
Proc. of IEEE Int. Conf. on Robotics and Automation, San Diego, CA, May 1994.

Sensorless Manipulation Using Massively Parallel

Microfabricated Actuator Arrays

Karl-Friedrich B�ohringer Bruce R. Donald Robert Mihailovich Noel C. MacDonald

Robotics & Vision Laboratory� School of Electrical Engineering and

Department of Computer Science The National Nanofabrication Facilityy

Cornell University, Ithaca, New York 14853, USA

Abstract

This paper investigates manipulation tasks with ar-
rays of microelectromechanical structures (MEMS).
We develop a geometric model for the mechanics of
microactuators and a theory of sensorless, parallel ma-
nipulation, and we describe e�cient algorithms for
their evaluation.

The theory of limit surfaces o�ers a purely geomet-
ric characterization of microscale contacts between ac-
tuator and moving object, which can be used to e�-
ciently predict the motion of the object on an actuator
array. It is shown how simple actuator control strate-
gies can be used to uniquely align a part up to symme-
try without sensor feedback. This theory is applicable
to a wide range of microactuator arrays. Our actu-
ators are oscillating structures of single-crystal sili-
con fabricated in a IC-compatible process. Calcula-
tions show that these actuators are strong enough to
levitate and move e.g. a piece of paper.

1 Introduction

A wide variety of micromechanical structures (de-
vices typically in the �m range) has been built recently
by using processing techniques known from VLSI in-
dustry. Various microsensors and microactuators have
been shown to perform successfully. E.g. a single-chip
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air-bag sensor is commercially available [1]; video pro-
jections using an integrated, monolithic mirror array
have been demonstrated recently [20]. More di�cult
is the fabrication of devices that can interact and ac-
tively change their environment. Problems arise from
(1) unknown material properties and the lack of ade-
quate models for mechanisms at very small scales, (2)
the limited range of motion and force that can be gen-
erated with microactuators, (3) the lack of su�cient
sensor information with regard to manipulation tasks,
and (4) design limitations and geometric tolerances
due to the fabrication process. Our work addresses in
particular the �rst three points.

We are interested in computational tools for the de-
sign, analysis, and control of MEMS. Based on work
on sensorless and near-sensorless manipulation [8, 11],
we have developed geometric theories of manipulation
and control for microactuator arrays, and we have de-
veloped and implemented e�cient algorithms for their
evaluation. Simultaneously we have designed, built,
and tested microfabricated actuators (length, width
50�m to 200�m) in the National Nanofabrication Fa-
cility at Cornell University. Our calculations show
that arrays of these actuators are strong enough to
accomplish practical manipulation tasks.

The next section brie
y introduces microfabricated
actuator arrays. In Section 3 we investigate geomet-
ric manipulation strategies for microactuator arrays.
A model for individual actuators and their interaction
with a movable object is described in section 4. Sec-
tion 5 describes the design and fabrication process in
some more detail. Conclusions and an outlook on fu-
ture work follow in Section 6.

2 Microfabricated actuator arrays

Several kinds of devices to position small objects
in the plane have been presented recently. E.g. Pis-
ter et al. [19] use an air cushion generated by micro-
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fabricated nozzles to levitate objects, and move them
with electrostatic forces. Takeshima and Fujita [21]
introduce the concept of a distributed micro motion
system (DMMS) that consists of an array of cooper-
ating actuator modules. Konishi and Fujita [16] and
Fujita [9] address distributed control strategies for ac-
tuator arrays. Furuhata et al. [10] have built arrays
of ultrasonic microactuators. Konishi and Fujita [15]
use air 
ow controlled by microvalves to both levitate
and move objects. Ataka et al. [2] use thermobimorph
cantilever beams to mimic the motion and function of
cilia. Due to low friction in the air bearing, motion
induced with designs [19] and [15] is fast but hard to
control because of the lack of damping. Design [2]
allows more control but operates at low frequencies
(� 1Hz).

