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Programmable vector �elds can be used to control a
variety of exible planar parts feeders. These devices
can exploit exotic actuation technologies such as ar-
rayed, massively-parallel microfabricated motion pixels
or transversely vibrating (macroscopic) plates. These
new automation designs promise great exibility, speed,
and dexterity|we believe they may be employed to ori-
ent, singulate, sort, feed, and assemble parts. However,
since they have only recently been invented, program-
ming and controlling them for manipulation tasks is
challenging. When a part is placed on our devices, the
programmed vector �eld induces a force and moment
upon it. Over time, the part may come to rest in a
dynamic equilibrium state. By chaining together se-
quences of vector �elds, the equilibrium states of a part
in the �eld may be cascaded to obtain a desired �nal
state. The resulting strategies require no sensing and
enjoy e�cient planning algorithms.

This paper begins by describing our experimental de-
vices. In particular, we describe our progress in build-
ing the M-Chip (Manipulation Chip), a massively par-
allel array of programmable micro-motion pixels. As
proof of concept, we demonstrate a prototype M-Chip

containing over 11,000 silicon actuators in one square
inch. Both the M-Chip, as well as macroscopic de-
vices such as transversely vibrating plates, may be pro-
grammed with vector �elds, and their behavior predicted
and controlled using our equilibrium analysis. We
demonstrate lower bounds (i.e., impossibility results)
on what the devices cannot do, and results on a classi-
�cation of control strategies yielding design criteria by
which well-behaved manipulation strategies may be de-
veloped. We provide su�cient conditions for program-
mable �elds to induce well-behaved equilibria on every
part. We de�ne composition operators to build com-
plex strategies from simple ones, and show the resulting
�elds are also well-behaved. We discuss whether �elds
outside this class can be useful and free of pathology.

Using these tools, we describe new manipulation al-
gorithms. In particular, we improve existing planning
algorithms by a quadratic factor, and the plan-length by
a linear factor. Using our new and improved strategies,
we show how to simultaneously orient and pose any
part, without sensing, from an arbitrary initial con�g-
uration. We relax earlier dynamic and mechanical as-
sumptions to obtain more robust and exible strategies.

Finally, we consider parts feeders that can only im-
plement a very limited \vocabulary" of vector �elds
(as opposed to the pixel-wise programmability assumed
above). We show how to plan and execute parts-posing
and orienting strategies for these devices, but with a
signi�cant increase in planning complexity and some
sacri�ce in completeness guarantees. We discuss the
tradeo� between mechanical complexity and planning
complexity.

1 Introduction

Programmable vector �elds can be used to control a
variety of exible planar parts feeders. These devices
often exploit exotic actuation technologies such as ar-
rayed, microfabricated motion pixels [9, 8, 7] or trans-
versely vibrating plates [4]. These new automation de-
signs promise great exibility, speed, and dexterity|
we believe they may be employed to orient, singulate,
sort, feed, and assemble parts (see for example Fig-
ures 1 and 4). However, since they have only recently
been invented, programming and controlling them for
manipulation tasks is challenging. Our research goal is
to develop a science base for manipulation using pro-
grammable vector �elds.

When a part is placed on our devices, the pro-
grammed vector �eld induces a force and moment upon
it. Over time, the part may come to rest in a dy-
namic equilibrium state. In principle, we have tremen-
dous exibility in choosing the vector �eld, since using
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Figure 1: Sensorless sorting using force vector �elds: parts

of di�erent sizes are �rst centered and subsequently sepa-

rated depending on their size.

modern array technologies, the force �eld may be pro-
grammed pixel-wise. Hence, we have a lot of control
over the resulting equilibrium states. By chaining to-
gether sequences of vector �elds, the equilibria may be
cascaded to obtain a desired �nal state|for example,
this state may represent a unique orientation or pose
of the part. A system with such a behavior exhibits
the feeding property [2]:

A system has the feeding property over a set
of parts P and a set of initial con�gurations
I if, given any part P 2 P , there is some
output con�guration q such that the system
can move P to q from any location in I.

Our work on programmable vector �elds is related to
nonprehensile manipulation [17, 44, 22, 20]: in either
case, parts are manipulated without form or force clo-
sure.

This paper �rst describes our experimental devices,
a technique for analyzing them called equilibrium anal-
ysis , lower bounds (i.e., impossibility results) on what
the devices cannot do, and results on a classi�cation

of control strategies yielding design criteria by which
well-behaved manipulation strategies may be devel-
oped. Then we describe new manipulation algorithms
using these tools. In particular, we improve existing
planning algorithms by a quadratic factor, show how
to simultaneously orient and pose a part, and we relax
earlier dynamic and mechanical assumptions to obtain
more robust and exible strategies.

We pose the question Which vector �elds are suit-
able for manipulation strategies? In particular, we ask
whether the �elds may be classi�ed. That is: can we
characterize all those vector �elds in which every part
has stable equilibria? While this question has been
well-studied for a point mass in a �eld, the issue is more
subtle when lifted to a body with �nite area, due to the
moment covector. To answer, we �rst demonstrate im-
possibility results, in the form of \lower bounds:" there
exist perfectly plausible �elds which induce no stable
equilibrium in very simple parts.

Fortunately, there is also good news. We present
conditions for �elds to induce well-behaved equilibria
when lifted, by exploiting the theory of potential �elds.
While potential �elds have been widely used in robot
control [30, 39, 38], micro-actuator arrays present us
with the ability to explicitly program the applied force
at every point in a vector �eld. Whereas previous work
has developed control strategies with arti�cial poten-
tial �elds, our �elds are non-arti�cial (i.e., physical).
This alone makes our application of potential �eld the-
ory to micro-devices unique and novel. Moreover, such
�elds can be composed using addition, sequential com-
position, \parallel" composition by superposition of
controls, or by a new kind of \morphing" of control
signals which we will de�ne.

Finally, the desire to implement complicated �elds
raises the question of control uncertainty. We close by
describing how families of potential functions can be
used to represent control uncertainty, and analyzed for
their impact on equilibria, and we will give an outlook
on still open problems and future work.

Because of limited space, we have abbreviated or
omitted some of the proofs of our propositions. For
a more detailed discussion please refer to the on-line
version of our long paper at URL http://www.cs

.cornell.edu/home/karl/ProgVecFields, or to [3].
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2 Experimental Apparatus: Parts

Feeders

It is often extremely costly to maintain part order
throughout the manufacture cycle. For example, in-
stead of keeping parts in pallets, they are often deliv-
ered in bags or boxes, whence they must be picked out
and sorted. A parts feeder is a machine that orients
such parts before they are fed to an assembly station.
Currently, the design of parts feeders is a black art
that is responsible for up to 30% of the cost and 50%
of workcell failures [10, for example]. Thus although
part feeding accounts for a large portion of assembly
cost, there is not much scienti�c basis for automating
the process.

The most common type of parts feeder is the vibra-
tory bowl feeder, where parts in a bowl are vibrated
using a rotary motion, so that they climb a helical
track. As they climb, a sequence of ba�es and cutouts
in the track create a mechanical \�lter" that causes
parts in all but one orientation to fall back into the
bowl for another attempt at running the gauntlet [10].
Sony's APOS parts feeder [27] uses an array of nests
(silhouette traps) cut into a vibrating plate. The nests
and the vibratory motion are designed so that the part
will remain in the nest only in a particular orientation.
By tilting the plate and letting parts ow across it,
the nests eventually �ll up with parts in the desired
orientation. Although the vibratory motion is under
software control, specialized mechanical nests must be
designed for each part [36].

The reason for the success of vibratory bowl feeders
and the Sony APOS system is the underlying principle
of sensorless manipulation [21] that allows parts po-
sitioning and orienting without sensor feedback. This
principle is even more important at small scales, be-
cause sensor data will be less accurate and more di�-
cult to obtain. The APOS system or bowl feeders are
unlikely to work in the micro domain: instead novel de-
vice designs for micro-manipulation tasks are required.
The theory of sensorless manipulation is the science
base for developing and controlling such devices.

Reducing the amount of required sensing is an exam-
ple of minimalism [5, 14], which pursues the following
agenda: For a given robot task, �nd the minimal con-
�guration of resources required to solve the task. Min-
imalism is interesting because doing task A without

Figure 2: A prototype M-Chip fabricated in 1995.

A large unidirectional actuator array (scanning elec-

tron microscopy). Each actuator is 180 � 240�m2 in

size. Detail from a 1 in2 array with more than 11,000

actuators. For more pictures on device design and

fabrication see URL http://www.cs.cornell.edu/home

/karl/MicroActuators.

resource B proves that B is somehow inessential to the
information structure of the task. In robotics, minimal-
ism has become increasingly inuential. Raibert [37]
showed that walking and running machines could be
built without static stability. Erdmann and Mason [21]
showed how to do dexterous manipulation without
sensing. McGeer [34] built a biped, kneed walker with-
out sensors, computers, or actuators. Canny and Gold-
berg [14] argue that minimalism has a long tradition in
industrial manufacturing, and developed geometric al-
gorithms for orienting parts using simple grippers and
accurate, low cost light beams. Brooks [12] has de-
veloped online algorithms that rely less extensively on
planning and world models. Donald et al. [17, 5] have
built distributed teams of mobile robots that cooper-
ate in manipulation without explicit communication.
We intend to use these results for our experiments in
micro-manipulation, and to examine how they relate
to our theoretical proofs of minimalist systems.

