Distributed Robotic Manipulation:
Experiments in Minimalism

Karl Bohringer, Russell Brown,
Bruce Donald, Jim Jennings
Cornell University
Ithaca, NY 14853, USA
brd@cs.cornell.edu

Daniela Rus
Dartmouth College

Hanover, NH 03755, USA
rus@cs.dartmouth.edu

Abstract

Minimalism pursues the following agenda: For a given robotics task, find
the minimal configuration of resources required to solve the task. Thus,
minimalism attempts to reduce the resource signature for a task, in the
same way that (say) Stealth technology decreases the radar signature of an
aircraft. Minimalism is interesting because doing task A without resource
B proves that B is somehow inessential to the information structure of
the task. We will present experimental demonstrations and show how they
relate to our theoretical proofs of minimalist systems.

In robotics, minimalism has become increasingly influential. Marc Raibert
showed that walking and running machines could be built without static
stability. Erdmann and Mason showed how to do dextrous manipulation
without sensing. Tad McGeer built a biped, kneed walker without sensors,
computers, or actuators. Rod Brooks has developed online algorithms that
rely less extensively on planning and world-models. Canny and Goldberg
have demonstrated robot systems of minimal complexity. We have taken a
minimalist approach to distributed manipulation. First, we describe how
we built distributed systems in which a team of mobots cooperate in ma-
nipulation tasks without explicit communication.! Second, we are now
building arrays of micromanipulators to perform sensorless micromanipu-
lation. We describe how well our experimental designs worked, and how
our manipulation experiments mirrored the theory.

This paper describes research done in the Robotics and Vision Laboratory at
Cornell University. Support for our robotics research was provided in part by the Na-
tional Science Foundation under grants No. IRI-8802390, IRI-9000532, IRI-9201699,

!No RF or IR messages are sent between the robots.

In Experimental Robotics IV, Lecture Notes in Control and Information, editors O. Khatib et al., Springer Verlag, Berlin, 1997.

by a Presidential Young Investigator award to Bruce Donald, by an NSF/ARPA
S.G.E.R. in MEMS, and in part by the Air Force Office of Sponsored Research, the
Mathematical Sciences Institute, Intel Corporation, and AT&T Bell Laboratories.

1. Introduction

This paper describes our experience in building distributed systems of robots that
perform manipulation tasks. We have worked at both the macroscopic and the
microscopic scale. First, we describe a team of small autonomous mobile robots that
cooperate to move large objects (such as couches). The robots run SPMD? and
MPMD? manipulation protocols with no explicit communication. We developed
these protocols by distributing offline, sequential algorithms requiring geometric
models and planning. The resulting parallel protocols are more on-line, have reduced
dependence on a priori geometric models, and are typically robust (resistant to
uncertainty in control, sensing, and initial conditions).

Next, we discuss our work on sensorless manipulation using massively parallel
arrays of microfabricated actuators. The single-crystal silicon fabrication process
opens the door to building monolithic microelectromechanical systems (MEMS) with
microactuators and control circuitry integrated on the same chip. Our actuators are
servoed to uniquely orient (up to symmetries) an object lying on top, and require
no sensing. We can also program the array as a sensorless geometric filter—to sort
parts based on shape or size.

We developed both the macroscopic and the microscopic systems by distributing
and parallelizing sequential manipulation algorithms with global control, to obtain
distributed algorithms running on independent physical agents. Our MEMS control
algorithms for micromanipulation are SPMD; for the macroscopic (furniture-moving)
task, we describe implementations and experiments with both SPMD and MPMD
control.

We have implemented and extensively tested our macroscopic distributed ma-
nipulation strategies. We have built MEMS prototypes, and we are now fabricating
and testing our biggest micro-array yet (the entire wafer is tiled with 7000 microac-
tuators). Our macroscopic algorithms use no direct communication between the
agents, but do employ sensing. Our microscopic algorithms are sensorless, but re-
quire a small amount of local communication to initialize and synchronize. Our
theory predicts a trade-off between communication and sensing when we parallelize
a manipulation strategy. We will discuss experiments we have performed to experi-
mentally observe and validate these trade-offs.

2. Reorienting Large Objects with Autonomous Mobile
Robots

We are interested in large-scale manipulation of objects by small mobile robots. In
Sections 2 and 3 of this paper, the manipulated objects have comparable size and
dynamic complexity to the robots. Objects used in our experiments are up to 6
times the robot’s diameter in length, and up to twice the mass of one of the robots.
Repositioning and reorientation of these objects may be possible only through active
cooperation of a team of mobile robots; for other objects, employing multiple robots
may yield performance or other benefits, such as ease of programming.