Our design is closest to Furuhata's [10], with
slightly larger devices and a larger range of out-of-
plane motion. It combines controlled actuator-object
interaction with high operation speed. It is based on
microfabricated torsional resonators [17]. A torsional
resonator is a rectangular grid etched out of single-
crystal silicon and suspended by two rods that act
as torsional springs (Figure 1a). When an AC volt-
age is applied between grid and adjacent electrodes,
the grid oscillates at resonance frequencies in the high
kHz range, the edges of the grid reaching amplitudes of
several �m (Figure 1b). Our calculations have shown
that the forces generated with an array of torsional
resonators are large enough to levitate e.g. a piece of
paper (see Section 5).

(a) (b)

Figure 1: Torsional resonator (CAD model): (a) Resonator
grid with suspending beams. (b) Resonator and electrodes
(in dark color).

By introducing asymmetries into the resonator grid
(such as placing the torsional rods o� the center of
the grid, or adding poles on one side of the grid)
anisotropic lateral forces are generated, thus achieving
a motion bias for the object on top of the actuator.

Each actuator can generate motion in one speci�c
direction if it is activated, otherwise it acts as a passive
frictional contact. The combination and selective acti-

vation of several actuators with di�erent motion bias
allows us to generate various motions in the plane.
Figure 2 shows such a \motion pixel."

Fabrication process and mechanism analysis are de-
scribed in more detail in section 5.

Figure 2: Prototype motion pixel (scanning electron mi-
croscopy).

3 Macroscopic model for manipulation

In this section we develop a geometric theory of
manipulation for microactuator arrays. Our ideas are
based on the groundbreaking work of Erdmann and
Mason [8] in the �eld of sensorless and near-sensorless
manipulation. Their ideas have been the basis for a
wide range of results, see e.g. [22, 4, 7, 14]. In this
line of work on sensorless manipulation, Peshkin and
Sanderson [18] have shown how to align parts on a
conveyer belt with stationary fences. Goldberg [11]
has given an algorithm to align parts by a sequence
of grasps with a parallel-jaw gripper. In the follow-
ing we show how, under reasonable assumptions, the
problem of aligning a part with a microactuator array
can be reduced to the alignment task with a parallel-
jaw gripper, e�ectively using the actuator array as a
two-�nger gripper.

Goldberg's algorithm [11] takes the geometry of an
arbitrary polygonal part P and determines its squeeze
function s : S1! S1, where S1 is the set of planar ori-
entations. The squeeze function describes the change
in orientation of P when it is grasped by a parallel-jaw
gripper with negligible friction. It assumes that the
jaws make contact with the part simultaneously, and
that the part rotates until the distance between the
jaws reaches a local minimum (squeeze grasp). The
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squeeze function can be derived from the diameter
function d : S1 ! R, which describes the distance be-
tween the two horizontal lines tangential to P at a par-
ticular orientation. The squeeze function maps all ori-
entations that lie between two adjacent local maxima
of the diameter function to the orientation correspond-
ing to the intermediate local minimum (Figures 3a, b,
c). Goldberg then gives an algorithm that, given a spe-
ci�c squeeze function, computes a sequence of grasp
orientations to uniquely align P (up to symmetries)
from an arbitrary initial orientation (Figure 3d). Let
us summarize the results:

Theorem 1 (Goldberg [11]) Let P be a polygon
whose convex hull has n vertices. There is a sensorless
control strategy S for a parallel-jaw gripper that aligns
P up to symmetries in O(n) squeeze grasps. S can be
computed in O(n2) time.
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Figure 3: (a) Sample rectangle. (b) Diameter function. (c)
Squeeze function. (d) Alignment strategy.

Now we show how to reduce a manipulation task
with a microactuator array to an equivalent task with
a parallel-jaw gripper. We make the following assump-
tions:

Simplicity: The moving part P can be treated as a
simple 
at polygon.

Bilateral Symmetry: We have the following sim-
ple actuator control scheme available: We can di-
vide the array by a straight line l such that all
motion pixels on either side of l push normally
towards l.