2.1 Microfabricated Actuator Arrays

A wide variety of micromechanical structures (devices
with features in the �m range) has been built recently
by using processing techniques known from VLSI in-
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dustry. However, the fabrication, control, and pro-
gramming of micro-devices that can interact and ac-
tively change their environment remains challenging.
Problems arise from

1. unknown material properties and the lack of ade-
quate models for mechanisms at very small scales,

2. the limited range of motion and force that can be
generated with microactuators,

3. the lack of su�cient sensor information with re-
gard to manipulation tasks, and

4. design limitations and geometric tolerances due to
the fabrication process.

MEMS manipulator arrays have been proposed by
several MEMS researchers, among others Fujita et
al. [24], Will et al. [31], or Suh et al. [42]. For an
overview see [31] or [9, 8]. Our arrays (Figure 2) are
fabricated using a Scream (Single-Crystal Reactive
Etching and Metallization) process developed in the
Cornell Nanofabrication Facility [43, 41]. The Scream
process is low-temperature, and does not interfere with
traditional VLSI [40]. Hence it opens the door to build-
ing monolithic microelectromechanical systems with
integrated microactuators and control circuitry on the
same wafer.

Our design is based on microfabricated torsional res-
onators [35]. Each unit device consists of a rectangular
grid etched out of single-crystal silicon suspended by
two rods that act as torsional springs (Figure 2). The
grid is about 200�m long and extends 120�m on each
side of the rod. The rods are 150�m long. The cur-
rent asymmetric design has 5�m high protruding tips
on one side of the grid that make contact with an ob-
ject lying on top of the actuator. The other side of the
actuator consists of a denser grid above an aluminum
electrode. If a voltage is applied between silicon sub-
strate and electrode, the dense grid above the electrode
is pulled downward by the resulting electrostatic force.
Simultaneously the other side of the device (with the
tips) is deected out of the plane by several �m. Hence
an object can be lifted and pushed sideways by the ac-
tuator.

The fabrication process and mechanism analysis are
described in more detail in [9, 8, 7].

2.2 Macroscopic Vibratory Parts Feeder

B�ohringer et al. [4] have presented a device that uses
the force �eld created by transverse vibrations of a

Parts

Node

Figure 3: Vibratory parts feeder: an aluminum plate

(size 50 cm � 40 cm) exhibits a vibratory minimum.

Parts are attracted to this nodal line and reach equilib-

rium there. See also URL http://www.cs.cornell.edu

/home/karl/VibratoryAlign. Reproduced with permission

from [4].

plate to position and align parts. The device consists of
an aluminum plate that is attached to a commercially
available electrodynamic vibration generator,1 with a
linear travel of 0:02m, and capable of producing a force
of up to 500N (Figure 3). The input signal, specifying
the waveform corresponding to the desired oscillations,
is fed to a single coil armature, which moves in a con-
stant �eld produced by a ceramic permanent magnet
in a center gap con�guration.

For low amplitudes and frequencies, the plate moves
longitudinally with no perceptible transverse vibra-
tions. However, as the frequency of oscillations is
increased, transverse vibrations of the plate become
more pronounced. The resulting motion is similar to
the forced transverse vibration of a rectangular plate,
clamped on one edge and free along the other three
sides. This vibratory motion creates a force �eld in
which particles are attracted to locations with mini-
mal vibration, called the nodal lines . This �eld can
be programmed by changing the frequency, or by em-
ploying clamps as programmable �xtures that create
various vibratory nodes.

1Model VT-100G, Vibration Test Systems, Akron, OH,
USA.
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Figure 3 shows two parts, shaped like a triangle and
a trapezoid, after they have reached their stable poses.
To better illustrate the orienting e�ect, the curve show-
ing the nodal line has been drawn by hand. Nota bene:
This device can only use the �nite manipulation gram-
mar described in Section 6.2 since it can only generate
a constrained set of vibratory patterns, and cannot im-
plement radial strategies.

3 Equilibrium Analysis For Program-

mable Vector Fields

For the generation of manipulation strategies with pro-
grammable vector �elds it is essential to be able to
predict the motion of a part in the �eld. Particularly
important is determining the stable equilibrium poses
a part can reach in which all forces and moments are
balanced. This equilibrium analysis was introduced in
our short conference paper [8], where we presented a
theory of manipulation for programmable vector �elds,
and an algorithm that generates manipulation strate-
gies to orient polygonal parts without sensor feedback
using a sequence of squeeze �elds.

We now review the algorithm in [8] and give a de-
tailed proof of its complexity bounds. The tools devel-
oped here are essential to understanding our new and
improved results.

3.1 Squeeze Fields and Equilibria

In [8] we proposed a family of control strategies called
squeeze �elds and a planning algorithm for parts-
orientation.

De�nition 1 [8] Assume l is a straight line through
the origin. A squeeze �eld F is a two-dimensional force
�eld de�ned as follows:

1. If z 2 R2 lies on l then f(z) = 0.
2. If z does not lie on l then f(z) is the unit vector
normal to l and pointing towards l.

We refer to the line l as the squeeze line, because l
lies in the center of the squeeze �eld. See Figure 4 for
examples of squeeze �elds.

Assuming quasi-static motion, a small object will
move perpendicularly towards the line l and come to
rest there. We are interested in the motion of an ar-
bitrarily shaped (not necessarily small) part P . Let us

Figure 4: Sensorless parts alignment using force vector

�elds: The part reaches unique orientation after two sub-

sequent squeezes. There exist such alignment strategies for

all polygonal parts. See URL http://www.cs.cornell.edu

/home/karl/MicroManipulation for an animated simula-

tion.

call P1, P2 the regions of P that lie to the left and to
the right of l, respectively, and C1, C2 their centers of
mass. In a rest position both translational and rota-
tional forces must be in equilibrium. We obtain the
following two conditions:

I: The areas P1 and P2 must be equal.
II: The vector C2 � C1 must be normal to l.

P has a translational motion component normal to l
if I does not hold. P has a rotational motion compo-
nent if II does not hold. This assumes a uniform force
distribution over the surface of P , which is a reason-
able assumption for a at part that is in contact with
a large number of elastic actuators.

De�nition 2 A part P is in translational equilibrium
if the forces acting on P are balanced. P is in orienta-
tional equilibrium if the moments acting on P are bal-
anced. Total equilibrium is simultaneous translational



K.-F. B�ohringer, B. R. Donald, and N. C. MacDonald

and orientational equilibrium.

Let (x0; y0; �0) be an equilibrium pose of P . (x0; y0)
is the corresponding translation equilibrium, and �0 is
the corresponding orientation equilibrium.

Note that conditions I and II do not imply that in
equilibrium, the center of area of P has to coincide with
the squeeze line l. For example, consider a large and
a small square connected by a long rod of negligible
width. If the rod is long enough, the center of area will
lie outside of the large square. However, in equilibrium
the squeeze line l will always intersect the large square.

De�nition 3 A bisector of a polygon P is a line that
cuts P into two sections of equal size.

Proposition 4 Let P be a polygon whose interior is
connected. There exist O(k n2) bisectors such that P
is in equilibrium when placed in a squeeze �eld such
that the bisector coincides with the squeeze line. n is
the part complexity measured as the number of polygon
vertices. k denotes the maximum number of polygon
edges that a bisector can cross.

If P is convex, then the number of bisectors is
bounded by O(n).

Proof: See URL http://www.cs.cornell.edu/home

/karl/ProgVecFields, or [3]. 2

For most part geometries, k is a small constant.2

However in the worst-case, pathological parts can reach
k = O(n). A (e.g. rectilinear) spiral-shaped part would
be an example for such a pathological case, because
every bisector intersects O(n) polygon edges.

3.2 Planning of Manipulation Strategies

In this section we present an algorithm for sensorless
parts alignment with squeeze �elds [8]. Recall from
Section 3.1 that in squeeze �elds, the equilibria for
connected polygons are discrete (except for a neutrally
stable translation parallel to the squeeze line which we
will disregard for the remainder of Section 3).

To model our actuator arrays and vibratory devices,
in [8] we made the following assumptions:

Density: The generated forces can be described by a
vector �eld, i.e. the individual microactuators are
dense compared to the size of the moving part.

2In particular, in [8] we assumed that k = O(1).

2Phase: The motion of a part has two phases: (1)
Pure translation towards l until the part is in
translational equilibrium. (2) Motion in transla-
tional equilibrium until orientational equilibrium
is reached.

Note that due to the elasticity and oscillation of the
actuator surfaces, we can assume continuous area con-
tact, and not just contact in three or a few points. If a
part moves while in translational equilibrium, in gen-
eral the motion is not a pure rotation, but also has a
translational component. Therefore, relaxing assump-
tion 2Phase is one of the key results of this paper.