2SPMD (MPMD) = Single (Multiple) Program, Multiple Data.

In Experimental Robotics IV, Lecture Notes in Control and Information, editors O. Khatib et al., Springer Verlag, Berlin, 1997.

Consider the task whose goal is to change the orientation of a large object by a
given amount. This is called the reorientation task. We have described and analyzed
in detail the reorientation task in [16]. Figure 1 depicts one robot reorienting a large
object. A robot can generate a rotation by applying a force that is displaced from
the center of friction. This property relates the dynamics and the geometry or
reorientations [12] and it can be used to effect continuous reorientations with mobile
robots. The idea is to compliantly apply a sliding force on the face of the object?.
We call this action a pushing-tracking step. When the end of the face is reached,
the robot may turn around to reacquire contact and repeat the pushing-tracking.
A robot that has gone past the end of a face effectively losing contact with the
object has broken contact with the object. A robot whose maximum applied force
(defined by a threshold) does not change the pose of the object has encountered an
impediment.

One robot may effect any desired reorientation by repeated pushing-tracking
steps if it can apply a large enough force, but it may require a large workspace area
for the rotation. We are interested in strategies for reorienting objects in place.
This can be done by a team of k robots*. (See Figures 1(b), 2, and 3.) The k
robots can simultaneously constrain the motion of the object and execute pushing-
tracking operations. We can measure the degree of parallelism in the reorientation
algorithm by counting how many of the robots are active, i.e., that execute push-
tracking motions, and how many of the robots are stationary, ¢.e., that constrain
the motion of the object by staying fixed in place. We show how to select the active
and stationary robots and how to decide on role-switching over the course of an

algorithm.
/>

end-u{iace

end-of-face

Figure 1. (a): Reorientation by one robot executing pushing—tr(gcking. (b) A system
of two robots reorienting a couch. The robot motions are shown in an object-fixed
frame. Each robot executes a pushing-tracking motion. Robots recognize when they
reach the end of a face by breaking contact, and execute a spinning motion to turn
around and reacquire contact.

We now present four different but “equivalent” reorientation protocols that have
different degrees of parallelism, synchrony, and resource utilization. Our notion of
“equivalence” comes from looking at the task as a dynamical system. Consider the
configuration space C of the manipulated couch. We call two manipulation protocols
equivalent if the protocols have the same forward-attracting compact limit set in C
[7] (p. 284) and [6]. All of our reorientation protocols rely on the ability of robots
to execute push-tracking motions.

3This strategy can be implemented by a force that forms an acute angle on the contacting edge.
This is similar to hybrid control [14] which would be used for a dexterous hand [17].
*For an excellent survey of cooperative mobile robotics see [4].

In Experimental Robotics IV, Lecture Notes in Control and Information, editors O. Khatib et al., Springer Verlag, Berlin, 1997.

2.1. An Off-line, Global Control Protocol

The off-line global control strategy denoted by GLOBAL-OFFLINE requires three
robots and is described and analyzed in detail in [17]. The algorithm consists of
a sequence of pushing-tracking steps, where one robot is active (pushing) and two
robots are stationary at all times (see Figure 2). A global controller sends and
receives control signals to the robots. Under the assumption that the robots are
already in contact with the object, the algorithm can be summarized as follows:

Active robot: Stationary robots:
1. push-track until position or 1. sense for relative motion (slip)
force termination 2. if no slip, signal the global controller

2. signal the global controller 3. when signaled, become active
3. become stationary

SN TN TN SN TN TN

Figure 2. A two-step pushing-tracking sequence of snapshots for reorienting an
object with three robots. The right sequence denotes three snapshots of the first
step. The left sequence denotes three snapshots of the second step. The black circles
denote stationary robots. The white circles denote active robots.

A planner [17] takes as input the geometric model of the object we wish to
manipulate. It outputs the initial contact locations for the robots and the order in
which the robots become active, which is called the push-tracking schedule. The
termination of each each step is characterized by “jamming” the object between
the three robots and thus can be detected by an active slip sensor. The planner
guarantees that no robot will break contact in a multi-step execution.

In the setup phase, the robots make contact with the object in the areas gen-
erated by the planner, using motion plans generated by a trajectory planner. The
output of the planner is also used by the global controller to signal the robots when
to become active.