Density: The generated forces can be described by a
two-dimensional vector �eld. This means that the
individual microactuators are dense compared to
the size of the moving part. (We will discuss later
how to relax this assumption.)

We can now give a formal de�nition for an alignment
strategy.

De�nition 2 An alignment strategy S for an actua-
tor array is a sequence of straight lines (l1; : : : ; lk) such
that assumption Bilateral Symmetry holds for all
li, 1 � i � k.

Note that the system requires a clock that signals
when enough time has elapsed for the object to reach
its rest position.

Assuming quasi-static motion, a small object will
move perpendicularly towards the line l and come to
rest there. We are interested in the motion of an arbi-
trarily shaped part P . Let us call P1, P2 the regions of
P that lie to the left and to the right of l, respectively,
and C1, C2 their centers of gravity. In a rest posi-
tion both translational and rotational forces must be
in equilibrium. We get the following two conditions:

I : The areas P1 and P2 must be equal.

II : The vector C2 � C1 must be normal to l.

De�nition 3 A median of a simple polygon P is a
straight line that divides P into two parts of equal size.

Condition I says that l is a median of P . P has a mo-
tion component normal to l if I does not hold. P has a
rotational motion component if II does not hold. P is
in equilibrium (stable or metastable) i� I and II hold.
Also note that because the interior of P is connected,
there is a unique median for each median direction.
See Figure 4 for an illustration.

For simplicity of presentation we make another as-
sumption. This assumption will not hold in general,
however it is not essential to the reduction and can be
relaxed as described later. It corresponds exactly to
the assumption that the parallel-jaw gripper performs
pure squeeze grasps in which both jaws make contact
with the part simultaneously [11].

2Phase : The motion of P has two phases: (1) Pure
translation towards l until condition I is satis�ed.
(2) Motion until condition II is satis�ed without
violating condition I.

The following de�nition is in analogy with the di-
ameter function above:
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(a) (b) (c)

(d) (e) (f)

Figure 4: Square object on actuator array: (a) I not sat-
is�ed, II not satis�ed. (b) I, not II. (c) not I, II. (d) I,
II (metastable). (e) I, II (stable). (f) Stable (thick) and
metastable (thin) medians of square.

De�nition 4 Let � be the orientation of a simple
polygon P on an actuator array, and let us assume that
condition I holds. The turn function t : �! f�1; 0; 1g
describes the instantaneous rotational motion of P .
t(�) = 1 if P will turn counterclockwise, t(�) = �1
if P will turn clockwise, and t(�) = 0 if P is in equi-
librium.

This de�nition immediately implies the following
lemma:

Lemma 5 Let P be a polygon with orientation � on
an actuator array such that conditions I and II hold.
P is stable if t(�) = 0, t(�+) � 0, and t(��) � 0.
Otherwise P is metastable.

Using this lemma we can identify all stable orienta-
tions, which allows us to construct the squeeze func-
tion of P in analogy to Goldberg [11]:

Lemma 6 Let P be a simple polygonal part on an
actuator array A such that assumptions Simplicity,
Bilateral Symmetry, Density, and 2Phase hold.
Given the turn function t of P , its corresponding
squeeze function s : S1! S

1 is constructed as follows:
1. All stable orientations � map to �.
2. All metastable orientations map (by conven-
tion) to the nearest right stable orientation.
3. All orientations � with t(�) = 1 (�1) map to
the nearest right (left) stable orientation.

Then s describes the transition of P induced by A.

See Figures 5a, b, c for an example. We can now
complete the reduction from actuator array to parallel-
jaw gripper:

Theorem 7 For a simple polygonal part P and an
actuator array A there exists an alignment strategy
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Figure 5: (a) Polygonal part. Stable (thick line) and
metastable (thin line) medians are also shown. (b) Turn func-
tion. (c) Squeeze function. (d) Alignment strategy for two
arbitrary initial con�gurations.

S = (l1; : : : ; lk) that uniquely aligns P up to symme-
tries.