De�nition 5 [8] Let � be the orientation of a con-
nected polygon P in a squeeze �eld, and let us assume
that condition I holds. The turn function t : � !
f�1; 0; 1g describes the instantaneous rotational mo-
tion of P :

t(�) =

8<
:

1 if P will turn counterclockwise
�1 if P will turn clockwise
0 if P is in total equilibrium (Fig. 5).

This de�nition immediately implies the following
lemma:

Lemma 6 [8] Let P be a polygon with orientation � in
a squeeze �eld such that condition I holds. P is stable
if t(�) = 0, t(�+) � 0, and t(��) � 0. Otherwise P is
unstable.

Proof: Assume the part P is in a pose (x; y; �) such
that condition I is satis�ed. This implies that the
translational forces acting on P balance out. If in addi-
tion t(�) = 0, then the e�ective moment is zero, and P
is in total equilibrium. Now consider a small perturba-
tion �� > 0 of the orientation � of P while condition I
is still satis�ed. For a stable equilibrium, the moment
resulting from the perturbation �� must not aggravate
but rather counteract the perturbation. This is true if
and only if t(� + ��) � 0 and t(� � ��) � 0. 2

Using this lemma we can identify all stable orienta-
tions, which allows us to construct the squeeze func-
tion [25] of P (see Figure 5c), i.e. the mapping from an
initial orientation of P to the stable equilibrium orien-
tation that it will reach in the squeeze �eld:

Lemma 7 [8] Let P be a polygonal part on an actuator
array A such that assumptions Density and 2Phase
hold. Given the turn function t of P , its corresponding
squeeze function s : S1 ! S

1 is constructed as follows:
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Figure 5: (a) Polygonal part. Stable (thick line) and un-

stable (thin line) bisectors are also shown. (b) Turn func-

tion, which predicts the orientations of the stable and un-

stable bisectors. (c) Squeeze function, constructed from the

turn function. (d) Alignment strategy for two arbitrary ini-

tial con�gurations. See URL http://www.cs.cornell.edu

/home/karl/Cinema for an animated simulation.

1. All stable equilibrium orientations � map identi-
cally to �.
2. All unstable equilibrium orientations map (by
convention) to the nearest counterclockwise stable
orientation.
3. All orientations � with t(�) = 1 (�1) map to the
nearest counterclockwise (clockwise) stable orien-
tation.

Then s describes the orientation transition of P in-
duced by A.

Proof: Assume that part P initially is in pose (x; y; �)
in array A. Because of 2Phase, we can assume that
P translates towards the center line l until condition I
is satis�ed without changing its orientation �. P will
change its orientation until the moment is zero, i.e.
t = 0: A positive moment (t > 0) causes counterclock-
wise motion, and a negative moment (t < 0) causes
clockwise motion until the next root of t is reached. 2

We conclude that any connected polygonal part,
when put in a squeeze �eld, reaches one of a �nite num-
ber of possible orientation equilibria [8]. The motion
of the part and, in particular, the mapping between
initial orientation and equilibrium orientation is de-
scribed by the squeeze function, which is derived from
the turn function as described in Lemma 7. Note that
all squeeze functions derived from turn functions are
monotone step-shaped functions.

Goldberg [25] has given an algorithm that automat-
ically synthesizes a manipulation strategy to uniquely
orient a part, given its squeeze function. While Gold-
berg's algorithm was designed for squeezes with a
robotic parallel-jaw gripper, in fact, it is more general,
and can be used for arbitrary monotone step-shaped
squeeze functions. The output of Goldberg's algorithm
is a sequence of angles that specify the required direc-
tions of the squeezes. Hence these angles specify the
direction of the squeeze line in our force vector �elds
(for example the two-step strategy in Figures 4 and 5d).

It is important to note that the equilibria obtained
by a MEMS squeeze �eld and by a parallel-jaw gripper
will typically be di�erent, even when the squeeze direc-
tions are identical. For example, to see this, consider
squeezing a square-shaped part. Stable and unstable
equilibria are switched. This shows that our mechani-
cal analysis of equilibrium is di�erent from that of the
parallel-jaw gripper. Let us summarize these results:

Theorem 8 [8] Let P be a polygon whose interior is
connected. There exists an alignment strategy consist-
ing of a sequence of squeeze �elds that uniquely orients
P up to symmetries.

Corollary 9 The alignment strategies of Theorem 8
have O(k n2) steps, and they may be computed in time
O(k2 n4), where k is the maximum number of edges
that a bisector of P can cross. In the case where P is
convex, the alignment strategy has O(n) steps and can
be computed in time O(n2).

Proof: Proposition 4 states that a polygon with n ver-
tices has E = O(k n2) stable orientation equilibria in
a squeeze �eld (O(n) if P is convex). This means that
the image of its corresponding squeeze function is a set
of E discrete values. Given such a squeeze function,
Goldberg's algorithm [25] constructs alignment strate-
gies with O(E) steps. Planning complexity is O(E2).
2
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Goldberg's strategies [25] have the same complexity
bounds for convex and non-convex parts, because when
using squeeze grasps with a parallel-jaw gripper, only
the convex hull of the part need be considered. This
is not the case for programmable vector �elds, where
manipulation strategies for non-convex parts are more
expensive. As described in Section 3.1, there could be
parts that have E = 
(k n2) orientation equilibria in a
squeeze �eld, which would imply alignment strategies
of length 
(k n2) and planning complexity 
(k2 n4). In
Section 6.1 we will present new and improved manipu-
lation algorithms that reduce the number of equilibria
to E = O(k n).

This schememay be generalized to the case where l is
slightly curved, as in the \node" of the vibrating plate
in Figure 3. See [4] for details. The remaining sections
of this paper investigate using more exotic �elds (not
simple squeeze patterns) to

1. allow disconnected polygons,
2. relax assumption 2Phase,
3. reduce the planning complexity,
4. reduce the number of equilibria,
5. reduce the execution complexity (strategy length),

and
6. determine feasibility results and limitations for

manipulation with general force �elds.

3.3 Relaxing the 2Phase Assumption

In Section 3.2, assumption 2Phase allowed us to de-
termine successive equilibrium positions in a sequence
of squeezes, by a quasi-static analysis that decouples
translational and rotational motion of the moving part.
For any part, this provides a unique orientation equi-
librium (after several steps). If 2Phase is relaxed, we
obtain a dynamic manipulation problem, in which we
must determine the equilibria (x; �) given by the part
orientation � and the o�set x of its center of mass from
the squeeze line. A stable equilibrium is a (xi; �i) pair
in R� S1 that acts as an attractor (the x o�set in an
equilibrium is, surprisingly, usually not 0). Again, we
can compute these (xi; �i) equilibrium pairs exactly, as
outlined in Section 3.1.

Considering (xi; �i) equilibrium pairs has another
advantage. We can show that, even without 2Phase,
after two successive, orthogonal squeezes, the set of sta-
ble poses of any part can be reduced from C = R2�S1

to a �nite subset of C (the con�guration space of part

P ); see Claim 28 below. Subsequent squeezes will pre-
serve the �niteness of the state space. This will sig-
ni�cantly reduce the complexity of a task-level mo-
tion planner. Hence if assumption 2Phase is relaxed,
this idea still enables us to simplify the general mo-
tion planning problem (as formulated e.g. by Lozano-
P�erez, Mason, and Taylor in [33]) to that of Erd-
mann andMason [21]. Conversely, relaxing assumption
2Phase raises the complexity from the \linear" plan-
ning scheme of Goldberg [25] to the forward-chaining
searches of Erdmann and Mason [21], or Donald [16].

4 Lower Bounds: What Programmable

Vector Fields Cannot Do

We now present \lower bounds" | constituting vec-
tor �elds and parts with pathological behavior, making
them unusable for manipulation. These counterexam-
ples show that we must be careful in choosing program-
mable vector �elds, and that, a priori , it is not obvious
when a �eld is well-behaved.

In Section 3 we saw that in a vector �eld with a
simple squeeze pattern (see again Figure 4), polygonal
parts reach certain equilibrium poses. This raises the
question of a general classi�cation of all those vector
�elds in which every part has stable equilibria. There
exist vector �elds that do not have this property even
though they are very similar to a simple squeeze.

De�nition 10 A skewed �eld fS is a force vector �eld
given by fS(x; y) = �sign(x)(1; �), where 0 6= � 2 R.

Proposition 11 A skewed vector �eld induces no sta-
ble equilibrium on a disk-shaped part.

Proof: Consider Figure 6, which shows a skewed �eld
with � = � 2

3
: Only when the center of the disk co-

incides with the center of the squeeze pattern do the
translational forces acting on the disk balance. But it
will still experience a positive moment that will cause
rotation. 2

Similarly we would like to identify the class of all
those parts that always reach stable equilibria in par-
ticular vector �elds. From Section 3 we know that
connected polygons in simple squeeze �elds satisfy this
condition. This property relies on �nite area contacts:
it does not hold for point contacts. As a counterexam-
ple consider the part in Figure 7.
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Figure 6: Unstable part in the skewed squeeze �eld (� =

�
2

3
). The disk with center on the squeeze line will keep

rotating. Moreover, it has no stable equilibrium in this �eld.

Figure 7: S-shaped part with four rigidly connected point-

contact \feet" in unstable total equilibrium (forces and mo-

ments balance). There exists no stable equilibrium position

for this part in a vector �eld with a simple squeeze pattern.

