (r)), where � and  (r) are as de�ned above, and �()
is the functional inverse of Ackermann's function. If P is
rectilinear, then the algorithms runs in time O(�2=3n2=3+").

The space required by the algorithm is O(�2=3n2=3+").

6 Moment Equilibria and Alignment Plans

As described in Section 2, bisectors correspond to force equi-
libria of P in a squeeze �eld. For total equilibrium, the mo-
ment acting on the part has to be taken into account as well.
In particular, not all of the force equilibrium con�gurations
will be moment equilibria. For each maximal piece b of the
bisector curve � there exists only a �nite number of moment
equilibria (we omit the proof here):

Lemma 6.1 Let P be a polygon whose interior is connected.
Let � be a bisector of P that intersects r edges of P . There
exist O(r) lines �0 that are combinatorially equivalent to �
such that P is in total equilibrium when �0 coincides with
the center line of a squeeze �eld.

It follows that a squeeze �eld induces a �nite number of
total equilibria on a polygonal part P . In [3] we show how
to exploit this �niteness property to automatically generate
alignment plans that bring P into a unique (up to symmetry)
orientation, by cascading squeeze �elds that systematically
reduce the possible orientations of P .
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