Proof: We can get a formula for the turn function t of
P by taking the sign of the dot product between the
direction of the line l and the line connecting C1 and
C2. Straightforward algebra shows that this product
can be written as a piecewise rational function of �xed
low degree, with O(n2) pieces for general simple poly-
gons, and O(n) pieces for convex polygons. From t we
can construct the squeeze function s (Lemma 6) with
equal complexity bounds. Then the alignment strat-
egy S is obtained by using Goldberg's algorithm [11]
(Theorem 1). 2

From the proof we obtain upper bounds for the
complexity of microactuator alignment strategies:

Corollary 8 If P is a n-gon, the algorithm runs in
time O(n4) and produces a strategy S = (l1; : : : ; lk) of
length k = O(n2). If P is convex the running time is
O(n2) and k = O(n).

Finally let us reconsider two of the assumptions
made earlier in this section. Relaxing 2Phase corre-
sponds to allowing push-squeeze grasps for the parallel-
jaw gripper [11] in which one jaw pushes P before the
second jaw makes contact with P . The squeeze func-
tion must be replaced by a shift-squeeze function which
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takes combined translational and rotational motions
into account. However neither the (meta-)stable ori-
entations of P nor the complexity of the turn function
will change, so the complexity of the generated strat-
egy remains the same. Similar constructions seem pos-
sible to �nd reductions to conveyer belts [18] or tilting
trays [8].

If we want to relax assumptionDensity we need to
model the mechanics of individual actuators and un-
derstand their interaction. Relaxing Density is nec-
essary to manipulate parts that are small relative to
the actuators, which is of great interest in the �eld of
MEMS. This is discussed in the following section.

4 Microscopic model for contacts

In this section we develop a model for the mechanics
of microactuators. We make use of limit surfaces [12]
that describe anisotropic frictional contact. We ex-
tend the model to active contacts and describe fast
algorithms to compute the combined e�ect of many
actuators.

Limit surfaces. Assume we have a part P that
moves on top of the actuator array. The limit surface
L in load space (forces Fx and Fy, moment M) fully
describes the relationship between velocity v, e�ective
applied load Feff, and frictional load Fr of the moving
part. It is based on the Maximum Work Inequality
which is an engineering assumption commonly used
when modeling friction or plasticity [12]. The Maxi-
mum Work Inequality generalizes Coulomb's friction
law to anisotropic rate-independent friction. The fol-
lowing properties of limit surfaces are useful [12]:

1. L is a closed convex surface in load space.

2. L contains all possible frictional loads Fr on P .

3. If v 6= 0, Fr is on L such that �v is normal to L

at that point.

4. Fr is the vector inside or on L such that the length
of Fr � Feff is minimal.

5. In the special case when the momentM = 0, L is
a limit curve in (Fx-Fy) load space.

See Figure 6 for examples. It follows that the inside
of L contains all loads Feff that can be applied to P

without setting it in motion, and if Feff 6= 0 and v 6= 0,
Fr is determined uniquely. But note that for given v,
Fr is not unique if L has a 
at face with normal �v.
Similarly for given Fr, v is not unique if L has a vertex

Fr
Fr

{v

{v

(a) (b)

Fy

Fx

Fy

Fx

Figure 6: Limit curves: (a) �v is always normal to L at Fr.
(b) Fr is nonunique for speci�c given v.

at Fr. (This indeterminacy can be resolved by taking
the inertia of P into account [12].)

Consider as an example Figure 7a. The anisotropic
behavior of a wheel can be modeled with a long narrow
limit curve which gives low (bearing) friction in the
rolling direction and high sideways friction.

(a) (b)

rolling
direction

Fy

Fx

Fy

Fx

Fafs

fb

Figure 7: Limit curve of (a) passive wheel; (b) driven wheel.

Active contacts. We now extend the limit surface
model to \active" contacts that apply loads to P .

De�nition 9 The active limit surface L in load space
is the set of loads that can be applied to P without
resulting in motion of P .