For an animation see URL http://www.cs.cornell.edu

/home/karl/MicroManipulation/Patho.

Proposition 12 There exist parts that do not have
stable equilibria in a simple squeeze �eld.

Proof: The S-shaped part in Figure 7 has four rigidly
connected \feet" with small contact surfaces. As the
area of each of these four feet approaches zero, the
part has no stable equilibrium in a simple squeeze �eld.
There is only one orientation for the part in which both
force and moment balances out, and this orientation is
unstable. 2

Finally, the number of stable equilibria of a given
part inuences both the planning complexity and the
plan length of an alignment strategy. It also a�ects
the resolution of the vector �eld that is necessary to
perform a strategy accurately. Even though all parts

we have considered exhibit only one or two orientation
equilibria, there exist no tight bounds on the maximum
number of orientation equilibria in a unit squeeze �eld.

Proposition 13 Let n be the number of vertices of a
polygon P , and let k be the maximum number of edges
that a bisector of P can cross:

A. Regular polygons have n stable orientation equi-
libria in a squeeze �eld.
B. Every connected polygon has O(k n2) stable ori-
entation equilibria in a squeeze �eld.

Proof:

A. Because of their part symmetry, regular polygons
have 2n equilibria. Half of them are stable, the
other n are unstable.

B. See Section 3.1.

2

As described in Section 3.1, there exist simple poly-
gons with n vertices that can be bisected by a straight
line in up to O(k n2) topologically di�erent ways [6].
This suggests that there could be parts that have

(k n2) orientation equilibria in a squeeze �eld, which
would imply alignment strategies of length 
(k n2) and
planning complexity 
(k2 n4).

While the counterexample in Figure 7 may be plausi-
bly avoided by prohibiting parts with \point contacts,"
the other examples (Figure 6 and Proposition 13B) are
more problematic. In Section 5, we show how to choose
programmable vector �elds that exclude some of these
pathological behaviors, by using the theory of poten-
tial �elds to describe a class of force vector �elds for
which all polygonal parts have stable equilibria. In
Section 6.1, we show how to combine these �elds to
obtain new �elds in which all parts have only O(k n)
equilibria.

We believe parts with point contact (not having
�nite area contact) will behave badly in all vector
�elds. We can model a point contact with delta func-
tions, such that e.g. for a point contact P0 at (x0; y0):Z
P0

f dA =

Z
f �(x0; y0) dA = f(x0; y0). This model

is frequently used in mechanics (see e.g. [19]). Point
contact permits rapid, discontinuous changes in force
and moment. Hence, bodies with point contact will
tend to exhibit instabilities, as opposed to at parts
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that are in contact with a large number of (elastic) ac-
tuators. Finally, we believe that as the area contact|
the size of the \feet" of a part|approaches zero, the
part may become unstable. This represents a design
constraint on parts which are to be manipulated using
programmable planar parts feeders.

The lower bounds we demonstrate are indications of
the pathologies that can arise when �elds without po-
tential or parts with point contact are permitted. Each
of our counterexamples (Figures 6 and 7) is \generic"
in that it can be generalized to a very large class of sim-
ilar examples. However, these lower bounds are just a
�rst step, and one wishes for examples that delineate
the capabilities of programmable vector �elds for pla-
nar parts manipulation even more precisely.

The separating �eld shown in Figure 1c is not a po-
tential �eld, and that there exist parts that will spin
forever, without equilibrium, in this �eld (this follows
by generalizing the construction in Figure 6). However,
for speci�c parts , such as those shown in Figure 1, this
�eld is useful if we can pose the parts appropriately �rst
(e.g., using the potential �eld shown in Figure 1b).

Finally, we may \surround" non-potential �elds with
potential �elds to obtain reasonable behavior in some
cases. Figure 1 shows how to \surround" a non-
potential �eld in time by potential �elds, to eliminate
pathologies. Similarly, we can surround non-potential
�elds spatially . For example, if �eld 1c could be sur-
rounded by a larger potential �eld, then after separa-
tion, parts can reach a stable equilibrium.

Non-potential �elds can be used safely with the fol-
lowing methodology: Let H � C = R

2 � S1 be the
undesirable limit set. For example, H could be a limit
cycle where the part spins forever. Let bPV (H) be the
weak pre-image [33, 15] of H under the �eld V . If
we can ensure that the part starts in a con�guration
z 62 bPV (H), it will not reach the unwanted limit cycle.
For example, in Figure 1 the centering step (b) ensures
that the part does not end up on the border between
the two separating �elds, where it would spin forever
in step (c).

5 Completeness: Classi�cation Using

Potential Fields

We are interested in a general classi�cation of all those
vector �elds in which every part has stable equilibria.

As motivation, recall that a skewed vector �eld, even
though very similar to a regular squeeze �eld (see again
Figure 4), induces no stable equilibrium in a disk-
shaped part (Figure 6). In this section we give a fam-
ily of vector �elds that will be useful for manipulation
tasks. These �elds belong to a speci�c class of vector
�elds: the class of �elds that have a potential.

We believe that �elds without potential will often in-
duce pathological behavior in many parts. Fields with-
out potential admit paths along which a particle (point
mass) will gain energy. Since mechanical parts are rigid
aggregations of particles, this may induce unstable be-
havior in larger bodies. However, there are some cases
where non-potential �elds may be useful. For example,
see Figure 1c, which is not a potential �eld. Such �elds
may be employed to separate but not to stabilize, pose,
or orient parts. This strong statement devolves to our
proof that �elds like Figure 6 do not have well-behaved
equilibria. Hence, they should only be employed when
we want to induce an unstable system that will cast
parts away from equilibrium, e.g. in order to sort or
separate them.

Consider the class of vector �elds on R2 that have a
potential, i.e. �elds f in which the work is independent
of the path, or equivalently, the work on any closed

path is zero,

I
f � ds = 0. In a potential �eld each

point (x; y) is assigned a real value U(x; y) that can be
interpreted as its potential energy. When U is smooth,
then the vector �eld f associated with U is the gradient
�rU . In general, U(x; y) is given, up to an additive

constant, by the path integral

Z
�

f � ds (when it exists

and it is unique), where � is an arbitrary path from a
�xed reference point (x0; y0) to (x; y).

An ideal point object is in stable equilibrium if and
only if it is at a local minimum of U .

De�nition 14 Let f be a force vector �eld on R2, and
let p be a point that is o�set from a �xed reference point
q by a vector r(p) = p � q. We de�ne the general-
ized force F as the force and moment induced by f at
point p:

F (p) = (f(p) ; r(p)� f(p)) (1)

Let P be a part of arbitrary shape, and let Pz denote the
part P in pose z = (x; y; �) 2 C. We de�ne the lifted
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force �eld fP as the area integral of the force induced
by f over Pz:

fP (z) =

Z
Pz

f dA (2)

The lifted generalized force �eld FP is de�ned as the
area integral of the force and moment induced by f over
P in con�guration z:

FP (z) =

Z
Pz

F dA

=

�Z
Pz

f dA ;

Z
Pz

r� f dA

�
(3)

Hence, FP is a vector �eld on C. Finally, we de�ne the
lifted potential UP : C ! R. UP is the area integral of
the potential U over P in con�guration z:

UP (z) =

Z
Pz

U dA (4)

We now show that the category of potential �elds is
closed under the operation of lifting, and that UP is
the potential of FP . Note that U need not be smooth.

Let g : X ! Y and h : Y ! Z. Let k : X ! Z be the
function which is the composition of g and h, de�ned
by k(x) = h(g(x)). In the following proposition, we use
the notation h(g) to denote k, the function composition
of g and h.

Proposition 15 Let f be a force �eld on R2 with po-
tential U , and let P be a part of arbitrary shape. For
the lifted generalized force �eld FP and the lifted poten-

tial UP the following equality holds: UP =

Z
P

U dA =Z
�

FP � dz + c, where � is an arbitrary path in C from

a �xed reference point, and c is a constant.

Proof: See URL http://www.cs.cornell.edu/home

/karl/ProgVecFields, or [3]. 2

So again, UP (x; y; �) can be interpreted as the poten-
tial energy of part P in con�guration (x; y; �). There-
fore we obtain a lifted potential �eld UP whose local
minima are the stable equilibrium con�gurations in C
for part P . Furthermore, potential �elds are closed
under addition and scaling. We can thus create and
analyze more complex �elds by looking at their com-
ponents. In general, the theory of potential �elds al-
lows us to classify manipulation strategies with vector

�elds, o�ering new insights into equilibrium analysis
and providing the means to determine strategies with
stable equilibria. For example, it allows us to show
that orientation equilibrium in a simple squeeze �eld
is equivalent to the stability of a homogeneous boat
oating in water, provided its density is � = 1

2�water.

5.1 Examples: Classi�cation of Force Fields

Example: Radial �elds. A radial �eld is a vector
�eld whose forces are directed towards a speci�c center
point. It can be used to center a part in the plane.
The �eld in Figure 1b can be understood as a radial
�eld with a rather coarse discretization using only four
di�erent force directions. Note that this �eld has a
potential.