A system of robots executing this algorithm requires the following skills of each
robot:

e (goto (position)) to contact the object during the setup phase in the areas
computed by the planner. (goto (position)) can be implemented by using a
trajectory generator and a localization system, or even dead-reckoning [3].

e (push-track) to control the pushing-tracking motion of each active robot. This
entails exerting a force in the normal direction to the face of the object while
commanding a velocity in the tangential direction. (See Figures 1 and 2.)

e (active-slip?) used by the stationary robots to detect slip at their points of
contact.

In Experimental Robotics IV, Lecture Notes in Control and Information, editors O. Khatib et al., Springer Verlag, Berlin, 1997.

2.2. Summary of Two “Intermediate” Protocols

Due to space limitations, we omit the development and discussion of two of our
reorientation strategies, and instead summarize them briefly.> They may be consid-
ered “intermediate” in the sense that they represent successive transformations of
the Off-line, Global Control Protocol described above. A final transformation yields
the On-line, Uniform, Asynchronous Protocol described below in Section 2.3.

¢ An Off-line, Local Control Protocol:

A variant of the Off-line, Global Control Protocol can be derived for three
(or more) independent robots. This system of autonomous robots cooperates
to complete a reorientation and does not have a global controller. Instead,
the robots use communication (IR or RF) to synchronize their actions, which
are performed according to the same push-tracking schedule as in the previous
protocol.

¢ An On-line, Synchronous Protocol:

The two previous protocols require a planner. We now ask: do reorientation
protocols depend crucially on planning? We present in the full text of this
report another version of the algorithm that does not use a geometric model for
the object being manipulated and does not necessitate a planner. It is denoted
SYNCH-ONLINE. Without a reorientation planner, we note that (1) the initial
setup phase is randomized, and (2) there is now no guarantee that all of the
robots maintain contact at all times. While maintaining contact is important
for fine manipulation within a dexterous hand, it is not necessary for the task of
large-scale manipulation with mobile robots. Therefore, we are willing to give
up maintaining contact in favor of an online algorithm without a planner and
without a world model.

2.3. An On-line, Uniform, Asynchronous Protocol

Figure 3. Two mobile robots cooperating to reorient a couch: a snapshot taken from
a couch reorientation experiment.

The three previous protocols require explicit communication. We now ask: how
essential is the explicit communication for reorientation protocols? We present a

5The full text of this report, including the discussion of the omitted protocols may be found
online in ftp://flamingo.Stanford.edu/pub/brd/iser-95.ps.gz.

In Experimental Robotics IV, Lecture Notes in Control and Information, editors O. Khatib et al., Springer Verlag, Berlin, 1997.

protocol (which we denote by ASYNCH-ONLINE) that is uniform (SPMD), in that
the robots execute the same program asynchronously and in parallel and there is no
explicit communication between the robots.

For this protocol, two robots suffice. All the robots are active all the time.
Assuming that the robots are in contact with the object, the following algorithm

achieves the reorientation.
Active robots (all):

1. push-track until contact break or impediment
2. if contact break then spin
3. if impediment then graze

The intuition is that the robots try to maintain the push-tracking state. When
the end of the face is reached, a spinning motion is employed to reacquire contact.
Spinis a motion that is executed when a robot has gone past the end of the face — the
robot turns around and reacquires contact by traveling around a circular trajectory
(see Figure 1(b)). Alternatively, if an impediment is encountered, the robot executes
a guarded move near-parallel to, but towards the face of the object, effectively
grazing the object. Graze terminates when the robot recontacts the object or when
it detects that it has traveled past the end of the face. Hence, graze terminates in
(I) reacquiring the object at a contact with a longer moment arm, or (II) missing
altogether. (I) is detected with a guarded move. (II) is detected using a sonar-
based wall/corner detection algorithm of [10]. When (II) occurs, the robot executes
(spin).

In the setup phase the robots contact the object using the same procedure as
in protocol SYNCH-ONLINE. The robots may reach the object at different times.
As soon as a robot makes contact with the object, it proceeds with executing a
push-tracking motion. The following skills are required of the robots:

e (guarded-move (direction)), (blocked?), (end-of-face?), and
(push-track),

e (spin) Each robot must be able to reacquire contact when the end of the face
is reached.

e (graze) Each robot must be able to translate near-parallel to the face of an
object to find a new contacting point. Graze uses sonar.

We have implemented a system to move furniture in our lab that includes the
asynchronous online reorientation protocol. Our experiments suggest that the sys-
tem is very robust.