This de�nition includes limit surfaces for passive con-
tacts, but it allows for example to model a wheel
driven by some torque �a. Figure 7b shows that if
no additional load is applied the wheel will move in y

direction, accelerated by Fa minus some bearing fric-
tion (Fa is the force accelerating the wheel with radius
r such that �a = r � Fa). In general we get motion if
the origin of load space O lies outside of L.

For the wheel accelerated with force Fa the limit
curve simply shifts in load space by Fa. For our actu-
ators we expect the shape of active and passive limit
surface to be di�erent because of interactions between
friction and oscillation. However, because the limit
surface will represent the time average over frictional
contacts, we are con�dent that the theory of limit sur-
faces is a valid model.
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Combining limit surfaces.

Lemma 10 Given a rigid object P with two con-
tact points and their respective limit surfaces L1 and
L2, the limit surface L for P can be obtained by the
Minkovski sum (convolution) L1 �L2 of the two indi-
vidual limit surfaces.

If L1 and L2 have complexity n, L can be computed
in O(n + s) time, where s is the size of L, and s =
O(n2) worst case.

Proof: Goyal and Ruina [12] show that limit surfaces
for multiple contacts can be combined by convolution,
which yields a single limit surface for the entire part.
An optimal convolution algorithm with time bound
O(n + s) is described in Guibas and Seidel [13]. It
uses a transform similar to the Fast Fourier Transform,
which reduces convolution to pointwise addition. 2
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Figure 8: Bar with two point contacts at (1; 0) and (�1; 0),
and their corresponding limit surfaces w.r.t. the center of mass
(0; 0).
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Figure 9: Combined limit surface for the object in Figure 8.

Figure 8 shows a rigid bar with two point contacts
and Coulomb friction, and their corresponding limit
surfaces. The individual surfaces were 
at because
they can generate no moment w.r.t. the contact point,
but tilted because they can generate moments w.r.t.

the center of mass. The tilt angle � can be determined

by tan � = jM j
jF j = jr�F j

jF j = jrj, so for jrj = 1 we get

� = 45�. Figure 9 shows the combined limit surface.

Motion prediction. Let us �rst consider the
\upside-down" case where the actuator array \walks"
on a homogeneous 
at surface. The contacts and thus
the limit surface L are �xed to the array frame. If O is
inside L there will be no motion. Otherwise the gen-
erated force F is the point on L closest to O. At that
point the surface normal is parallel to F , so velocity
and accelerating force are parallel. The walker will
move on a straight line or a circle. This is not unex-
pected for a �xed actuator strategy on a homogeneous
surface.

Now consider the case where the slider is on top
of the actuator array. First we notice that the con-
�guration space of the slider (R2 � S1) will be parti-
tioned into an arrangement of three-dimensional cells.
In each cell a di�erent subset of actuators is in contact
with the slider.

Within each cell the contact points are �xed. Let
L0 be the limit surface for these contacts relative to
O. If we want to determine the load on the slider in
con�guration s = (x; y; �) we have to transform the

load by Ts =
�

1 0 0

0 1 0

�y x 1

�
, because of the induced

moment (x; y) � (Fx; Fy) around the reference point
(0; 0). So as the slider moves within the cell the limit
surface Ls stretches along the moment axis. However
the combinatorical face topology of the limit surface
and its cross-sectionwith the Fx-Fy force plane remains
constant.

For a 
at surface patch of L0 given by nTx = d,
d � 0 we get an explicit formula for Fa:

Transform: nTTs
�1x = d

Closest point to O: Fa =
d

jnsj2
ns

with ns = (nTTs
�1)T = Ts

�Tn

More generally, if the surface patch of L0 can be rep-
resented as a linear transform of the unit sphere, then
determining Fa reduces to solving a Model Trust Re-
gion problemwhich has been studied in nonlinear opti-
mization [23]. For some special cases like 
at surfaces
or straight lines the solution to the Model Trust Re-
gion problem yields simple formulas for Fa. Ellipsoidal
surfaces require solving quartic equations. Hence for a
large class of surfaces we can compute exact solutions.