As a speci�c example for radial �elds, consider the
unit radial �eld R which is de�ned by R(z) = �z=jjzjj
for z 6= 0, and R(0) = 0. Note thatR has a discontinu-
ity at the origin. A smooth radial �eld can be de�ned,
for example, by R0(z) = �z. The corresponding poten-
tial �elds are U(z) = jjzjj, and U 0(z) = 1

2 jjzjj
2 , respec-

tively. Note that U is continuous (but not smooth),
while U 0 is smooth.

Counterexample: Skewed squeeze �elds. Con-
sider again the skewed squeeze �eld in Figure 6. This
is not a potential �eld, which explains why the disk-
shaped part has no equilibrium: Note that for example
the integral on a cyclic path along the boundary of the
disk is non-zero.

Example: Morphing and combining vector
�elds. Our strategies from [8] (see Section 3) have
switch points in time where the vector �eld changes
discontinuously (Figure 4). This is because after one
squeeze, for every part, the orientation equilibria form
a �nite set of possible con�gurations, but in general
there exists no unique equilibrium (as shown in Sec-
tion 3.2). Hence subsequent squeezes are needed to
disambiguate the part orientation. Therefore these
switches are necessary for strategies with squeeze pat-
terns.

One may ask whether, using another class of poten-
tial �eld strategies, unique equilibria may be obtained
without discrete switching. We believe that continu-
ously varying vector �elds of the form (1 � t)f + t g,
where t 2 [0; 1] represents time, and f and g are
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squeezes, may lead to vector �elds that have this prop-
erty. Here \+" denotes point-wise addition of vector
�elds, and we will write \f;g" for the resulting con-
tinuously varying �eld. By restricting f and g to be
�elds with potentials U and V , we know that U + V
and (1 � t)U + tV are potential �elds, and hence we
can guarantee that f + g and f ; g are well-behaved
strategies. These form the basis of our new algorithms
in Section 6.

Let us formalize the previous paragraphs. If f is
a vector �eld (in this case a squeeze pattern) that is
applied to move part P , we de�ne the equilibrium set
EP (f) as the subset of the con�guration space C for
which P is in equilibrium. Let us write f � g for a
strategy that �rst applies vector �eld f , and then vec-
tor �eld g to move part P . f + g can be understood
as applying f and g simultaneously. We have shown
that in general EP (f) is not �nite, but for two orthog-
onal squeezes f and g, the discrete switching strategy
f � g yields a �nite equilibrium set EP (f � g) (see Sec-
tion 6.2, Claim 28). Furthermore, for some parts the
equilibrium is unique up to symmetry.

We wish to explore the relationship between equilib-
ria in simple vector �elds EP (f) or EP (g), combined
�elds EP (f + g), discretely-switched �elds EP (f � g),
and continuously varying �elds EP (f;g). For exam-
ple, one may ask whether there exists a strategy with
combined vector �elds, or continuously varying �elds,
that, in just one step, reaches the same equilibrium as
a discretely switched strategy requiring multiple steps.
Finally, let f1�f2�� � ��fs be a sequence of squeeze �elds
guaranteed to uniquely orient a part P under assump-
tion 2Phase. We wish to investigate how continuously
varying strategies such as f1;f2; � � �;fs can be em-
ployed to dynamically achieve the same equilibria even
when 2Phase is relaxed. The distributed actuation
strategy F �G is distributed in space, but not in time.
The strategy F + G is parallel with respect to space
and time, since F and G are simultaneously \run."
Research in this area could lead to a theory of par-
allel distributed manipulation that describes spatially
distributed manipulation tasks that can be parallelized
over time and space by superposition of controls.

5.2 Upward-Shaped Potential Fields

So far we have presented speci�c force �elds that al-
ways (e.g. squeeze and radial �elds) or never (e.g.

skewed squeeze �elds) induce stable equilibria on cer-
tain classes of parts. We conclude this section with a
criterion that provides a su�cient condition on force
�elds such that all parts of a certain size reach a stable
equilibrium.

We have observed in Section 4 that a priori it is
not obvious when a force �eld induces stable equilib-
ria. Our Equilibrium Criterion will be based on two
important properties:

1. The �eld has a potential. Potential �elds do not
allow closed paths (technically, limit cycles) along
which the work is positive, which could induce in-
�nite motion of a part.

2. The force �eld is \inward-directed," which im-
plies that (assuming �rst-order dynamics) parts
can never leave a certain region R. This useful
property is a direct consequence of the de�nition
of inward-directedness. An inward-directed force
�eld corresponds to an \upward-shaped" poten-
tial, in which all paths that leave region R have
an ascending slope.

We will require Property (1.) to hold for the entire
force �eld, while Property (2.) devolves to a boundary
condition.

5.2.1 Elementary De�nitions

De�nition 16 Let z 2 Rn. The �-ball around z, de-
noted B�(z), is the set fr 2 Rn j jr � zj < �g of all
points within a distance � of z.

De�nition 17 (Lozano-P�erez [32]) Let A, B be
sets in Rn. The Minkowski sum A � B of two sets
A and B is de�ned as the set fa+ b j a 2 A;b 2 Bg.

From these de�nitions it follows that for a region R
with boundary @R, the set @R �Bd(0) = fr+ z j r 2
@R; and jzj � dg comprises all points that are within
a distance d from the boundary of R.

De�nition 18 Given a region R � Rn, de�ne the set
CI(R; d) = R � (@R � Bd(0)) which is the region R
shrunk by distance d. Note that CI(R; d) is based upon
the con�guration space interior [32] of R for Bd(0).
Abusing terminology slightly, we call CI(R; d) the con-
�guration space interior of R in this paper.

De�nition 19 The radius rP of a part P is the maxi-
mum distance between an arbitrary point of P and the
center of mass (COM) of P .
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5.2.2 Equilibrium Criterion

We are now able to state a general criterion for a
force �eld f to induce stable equilibria on all parts in a
region S. As mentioned at the beginning of Section 5.2,
this criterion is based on two main conditions: (1) if f
has a potential, limit cycles with positive energy gain
are avoided inside S. (2) if f is \inward-directed" (see
the de�nition below), parts cannot leave the region S.

In the following we give a general de�nition of
inward-directed vector �elds on a manifold Z. We
then specialize the de�nition to the special instances
of Z = C = R

2 � S1 (the con�guration space) and
Z = R

2, and give a su�cient, practical condition for
inward-directed vector �elds. We conclude with the
presentation of the Equilibrium Criterion.

De�nition 20 (Inward-Directed Force Fields) 3

Let Z be an arbitrary smooth manifold, and let Y � Z
be a compact and smooth submanifold with boundary
of Z. Assume that @Y has codimension 1 in Z, and
that the boundary of Y is orientable. Let q 2 @Y be a
point on the boundary of Y , and Vq 2 TqZ be a tangent
vector to Z at q.

We say Vq is inward-directed to @Y at q if there
exists a su�ciently small � > 0 such that q + �Vq 2 Y .

Let V be a vector �eld on Z. We say V is inward-
directed to @Y if V (q) is inward-directed to @Y at q
for all q 2 @Y .

Assume the set S � R2 is compact and smooth. Con-
sider the part P when it is placed into the force �eld f
such that its COM lies in S. The set of all such poses is
a subset of the con�guration space C = R2 � S1 which
we call eS = S�S1. The boundary of eS is @ eS = @S�S1.
Note that @ eS separates the interior ieS = eS � @ eS from
the exterior C � eS = (R2 � S) � S1, and that @ eS is
isomorphic to a torus S1 �S1.

Now let z = (x; y; �) 2 @ eS, and let Fz 2 TzC rep-
resent the lifted generalized force acting on part P in
pose z. Fz is inward-directed (w.r.t. @ eS) if Fz points

into the interior of eS. Note that this condition is equiv-
alent to saying that the projection of Fz onto the tan-
gent space at (x; y) to R2 points into S, because the

rotational component of Fz is tangential to @ eS. So for
3In this de�nition, for convenience we assume that Z

is embedded in Rm for some m. This condition may be
relaxed.

example, if z = (x; y; �) 2 @ eS, then z0 = (x; y; �0) 2 @ eS
for any �0.

The following proposition gives a simple condition
on a force �eld f that tells us if, for a given part P , its
lifted generalized force �eld FP is inward-directed:

Proposition 21 Let P be a part with radius r whose
COM is the reference point used to de�ne its con�gu-
ration space C = R2 �S1. Let f be a force vector �eld
de�ned on a region R � R2, with FP the corresponding
lifted generalized force �eld. Let S � R

2 be a convex,
compact, and smooth subset of the con�guration space
interior of R, and S � CI(R; r).

Consider a point q 2 @S with outward normal nq,
and a ball Br(q) with radius r about q. If for every
point q 2 @S, and for every point s in the corresponding
ball Br(q), the dot product g(s) = f(s) � nq is less than
0, then the lifted generalized force �eld FP is inward-
directed to @ eS (note: ( � ) is the standard inner prod-
uct).