3. MPMD Manipulation

Section 2 presents an implemented and tested SPMD manipulation protocol. We
now present another implemented and tested strategy, an MPMD protocol called
the Pusher/Steerer system. A detailed description and analysis of this sytem is given
in [2, 3].

Despite conventional wisdom regarding the complexities of programming a multi-
robot system, a key feature of the Pusher/Steerer system is its ease of use — the actual
robot code is simple and elegant, and yet there remains great flexibility in methods
of path specification. We present the following properties of the Pusher/Steerer
system:

In Experimental Robotics IV, Lecture Notes in Control and Information, editors O. Khatib et al., Springer Verlag, Berlin, 1997.

e The code that implements the Pusher/Steerer strategy is simple because it relies
on the “natural” kinematic and dynamic interactions between the robots and
the manipulated object to achieve the goal.

e The Pusher/Steerer system is easily adapted to employ either an offline path
planner, or an online navigation system in which the path to the goal is not
known a priori. This is possible because of the decoupling of the steering and
pushing components of the strategy.

e Finally, an information invariant analysis (see [7]) of the Pusher/Steerer strat-
egy reveals several formal properties, which we may express informally here:

1. The Pusher/Steerer system is exactly a redistribution of the same resources
(computation, state, sensors, etc.) of a comparable single-robot manipu-
lation system.

2. There is no explicit communication between the Pusher and the Steerer.

3. The addition of a clock and some state to each robot (the Pusher and
the Steerer) increases the power of the system significantly. With clocks,
the Pusher and Steerer may exchange roles in an online fashion, and thus
execute complex paths, such as “parallel parking” maneuvers.

3.1. Details of Pusher/Steerer
In this protocol, the robots take on the role either of the Pusher, in which:

e Torque-controlled translations push the object in front of the robot,

e the robot follows the object by continually turning to align its front bumpers
with the rear face of the object (the rotational and translational motions here
are decoupled and occur in parallel), and

e the robot does not know the path that the object is supposed to follow.
or the Steerer, in which:

e The robot knows a path that it is supposed to follow,

e the robot is translationally compliant (controlling only the heading of its
wheels), and

e the robot moves forward as a result of being pushed by the object (which is
itself being pushed by the Pusher).

The manipulated object sits between the robots. We use no direct communication
between the two robots, but employ only indirect communication through the me-
chanics of the robots-and-box system. One advantage is that the robots can trade
roles, allowing such maneuvers as the “back-and-fill” that automobile drivers use
for turning cars around on narrow roads. Objects of varying size, mass distribu-
tion, and surface friction may be manipulated by our system over a wide range of
paths. Figure 4 shows a drawing of two robots moving a rectangular object through
a circular arc.

Our analyses of the mechanics of Pusher/Steerer protocols for translational ma-
nipulation only, circular-arc following, and more general trajectory-following are
omitted here. We will summarize our analyses of the Pusher/Steerer system with
respect to information invariants, however.

In Experimental Robotics IV, Lecture Notes in Control and Information, editors O. Khatib et al., Springer Verlag, Berlin, 1997.

| [

(a) (b) (o) "
) 0) (9 "

Figure 4. This series of figures depict a box being guided through a 90 degree arc by
a steering robot (in front, following the arc), and a pushing robot. The box begins
with its front and rear faces approximately perpendicular to the path. In parts (b)
and (c), the box rotates in the wrong direction, due to poor initial placement of
the Pusher relative to the Steerer. By part (d), the Pusher, with no model of the
box or the path and with no communication, has compensated for the poor initial
configuration. By part (%), the box has traversed the arc and rotated until its front
and rear faces are approximately perpendicular to the path.

For the purpose of illuminating the information and resource requirements of
our manipulation system, we turn to the framework of information invariants [7],
which defines formal reductions between protocols. We say “Protocol B reduces to
Protocol A” when we can use the resources (state, communication, computation,
sensors, effectors) of Protocol A to build Protocol B. In writing a reduction, we list
explicitly any new resources (including communication) added to Protocol A to as-
semble Protocol B. We use reductions to make formal comparisons between different
protocols that achieve the same task; for instance, we can calculate equivalence be-
tween protocols. While a presentation of the formal reductions between single-robot
pushing and our 2-robot Pusher/Steerer system is beyond the scope of this report,
we will pause to discuss those results informally.