Proof: Consider the part P in pose z = (x; y; �) 2

@ eS such that q = (x; y). P has radius r, hence it
lies completely inside the ball Br(q), independent of
its orientation �. As we know that g(p) = f(p) �nq < 0
for all p 2 Br(q), we can conclude that the integral of

g(p) over P is also less than 0:

Z
P

g(p) dA =

Z
P

f(p) �

nq dA = fP �nq < 0. This implies that for fP , which is
the translational component of FP (see De�nition 14),
the vector q + � fP (z) lies inside S, if � is positive and
su�ciently small. As mentioned above in Section 5.2.2,
this su�ces to ensure that the vector z + � FP (z) lies

inside eS. 2

Lemma 22 (Equilibrium Criterion) Let P be a
part with radius r, let f be a force �eld with poten-
tial U de�ned on a region R � R

2, and let S � R as
speci�ed in Proposition 21. Let us also assume that the
motion of part P is governed by �rst-order dynamics.

If the lifted force vector �eld FP is inward-directed
to @ eS, then the part P will reach a stable equilibrium
under f in ieS whenever its COM is initially placed in
S.

Proof: Assume that the COM of part P is placed at
a point (x; y) 2 S. This means that P is in some pose

z = (x; y; �) 2 eS. We now show that the COM of
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P cannot leave S when initially placed inside S. We
know that @ eS separates ieS from C � eS. Hence every
path from z to some z� 2 C � eS must intersect @ eS
at some point z0 2 @ eS. Now consider part P in pose
z0. Under �rst-order dynamics, its velocity must be
in direction of FP (z0). Because FP is inward-directed,

the velocity of P must be towards ieS. In particular,
this means that the COM will move into iS, hence P
cannot leave S, and that there is no equilibrium on @S.

f , and hence (because of Proposition 15) FP have po-
tential U and UP , respectively. Therefore limit cycles
with energy gain are not possible. Furthermore, UP (eS)
is the continuous image of a compact set, eS. Therefore
the image UP (eS) is a compact subset of R, hence has

a minimum value attained by some point s 2 eS. Since
f is inward-directed, s must lie in ieS. This minimum
is a stable equilibrium of P in f . 2

Because of Lemma 22, the use of potential �elds is
invaluable for the analysis of e�ective and e�cient ma-
nipulation strategies, as discussed in the following sec-
tion. In particular, it is useful for proving the com-
pleteness of a manipulation planner.

6 New and Improved Manipulation Al-

gorithms

The part alignment strategies in Section 3.2 have switch
points in time where the vector �eld changes discontin-
uously (Figure 5). We can denote such a switched strat-
egy by f1 � f2 � � � � � fs, where the fi are vector �elds.
In Section 3.2 we recalled that a strategy to align a
(non-convex) polygonal part with n vertices may need
up to O(k n2) switches, and require O(k2 n4) time in
planning (k is the maximum number of polygon edges
that a bisector can cross). To improve these bounds, we
now consider a broader class of vector �elds including
simple squeeze patterns, radial, and combined �elds as
described in Section 5.

In Section 6.1 we show how, by using radial and
combined vector �elds, we can signi�cantly reduce the
complexity of the strategies from that of Section 3. In
Section 6.2 we describe a general planning algorithm
that works with a limited \grammar" of vector �elds
(and yields, correspondingly, less favorable complexity
bounds).

6.1 Radial Strategies

Consider a part P in a force �eld f . Some force �elds
exhibit rotational symmetry properties that can be
used to generate e�cient manipulation strategies:

Property 23 There exists a unique pivot point v of P
such that P is in translational equilibrium if and only
if v coincides with 0.

Property 24 There exists a unique pivot point v of P
such that P is in (neutrally stable) orientational equi-
librium if and only if v coincides with 0.

We typically think of the pivot point v being a point of
P ; however, in generality, just like the center of mass
of P , v does not need to lie within P , but instead is
some �xed point relative to the reference frame of P .
Now consider the part P in an ideal unit radial force
vector �eld R as described in Section 5.

Proposition 25 In a unit radial �eld R, Properties 23
and 24 hold.

Proof: We �x the part P at an arbitrary orientation
�, and show that at this orientation P has a unique
translational equilibrium v(�). That is, placing v(�)
at the origin is necessary and su�cient for P to be in
translational equilibrium at orientation �. Second, we
show that for any two distinct orientations � and �0,
v(�) = v(�0). We call this unique point v, dropping the
orientation �. Finally, we argue that whenever P is in
translational equilibrium (i.e., v is at the origin), that
P is neutrally stable w.r.t. orientation. This follows by
the radial symmetry of R.

Consider the translational forces (but not the mo-
ments) acting on P in the radial �eld R. To do this,
let us separate R into its x and y components, Rx and
Ry , such that R = (Rx; Ry). Assume for now that the
orientation of P is �xed. If P is placed at a position
z0 2 R

2, whose x-coordinate is su�ciently negative,
the total force induced by Rx on P will point in the
positive x direction. Symmetrically, placing P at a suf-
�ciently large positive x coordinate will cause a force
in the negative x direction. We claim that, by trans-
lating P rigidly with increasing x coordinate, this force
decreases continuously and strictly monotonically, and
hence has a unique root.

To verify this claim, consider a small area patch }0

of P . A uniform translation t of }0 in x direction can
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be described as }(t) = }0�(z0+tx̂) (with z0 the initial
position of the patch, x̂ the unit vector in x direction,
and � the Minkowski sum). The total force on }(t) in

x direction is

Z
}(t)

Rx dA . This force decreases contin-

uously and strictly monotonically with t, because Rx

is strictly monotone and continuous everywhere except
on the x-axis, which has measure zero in R2. A simi-
lar argument applies for the y direction, and, because
of the radial symmetry of R, for any direction.

If we choose the set S as a su�ciently large disk-
shaped region around the origin and recall that R has
a potential, we can apply Lemma 22 to conclude that
there must exist at least one total equilibrium for P .
Now assume that there exist two distinct equilibria
e1 = (x1; y1; �1) and e2 = (x2; y2; �2) for P in R. We
write \P (ei)" to denote that P is in con�guration ei.
Because of the radial symmetry of R, we can reori-
ent P (e2) to P (e02) such that its orientation is equal

to P (e1): e02 = (x02; y
0
2; �1), where

�
x02
y02

�
= M

�
x2
y2

�
, and

M is a rotation matrix with angle �1 � �2. This re-
orientation does not a�ect the equilibrium. Note that
P can be moved from e1 to e02 by a pure translation.
From above we know that such a translation of P cor-
responds to a strictly monotone change in the trans-
lational forces acting on P . Hence we conclude that
P (e1) and P (e02) cannot both be in translational equi-
librium unless e1 and e02 are equal. This implies that
e1 and e2 cannot both be equilibria of P in R unless
they both have the same pivot point v. 2

Surprisingly, v need not be the center of area of P .
For example, consider a large and a small square con-
nected by a long rod of negligible width. The pivot
point of this part will lie inside the larger square. But
if the rod is long enough, the center of area will lie
outside of the larger square. However, the following
corollary holds:

Corollary 26 For a part P in a continuous radial
force �eld R0 given by R0(z) = �z, the pivot point of
P coincides with the center of area of P .

Proof: The force acting on P in R0 is given by F =Z
P

� z dA, which is also the formula for the (negated)

center of area. 2

Now suppose that R is combined with a unit squeeze
pattern S, which is scaled by a factor � > 0, resulting

in R+ �S. The squeeze component �S of this �eld will
cause the part to align with the squeeze, similarly to
the strategies in Section 3.2. But note that the radial
componentR keeps the part centered in the force �eld.
Hence, by keeping R su�ciently large (or � small), we
can assume that the pivot point of P remains within an
�-ball of the center of R. This implies that assumption
2Phase (see Section 3.2) is no longer necessary. More-
over, � can be made arbitrarily small by an appropriate
choice of �.

Proposition 27 Let P be a polygonal part with n ver-
tices, and let k be the maximum number of edges that a
bisector of P can cross. Let us assume that v, the pivot
point of P , is in general position. There are at most
O(k n) stable equilibria in a �eld of the form R+ �S if
� is su�ciently small and positive.

Proof: For a part in equilibrium in a pure radial �eld
R (i.e., with � = 0), the pivot point v is essentially
�xed at the origin. This is implied by Property 23. It
is easy to see that Property 23 is not true in general for
arbitrary �elds of the formR+�S. Property 23 holds if
� = 0, because then any orientation is an equilibrium
when v is at the center of R. However, Property 24
does not hold if � > 0, because in general there does
not exist a unique pivot point in squeeze �elds (see
Section 3.2).

We will conduct the combinatorial analysis of the ori-
entation equilibria under the assumptions that (i) � > 0
and (ii) that v is �xed at the origin. Then we will relax
the latter assumption (ii), and show that Property 23
holds, approximately, even in R+ �S, for a su�ciently
small � > 0. That is, we show that a su�ciently small
� can be chosen so that the combinatorial analysis is
una�ected when assumption (ii) is relaxed.

First, we show that when � is small but positive, and
with v �xed at the center of R, there are only a linear
number of orientation equilibria. (I.e., we constrain the
pivot point v to remain �xed at the origin until further
notice.) So let us assume that we are in a combined
radial and small squeeze �eld R + �S.