In [7], Donald claims that the spatial distribution of resources has a critical effect
on the capabilities of a system. The Pusher/Steerer system validates that claim.
Consider a single-robot manipulation algorithm such as, e.g., [11]. As implemented
on the Cornell mobile robots, the execution system consists of the following skills:

® a pushing primitive, (prim-push) (given a heading direction, each robot has
the ability to compliantly exert a pushing force);

e (align) (the robot actively aligns its heading to the object face using the
relative angle between the robot and the object, which our robots can measure
directly using a ring of contact-sensors[10]);

e a steering primitive, (steer); and

e « prior: path information.

In Experimental Robotics IV, Lecture Notes in Control and Information, editors O. Khatib et al., Springer Verlag, Berlin, 1997.

The Pusher’s (entire) control system (Pusher) is obtained by the parallel com-
position of (align) and (prim-push). The skill (push-track) used in Section 2
can be shown to be the sequential composition of (align) and (prim-push). In the
language of information invariants [7], this implies the equation®

(push-track) =g (prim-push) + (align). (1)

Similarly, Brown [3] shows that
(Pusher) =¢ (prim-push) + (align), (2)
and hence, from Equation(1) it follows that
(push-track) =¢ (Pusher). (3)

We can synthesize the Pusher/Steerer system by redistributing items from the
list above into two separate physical locations. The pushing and alignment primitives
become the Pusher, and the steering primitive and path information comprise the
Steerer. Clearly we have added a second robot to the system. But did we actually
add resources, or just move them around? The Steerer gets the rotation subsys-
tem from our single-robot strategy; the Pusher gets the translation subsystem. The
Steerer gets the path information; the Pusher gets the alignment subsystem (a rel-
ative orientation sensor and rotation capability). So we did add a resource! Both
the Pusher and Steerer need to rotate.

The Pusher/Steerer system consists of a redistribution of the resources of the
single-robot manipulation system described above, plus one rotate motor. Yet, if we
substitute a slightly different robot for the Pusher, we find that we do not need to add
the rotate motor at all. The Cornell mobile robot CAMEL has a flat bumper instead
of a semi-circular one, and when CAMEL is the Pusher, the alignment resource is not
needed. CAMEL passively maintains correct alignment with the object face due to
rotational compliance and the mechanics of line-contact or “blade” pushing. Thus,
the Pusher is rotationally compliant, but controls translations, while the Steerer
is translationally compliant, but controls rotations. There is an explicit tradeoff
between the choice of robot bumper geometry and the need for an active alignment
primitive.”

In summary, if we choose an appropriate pushing robot, we can build the
Pusher/Steerer system by redistributing exactly the resources that would be used in
a single-robot manipulation system. There is thus a de facto equivalence, in terms of
resource usage, between the two strategies: Pusher/Steerer and single-robot manip-
ulation. It appears, however, that the Pusher/Steerer system admits a larger class
of executable paths; moreover, the system may have other advantages which are less
easy to quantify. The benefits of Pusher/Steerer do not derive from an addition of
resources, but rather from the spatial redistribution of existing resources.®

6A =0 B when A Sg B and B SD A.

"These tradeoffs are precisely quantified in the information invariants theory.

81t should be noted that the combined internal state of the Pusher and Steerer is no greater
than that of the single-robot manipulator described above, and that no extra computation nor
communication is needed.

In Experimental Robotics IV, Lecture Notes in Control and Information, editors O. Khatib et al., Springer Verlag, Berlin, 1997.

Table 1. Degrees of arc traversed at given turn radius for several boxes. w is the box
dimension between the contact faces; £ is the box dimension between the non-contact
faces. The values presented are averaged over 5 runs.

Turning Radius (mm)

| Box (w x¢xm) | 1000] 1500 | 2000 | 2500
5lcm x 58cm x 3Kg || 1000 | 1050 [1220 | 1440
35cm x 23cm x 2Kg || 225 | 234| 528 618
33cm x 58cm x 4Kg || 153 | 342 [475 656

3.2. MPMD Manipulation Experiments

We have performed over one hundred constrained manipulation experiments using
the Pusher/Steerer protocol running on several pairs of Cornell mobile robots. In
these experiments, boxes and similar objects of varying size, mass, mass distribu-
tion, and material properties were manipulated along complex paths up to 50 feet
in length. On the basis of these experiments, described in [3], we have observed the
system to be quite robust in practice. Additional experiments using online navi-
gation methods (human guidance in one case, and visual landmark recognition in
another) have demonstrated the flexibility of the system.