Consider a ray w(0) emanating from v. Assume
w.l.o.g. that v is not a vertex of P , and that w(0)
intersects the edges S(0) = fe1; � � � ; ekg of P in gen-
eral position, 1 � k � n. Parameterize the ray w(�)
by its angle � to obtain w(�). As � sweeps from 0 to
2�, each edge of P will enter and leave the crossing
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structure S(�) exactly once. S(�) is updated at criti-
cal angles where w(�) intersects a vertex of P . Since
there are n vertices, there are O(n) critical angles, and
hence O(n) changes to S(�) overall. Hence, since be-
tween critical angles S(�) is constant, we see that S(�)
takes on O(n) distinct values. Now place the squeeze
line l to coincide with w(�). For a given crossing struc-
ture S(�)[ S(�+ �), satisfying conditions I and II as
de�ned in Section 3.2 devolves to solving two algebraic
equations of degree k, where k is the maximum number
of edges intersected by the squeeze line as described in
Section 3.1. This implies that between any two adja-
cent critical values there are only O(k) orientations of l
(given by w(�)) that satisfy conditions I and II. Hence,
the overall number of orientations satisfying I and II
is O(k n).

If � > 0 the part P will be perturbed, so that Prop-
erty 23 is only approximately satis�ed. (That is, we
now relax the assumption that v is constrained to be
at the origin). However, we can ensure that v lies
within an �-ball around the origin (the center of the
radial �eld). To see this, �rst consider P at some ar-
bitrary con�guration z in the squeeze �eld �S. The
total squeeze force on Pz is given by the area integral

�SP (z) =

Z
Pz

�S dA. (Recall that SP denotes the lifted

force �eld of S; see De�nition 14, Equation (2).) Now,
�SP is bounded above by j�SP j � �A, where A is the
area of P (note that S is a unit squeeze �eld).

P is in equilibrium with respect to the radial
�eld R if v is at the origin. Now consider the
lifted force RP when the pivot point of P is not at
the origin. More speci�cally, Let vz be the pivot
point of Pz, and let us de�ne a function bRP (d) =

minfjRP (z)j such that jvzj = dg, i.e., bRP (d) is the
minimum magnitude of the lifted force acting on Pz

when its pivot point vz is at distance d from the origin.

By decomposing RP into its x- and y-components,

we can write jRP j as
q
R2
P;x + R2

P;y . Because of the

radial symmetry of R let us assume w.l.o.g. that vz =
(d; 0). From the proof of Proposition 25 we know that,
for any given orientation of Pz, the magnitude of RP;x

increases continuously and strictly monotonically with
increasing d � 0. Furthermore, RP;y is continuous in
d, and RP;y(0) = 0, so R2

P;y is continuous and mono-
tonically increasing for all d less than some su�ciently
small d0 > 0. Hence for any �xed orientation of Pz,

RP is a continuous and strictly monotonically increas-
ing function for all d 2 [0; d0]. This implies that bRP is
also continuous and strictly monotone for su�ciently
small d � 0.

Now consider Pz in equilibrium in the combined
�eld R + �S, and again let d denote the distance
between pivot point vz and the origin. In equilib-
rium the lifted forces RP and �SP balance out, hencebRP (d) � jRP j = j�SP j � �A. Since bRP is continuous
and strictly monotone in d for su�ciently small d, we
can ensure that d is less than a given �, by chosing
an appropriately small �. This implies that vz must lie
within an �-ball of the center of the radial �eld. In par-
ticular, we can make this �-ball small enough so that
the crossing structure S(�) is not a�ected. Keeping d
small also ensures that the torque �R about the pivot
point induced by the radial �eld R is small, because
�R is bounded by the product of d and RP . This en-
sures that the equilibria of the squeeze �eld �S are not
a�ected.

We conclude that the number of equilibria in a �eld
R + �S is bounded by O(k n), for su�ciently small �.
2

In analogy to Section 3.2 we de�ne the turn function
t : S1 ! S

1, which describes how the part will turn
under a squeeze pattern, and hence yields the stable
equilibrium con�gurations. Given the turn function t
we can construct the corresponding squeeze function
s as described in Section 3.2. With s as the input
for Goldberg's alignment planner, we obtain strategies
for unique part alignment (and positioning) of length
O(k n). They can be computed in time O(k2 n2).

The result is a strategy for parts positioning of the
form (R + �S1) � � � � � (R + �S

O(kn)
). Compared

to the old algorithm in Section 3.2 it improves the
plan length by a factor of n, and the planning com-
plexity is reduced by a factor of n2. The planner
is complete: For any polygonal part, there exists a
strategy of the form �i(R + �Si). Moreover, the al-
gorithm is guaranteed to �nd a strategy for any input
part. By appending a step which is merely the radial
�eld R without a squeeze component, we are guaran-
teed that the part P will be uniquely posed (v is at
the origin) as well as uniquely oriented. We can also
show that the continuously varying \morphing" strat-
egy (R+�S1) ; � � �; (R+�S

O(kn)
) ; R works in the

same fashion to achieve the same unique equilibrium.
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6.2 Manipulation Grammars

The development of devices that generate program-
mable vector �elds is still in its infancy. The exist-
ing prototype devices exhibit only a limited range of
programmability. For example, the prototype MEMS
arrays described in Section 2.1 [9, 8, 7] currently have
actuators in only four di�erent directions, and the ac-
tuators are only row-wise controllable. Arrays with
individually addressable actuators at various orienta-
tions are possible (see [9, 8, 31, 7, 42]) but require sig-
ni�cant development e�ort. There are also limitations
on the resolution of the devices given by fabrication
constraints. For the vibrating plate device from Sec-
tion 2.2 the �elds are even more constrained by the
vibrational modes of the plate.

We are interested in the capabilities of such con-
strained systems. In this section we give an algorithm
that decides whether a part can be uniquely positioned
using a given set of vector �elds, and it synthesizes an
optimal-length strategy if one exists. If we think of
these vector �elds as a vocabulary, we obtain a lan-
guage of manipulation strategies. We are interested in
those expressions in the language that correspond to a
strategy for uniquely posing the part.

The elements of our \manipulation grammar" are
(sequences of) vector �elds that bring the part into a
�nite set of possible equilibrium positions (Figure 8).
We call these (sequences of) vector �elds �nite �eld op-
erators. Each �eld operator comes with the following
guarantee: No matter where in R2 �S1 the part starts
o�, it will always come to rest in one of E di�erent
total equilibria. That is: For any connected polygonal
part P , either of these �eld operators is always guar-
anteed to reduce P to a �nite set of equilibria in its
con�guration space C = R2 � S1.

From Section 6.1 we know that combined radial-
squeeze patterns R + �S have this property. However,
there are other simple �eld operators that also have
this �niteness property:

Claim 28 Let f and f? be unit squeeze �elds such that
f? is orthogonal to f . Then the �elds f �f? and f+f?
induce a �nite number of equilibria on every connected
polygon P .

Proof: First consider the �eld f � f?, and w.l.o.g.
assume that f(x; y) = (�sign(x); 0). Also assume that

Figure 8: Alignment vocabulary for a triangular part on

a vibrating plate, consisting of two consecutive force �elds

with slightly curved nodal lines (attractors) which bring the

part into (approximately) the same equilibria.

the COM of P is the reference point used to de�ne
its con�guration space C = R

2 � S1. As discussed
in Section 3.1, P will reach one of a �nite number of
orientation equilibria when placed in f or f?. More
speci�cally, when P is placed in f , there exists a �-
nite set of equilibria Ef = f(xi; �i)g. Similarly for
f?(x; y) = (0;�sign(y)), there exists a �nite set of
equilibria Ef? = f(yj ; �j)g. Since the x-component of
f? is zero, the x-coordinate of the reference point of P
(the COM) remains constant while P is in f?. Hence
P will �nally come to rest in a pose (xk; yk; �k), where
xk 2 �1(Ef), (yk; �k) 2 Ef? , and �1 is the canonical
projection such that �1(x; y; �) = x. Since Ef is �nite,
so is �1(Ef ). E(f?) is also �nite, therefore there exists
only a �nite number of such total equilibrium poses for
f � f?.

If P is placed into the �eld f + f?, there exists a
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unique translational equilibrium (x; y) for every given,
�xed orientation �. In each of these translational equi-
libria, the squeeze lines of f and f? are both bisectors
of P . Now consider the moment acting on P when P is
in translational equilibrium as a function of �. In anal-
ogy to Proposition 4 in Section 3.1 we can show that
for any topological placement of the bisectors, this mo-
ment function has at most O(k) roots, where k is the
maximum number of edges a bisector of P can cross.
This implies that there exist only O(k n2) distinct total
equilibria for f + f?. 2

We have seen in Sections 3 and 5 that for simple
force �elds such as e.g. squeeze or radial �elds, we can
predict the motion and the equilibria of a part with
exact analytical methods. However, for arbitrary �elds
(e.g. the force �elds described in Section 2.2 which are
induced by vibrating plates) such algorithms may not
exist. Instead we can employ approximate methods to
predict the behavior of the part in the force �eld (for
more details also see [18]). These methods are typi-
cally numerical computations that involve simulating
the part from a speci�c initial pose, until it reaches
equilibrium.4 We call the cost for such a computation
the simulation complexity s(n). We write s(n) because
the simulation complexity will usually depend on the
complexity of the part (i.e. its number of vertices n).