One set of experimental tests is summarized here. The task is circular arc
following, as an endurance test: how far around a circle, on average, could ToMMY
and LiLy carry each of a set of test objects? We ran the protocols at each of a
number of turning radii on each of several boxes 5 times, and present here (table 1)
the average arc distance traversed before the Steerer loses control (breaks contact
with the object). The maximum distance traversed for any test is 1440 degrees (four
complete circumferences).

There are two main lessons we have learned from our experiments with dis-
tributed reorientation and with the Pusher/Steerer system.

1. Information invariants theory indicates that we should be able to distribute a
manipulation task across multiple robots with essentially no additional resource
cost. The Pusher/Steerer system is an example.

2. A mechanics analysis of large-scale manipulation indicates that distributing a
manipulation task across multiple robots using a Pusher/Steerer model will allow
robots with limited control and sensing to perform that manipulation task in
a manner equivalent to a single-mobot system with much more sophisticated
control and sensing.

4. Manipulation with microelectromechanical actuator ar-
rays

Next, we discuss our work on sensorless manipulation using massively parallel arrays

of microfabricated actuators [1]. The single-crystal silicon fabrication process opens

the door to building monolithic microelectromechanical systems (MEMS) with mi-

croactuators and control circuitry integrated on the same chip. Our actuators are

servoed to uniquely orient (up to symmetries) an object lying on top, and require

In Experimental Robotics IV, Lecture Notes in Control and Information, editors O. Khatib et al., Springer Verlag, Berlin, 1997.

Figure 5. A prototype M-CHIP fabri-
cated in 1995. A large unidirectional
actuator array (scanning electron mi-
croscopy). Each actuator is 180 X
240 um? in size. Detail from a 1in? array
with more than 11,000 actuators.

Figure 6. Released asymmetric actua-
tor for the M-CHIP (scanning electron
microscopy). Left: Dense grid (10 um
spacing) with aluminum electrode un-
derneath. Right: Grid with 5 um high
poles.

no sensing. We can also program the array as a sensorless geometric filter—to sort
parts based on shape or size.

4.1. Device Fabrication and Properties

In recent years much progress has been made in microelectromechanical systems
(MEMS). They consist of structures in the micrometer range which are usually
fabricated with VLSI technology. Unlike conventional circuits, MEMS devices have
an electrical and a mechanical component, i.e. moving parts that can be controlled
or monitored with electrical voltage or current.

Fabrication of our devices consists
of a sequence of depositions and etches
(called SCREAM process, for Single
Crystal Reactive Etching and Metalliza-
tion [13]) which define and partially re-
lease the structures from the silicon sub-
strate. Thus, the devices consist of a
single crystal silicon core, which is usu-
ally covered with aluminum, isolated by
a thin film of dielectric silicon oxide. Typ-
ically these devices resemble grid or truss
structures, because only beams up to a

Figure 7. Released M-CHIP actuator

few pm wide (but up to 1mm long)
can be released with the SCREAM pro-
cess. The fabrication process is compati-

(detail) consisting of single-crystal
silicon with 5 ym high tips (described
in [1]).

ble with conventional VLSI. Control logic can be integrated on the same chip or even
within the silicon structures. Figures 5 through 7 show such actuators at different
magnification levels. Each of them consists of a grid structure suspended on a tor-
sional beam. Electrostatic forces cause the device to rotate out of plane by several
degrees. When applying an AC voltage the actuator oscillates, with resonance in
the kHz range. The design of the grid is asymmetric, with tips only on one side of

In Experimental Robotics IV, Lecture Notes in Control and Information, editors O. Khatib et al., Springer Verlag, Berlin, 1997.

the grid (see Figure 7). This ensures that when the actuator is in contact with an
object, it will generate a lateral force.

Recently we have fabricated arrays with up to 7000 individual actuators for
massively parallel manipulation. There is a huge potential of applications. Such
MEMS actuator arrays can be used as bulk-fabricated (cheap), ultra-thin transport
mechanisms e.g. for paper in copy machines or printers. At the other end of the
spectrum, recent advances have brought within reach arrays equipped with tips that
can probe and move single atoms [18]. Such devices, employed in a massively parallel
fashion, will yield tremendous data storage capacities.

The MEMS array that we present here is designed for “medium size” applications
in which objects in the millimeter range are moved, e.g. for an automatic stage of a
microscope, or for the assembly of small parts.