Proposition 29 Consider a polygonal part P , and m
�nite �eld operators fFig, 1 � i � m, each with at
most E distinct equilibria in the con�guration space C
for P . There is an algorithm that generates an optimal-
length strategy of the form F1 �F2 � � � � �Fm to uniquely
pose P up to symmetries, if such a strategy exists. This
algorithm runs in O(m2E (s(n)+2E)) time, where s(n)
is the simulation complexity of P in Fi. If no such
strategy exists, the algorithm will signal failure.

Proof: Construct a transition table T of size m2E
that describes how the part P moves from an equilib-
rium of Fi to an equilibrium of Fj . This table can be
constructed either by a dynamical analysis similar to
Section 6.1, or by dynamic simulation. The time to
construct this table is O(m2E s(n)), where s(n) is the
simulation complexity, which will typically depend on
the complexity of the part.

4See for example URL http://www.cs.cornell.edu

/home/karl/Cinema.

Using the table T , we can search for a strategy as
follows: De�ne the state of the system as the set of pos-
sible equilibria a part is in, for a particular �nite �eld
operator Fi. There are m �eld operators and O(E)
equilibria for each of them, hence there are O(m 2E)
distinct states. For each state there arem possible suc-
cessor states as given by table T , and they can each
be determined in O(E) operations, which results in
a graph with O(m 2E) nodes, O(m2 2E) edges, and
O(m2E 2E) operations for its construction. Finding
a strategy, or deciding that it exists, then devolves to
�nding a path whose goal node is a state with a unique
equilibrium. The total running time of this algorithm
is O(m2E (s(n) + 2E)). 2

Hence, as in [21], for any part we can decide whether
a part can be uniquely posed using the vocabulary of
�eld operators fFig but (a) the planning time is expo-
nential and (b) we do not know how to characterize the
class of parts that can be oriented by fFig. However,
the resulting strategies are optimal in size.

This result illustrates a tradeo� between mechanical
complexity (the dexterity and controllability of �eld
elements) and planning complexity (the computational
di�culty of synthesizing a strategy). If one is willing to
build a device capable of radial �elds, then one reaps
great bene�ts in planning and execution speed. On
the other hand, we can still plan for simpler devices
(see Figures 3 and 8), but the plan synthesis is more
expensive, and we lose some completeness properties.

7 Conclusions and Open Problems

Universal Feeder-Orienter (UFO) Devices. It
was shown in [8] that every connected polygonal part
P with n vertices has a �nite number of stable orien-
tation equilibria when P is placed into a squeeze �eld
S. Based on this property we were able to generate
manipulation strategies for unique part alignment. We
showed in Section 6.1 that by using a combined ra-
dial and squeeze �eld R+ �S, the number of equilibria
can be reduced to O(k n). Using elliptic force �elds
f(x; y) = (�x; �y) such that � 6= � and �; � 6= 0,
this bound can be reduced to 2 [29]. Does there exist
a universal �eld that, for every part P , has only one
unique equilibrium (up to part symmetry)? Such a
�eld could be used to build a universal parts feeder [1]
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that uniquely positions a part without the need of a
clock, sensors, or programming.

We propose a combined radial and \gravitational"
�eld R + �G which might have this property. � is a
small positive constant, and G is de�ned as G(x; y) =
(0;�1). This device design is inspired by the \univer-
sal gripper in [1]. Such a �eld could be obtained from a
MEMS array that implements a unit radial force �eld.
Instead of rectangular actuators in a regular grid, trian-
gular actuators could be laid out in a polar-coordinate
grid. The array could then be tilted slightly to obtain
the gravity component. Hence such a device would
be relatively easy to build. Extensive simulations show
that for every part we have tried, one unique total equi-
librium is always obtained. We are working toward a
rigorous proof of this experimental observation.

Magnitude Control. Consider an array in which
the magnitude of the actuator forces cannot be con-
trolled. Does there exist an array with constant mag-
nitude in which all parts reach one unique equilibrium?
Or can one prove that, without magnitude control, the
number of distinct equilibria is always greater than
one?

Geometric Filters. This paper focuses mainly on
sensorless manipulation strategies for unique position-
ing of parts. Another important application of pro-
grammable vector �elds are geometric �lters . Figure 1
shows a simple �lter that separates smaller and larger
parts. We are interested in the question Given n parts,
does there exist a vector �eld that will separate them
into speci�c equivalence classes? For example, does
there exist a �eld that moves small and large rectangles
to the left, and triangles to the right? In particular, it
would be interesting to know whether for any two dif-
ferent parts there exists a sequence of force �elds that
will separate them.

Performance Measures. Are there performance
measures for how fast (in real time) an array will ori-
ent a part? In some sense the actuators are �ghting
each other (as we have observed experimentally) when
the part approaches equilibrium. For squeeze grasps,
one measure of \e�ciency", albeit crude, might be the
integral of the magnitude of the moment function, i.e.,Z 2�

0

jM(�)j d�. The issue is that if, for many poses,

jM(�)j is very small, then the orientation process will
be slow. Better measures are also desirable.

Uncertainty. In practice, neither the force vector
�eld nor the part geometry will be exact, and both
can only be characterized up to tolerances [15]. This
is particularly important at micro scale. Within the
framework of potential �elds, we can express this un-
certainty by considering not one single potential func-
tion UP , but rather families of potentials that corre-
spond to di�erent values within the uncertainty range.
Bounds on part and force tolerances will correspond to
limits on the variation within these function families.
An investigation of these limits will allow us to obtain
upper error bounds for manipulation tasks under which
a speci�c strategy will still achieve its goal.

A family of potential functions is a set fU� : C !
Rg�2J where J is an index set. For example, we may
start with a single potential function U : C ! R, and
de�ne a family of potential functionsF(U; �; z) as fU� :
C ! R j kU�(p) � U(p)kz < �g for some � and norm
z. This is analogous to de�ning a neighborhood in
function space, using e.g. the compact-open topology.

When we di�erentiate a family of potential �elds (us-
ing the gradient) we obtain a di�erential inclusion in-
stead of a di�erential equation. So if F(u) = F(u; �; z),
then rF(u) = frU�g�2J .

When considering families of potentials, the equilib-
rium may be known to lie only within a set Ei, al-
though we may know that it is always a point in Ei.
If the sets Ei are of a small diameter less than some
� > 0, our algorithms could be extended to handle �-
approximations.

As a more general approach, we propose an algo-
rithm based on back-projections: For a given part, let
BFi(G) � C = R2�S1 be the back-projection [33] of the
setG under Fi, whereG � C, and Fi is a family of �elds
on R2. Then we wish to calculate a sequence of �elds
F1; F2; � � � ; Fk such that BF1(BF2(� � �BFk(G) � � �)) = C,
where G is a single point in C (cf. [33, 21, 13, 15, 11]).

Output Sensitivity. We have seen in Sections 6.1
and 6.2 that the e�ciency of planning and execut-
ing manipulation strategies critically depends on the
number of equilibrium con�gurations. Expressing the
planning and execution complexity as a function of the
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number of equilibria E, rather than the number of ver-
tices n, is called output sensitive analysis. In prac-
tice, we have found that there are almost no parts with
more than two distinct (orientation) equilibria, even in
squeeze �elds. This is far less than the E = O(k n2)
upper bound derived in 3.1. If this observation can
be supported by an exact or even statistical analysis
of part shapes, it could lead to extremely good ex-
pected bounds on plan length and planning time, even
for the less powerful strategies employing manipulation
grammars (note that the complexity of the manipula-
tion grammar algorithm in Proposition 29 is output-
sensitive).

Discrete Force Fields. For the manipulation
strategies described in this paper we assume that the
force �elds are continuous, i.e. that the generated forces
are dense compared to the moving part (assumption
Density in Section 3.2). When manipulating very
small parts on microactuator arrays, this condition
may be only approximately satis�ed. We are inter-
ested in the limitations of the continuous model, and
we would like to know the conditions under which it is
necessary to employ a di�erent, discrete model of the
array that takes into account individual actuators, as
well as the gaps between actuators. In [9] we propose a
model for the interaction between parts and arrays of
individual actuators based on the theory of limit sur-
faces [26].

Resonance Properties. Is it possible to exploit the
dynamic resonance properties of parts to tune the AC
control of the array to perform e�cient dynamic ma-
nipulation?

3D Force Fields. It may be possible to generate
3D force �elds by using Lorentz electromagnetic forces.
Tunable electric coils could be attached to various
points of a 3D body, suspending the resulting object
in a strong permanent magnetic �eld using magnetic
levitation (the Lorentz e�ect) [28]. The tuning (con-
trol) of the electric coils could be e�ected as follows:
Integrated control circuitry could be fabricated and co-
located with the coils, and conceivably a power supply.
The control could be globally e�ected using wireless
communication, or, the control of each coil evolves in
time until the part is reoriented as desired. The Lorentz
forces could then be deactivated to bring the object to

rest on the ground. Planning for such a 3D device
might reduce to [23].
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