4.2. Part Positioning and Orienting

We want to use arrays of up to hundreds or thousands of microactuators to ma-
nipulate and orient parts in the millimeter to centimeter range. Each individual
actuator is approximately 200 ym x 300 um in size and can generate a force of up
to 10 uN. Clearly this is a strongly distributed manipulation task, as it cannot
be achieved with an individual actuator. However, by distributing the task among
cooperating actuators the joint force is sufficient (the weight of paper per actuator
area is approximately 60 7n/V, more than two orders of magnitude less than the force
generated by an actuator).

Let us consider the task in which a flat polygonal part P has to be oriented to a
specific angle on the array, starting from an arbitrary initial configuration. A global
control strategy could act as follows:

(1) Determine the current position of P.

(2) If P is in the goal configuration, stop.

(3) Compute a motion that brings P closer towards the goal.

(4) For each actuator, compute the force necessary to induce this motion, and tell
the actuator to generate this force.

(5) Repeat.

This strategy is rather complex, and requires individual communication with
each actuator, as well as sensing. In the following we show how a simpler and
more effective distributed manipulation strategy can perform the same task without
sensing, and with the use of only very limited communication resources.

Suppose the array generates a “squeeze” pattern in which all actuators push
perpendicularly towards a straight line /. A polygonal part P on the array will
experience a force that causes translation towards the line [. When [intersects P,
it also experiences a torque. This can be modeled as forces acting on the respective
centroids of P on either side of [(see Figure 8). These forces are proportional to
the surface area of each section of P.

In earlier work we have shown [1] that every polygonal part has a small finite
number of stable equilibrium configurations in such an actuator pattern. In equi-
librium the forces and moments balance out, such that [becomes a bisector of the
part, and the line connecting the centroids is perpendicular to [(see Figure 9).

In Experimental Robotics IV, Lecture Notes in Control and Information, editors O. Khatib et al., Springer Verlag, Berlin, 1997.

Figure 8.

Part in a force field gener-
ated by an actuator array. The resulting
forces for the left and the right section of
the part are shown acting at the respec-
tive centers of mass: the part experiences

Figure 9. Part in equilibrium: The re-
sulting forces for the left and the right
section of the part are of equal magni-
tude and opposite direction, and the re-
sulting moment is zero.

a translational force and a moment.

All possible equilibrium configura-
tions can be predetermined from the
geometry of the part. For now let us
assume that the part P has only one
equilibrium. P will reach this equi-
librium when put on an array with a
squeeze pattern. Thus, to orient P up
to symmetry it is sufficient to generate
a squeeze pattern with the center line
[at the appropriate place.

Note that this strategy does not
require any sensing, and that it is not
necessary to have individual communi-
cation with each actuator. If each ac-
tuator knows its relative place in the
array, a single broadcast of the loca-
tion of [is sufficient for each actuator
to determine the direction of pushing.
We see that by distributing comput-
ing resources and state information we
can significantly reduce the amount of

g A g 2t BB R IR R EEEEEEXXY

bbb ldadagaa QA QA QA QA QA4 »>

> blad@swgsw< QA Q Q Q Q Q4 » b

bbb lada'a<a< \\\\\ Q vV »

bbb ladwswgsag< 4 4 44 %M h»

AAA \ 2 2 22

A4s \ 2 2 22 ¢

A A 7 A 2 J

AA %% % b b

A 4y AR AR

WYA R 2 2 2 22

bbb aadwww< A2 A A 2 2 2 2 2 J

Step 1 Step 2

|l e e e e) QA A QA QA QY
bbb bldadadagda= 4 A A A4
= bldadaswa= Q44 »
bbb bldadadaa= LR N » b
VA A

A 2 J

A 4

»»

A 2 4

A 4

A 2 4

A 2 J

i\ WA A
bbb blada-2-==

Step 1

I EEEREEEERER

Figure 10. Sensorless parts alignment
using force vector fields: Parts reach
unique poses after two subsequent

squeezes.

communication necessary. This SPMD approach simplifies both the control strategy
(software) as well as the communication circuitry (hardware) for MEMS actuator

arrays.

4.3. Multi-step part alignment

In the previous section we made the assumption that the part P has only one stable
equilibrium. For parts that have multiple equilibria we can still use the same basic
idea to align parts up to symmetry. We employ a multi-step strategy in which we
successively reduce the number of possible configurations in which P can be. This
is achieved by a sequence of squeeze patterns at specific angles. As Goldberg [8]

In Experimental Robotics IV, Lecture Notes in Control and Information, editors O. Khatib et al., Springer Verlag, Berlin, 1997.

has shown for the related problem of aligning parts with a robot gripper, there
always exist efficient multi-step strategies. We have extended his results for general
manipulation in force fields [1].

As an example consider the traces of a two-step strategy in Figure 10. The
ratchet-shaped part is put on the array at two different random initial configurations.
After two squeeze steps, the part ends up in the same orientation.

4.4. Summary

We have presented bulk-fabricated MEMS actuator arrays to perform massively
parallel manipulation tasks, and described efficient control strategies for part ma-
nipulation. We discovered a trade-off between communication and computation
resources and have shown how distributing resources can significantly reduce the
complexity of parallel manipulation tasks.

Acknowledgements

We thank Jean-Claude Latombe for his great hospitality during our stay at the
Stanford Robotics Laboratory.

References

[1] Bohringer, K., Donald, B., Mihailovich, R., and MacDonald, N., Sensorless manip-
ulation using massively parallel microfabricated actuator arrays, In Proc. IEEFE Int.
Conf. on Robotics and Automation, pages 826-833, San Diego, CA, May 1994.

[2] Brown, R., and Jennings, J., Manipulation by a pusher/steerer, In Proceedings of
Intelligent Robot Systems, Pittsburgh, PA, August 1995.

[3] Brown, B., Algorithms for Mobile Robot Localization and Building Flexible, Robust,
Easy to Use Mobile Robots, PhD thesis, Cornell University, Ithaca, NY, 1995.

[4] Cao, Y., Fukunaga, A., Kahng, A., and Meng, F, Cooperative mobile robots: An-
tecedents and directions, Technical Report, UCLA Department of Computer Science,
1995.

[6] Chandler, D., Atom by atom, The Boston Globe, May 5:37ff, 1995.

[6] Donald, B., Jennings, J., and Rus, D., Information invariants for distributed ma-
nipulation, The First Workshop on the Algorithmic Foundations of Robotics, eds. K.
Goldberg, D. Halperin, J.-C. Latombe, and R. Wilson, A. K. Peters, pages 431-459,
1994.

[7] Donald, B., Information invariants in robotics, Artificial Intelligence, 72:217-304,
1995.

[8] Goldberg, K., Orienting polygonal parts without sensing, Algorithmica,
10(2/3/4):201-225, August/September/October 1993.

[9] Jennings, J., Distributed Manipulation with Mobile Robots, PhD thesis, Cornell Uni-
versity, Ithaca, NY, (forthcoming, January 1996).

[10] Jennings, J., and Rus, D., Active model acquisition for near-sensorless manipulation
with mobile robots, In IASTED International Conference on Robotics and Manufac-
turing, pages 179-184, Oxford, England, September 1993.

[11] Lynch, K., and Mason, M., Stable pushing: Mechanics, controllability, and planning,
In Proceedings of the 1994 Workshop on the Algorithmic Foundations of Robotics,
San Francisco, CA, 1994.

[12] Mason, M., Manipulator grasping and pushing operations, International Journal of
Robotics Research, 5(3):53-71, 1995.

In Experimental Robotics IV, Lecture Notes in Control and Information, editors O. Khatib et al., Springer Verlag, Berlin, 1997.

[13]

[14]

Mihailovich, R., Zhang, Z., Shaw, K., and MacDonald, N., Single-crystal silicon
torsional resonators, In Proc. IEEE Workshop on Micro Electro Mechanical Systems,
pages 155-160, Fort Lauderdale, FL, February 1993.

Raibert, M., and Craig, J., Hybrid position/force control of manipulators, Journal of
Dynamic Systems, Measurement, and Control, 102, 1981.

Rees, J., and Donald, B., Program mobile robots in scheme, In Proc. of the 1992
IEEE International Conference on Robotics and Automation, Nice, France, 1992.
Rus, D., Donald, B., and Jennings, J., Moving furniture with mobile robots, In
Proceedings of Intelligent Robot Systems, Pittsburgh, PA, August 1995.

Rus, D., Fine motion planning for dexterous manipulation, PhD thesis, Cornell Uni-
versity, Ithaca, NY, August 1992.

Xu, Y., Miller, S., and MacDonald, N., Microelectromechanical scanning tunneling
microscope, Bulletion of the American Physical Society, 40(1):63, 1995.

In Experimental Robotics IV, Lecture Notes in Control and Information, editors O. Khatib et al., Springer Verlag, Berlin, 1997.