We can now give a simple yet e�cient motion pre-
diction algorithm: Numerically integrate the velocities
computed as described above, and update the limit
surface L when a di�erent cell in the arrangement is
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entered. Each integration step can be done in con-
stant time. Updating L is linear in the complexity of
L (Lemma 10).

Motion planning. Manipulation strategies with
actuator arrays require individual control for all mo-
tion pixels. The shape of the limit surface is deter-
mined by the activation pattern of the actuator ar-
ray. The limit surface gives us a geometric representa-
tion of the forces and velocities generated with a spe-
ci�c actuator activation pattern. Though theoretically
possible, there are practical limitations to plan micro-
scopic manipulation strategies due to the combinato-
rial complexity and mechanical uncertainty. However,
the microscopic model will prove important to ana-
lyze and verify strategies before fabrication (which is
costly). It forms the link between \actuator macros"
(Section 3) that predict the global behavior of ma-
nipulation strategies, and individual microfabricated
mechanisms (Section 5).

5 Fabrication of actuator array

Fabrication process. The actuators are etched out
of a single-crystal silicon wafer in a SCREAM (Single
Crystal Reactive Etching and Metallization) process
[24, 25]. The resonator grids are patterned in a pho-
tolithography step and released in a sequence of etch-
ing and oxidation steps. The metal electrodes are de-
posited during a self-aligning aluminum evaporation.
Single beams are close to 1�m wide and 3�m high,
with � 3�m clearance. A resonator grid is typically
50� 50�m2 in size. For cleaning and improvement of
levitation it is conceivable to combine the resonator
with air nozzles as described in Section 2 [19]. The
fabrication can be done in one to two weeks in the
National Nanofabrication Facility (NNF) at Cornell
University. For a more thorough discussion of design
and fabrication see our companion paper [3].

E�ciency. We have analyzed an actuator of size
50 � 50�m2 with clearance h = 3�m using the �-
nite element simulator Coulomb. Similar actuators
are shown in Figures 1 and 2. The vertical force gen-
erated is 2:8�10�7N when a voltage of 50V is ap-
plied. Assuming that the resonator uses a total area of
100�100�m2 we get 2:8�10�11 N

�m2 . This is almost two
orders of magnitude higher than the speci�c weight of
paper 80 g

m2
�= 8�10�13 N

�m2 . This shows that our de-
vices are strong enough to do practical manipulation
tasks. Downscaling of the devices will further improve
this ratio, because the force decreases linearly with the

scaling, while the actuator density grows quadratically
with decreasing scale.

Results. A wide variety of resonators has been built
and tested in the NNF at Cornell University [17],
yielding information on the optimal design of actu-
ators and material properties such as sti�ness, struc-
tural sturdiness, and internal stresses. A prototype of
actuator arrays is currently being built.

6 Conclusions and future work

We have outlined a theory of manipulation and con-
trol for microfabricated actuator arrays that applies
concepts from robotics to the �eld of MEMS. We be-
lieve that joint e�orts in these �elds are important for
future MEMS of high complexity, and will prove fruit-
ful for both areas.

The next steps of laboratory work will include the
fabrication of a prototype array with a large number
of microactuators, the experimental characterization
of the limit surface of a microactuator, and experi-
ments on micromanipulation to evaluate and validate
our model.

The ideas presented here extend work in our group
on parallel, distributed robotics [6] to massively par-
allel systems with similar, relatively simple individual
components (DMMS [21, 16]). We are exploring how
the theory of information invariants [6] could be used
to automate the reductions in this paper.

Future work will include exploration of the lim-
itations of macroscopic manipulation strategies due
to the quantized forces generated by motion pixels,
and the determination of quantitative error estimates.
Other goals are the development and analysis of ad-
ditional macroscopic strategies (\actuator macros"),
in the style of Brost's \energy functions" [5] or Erd-
mann's \progress functions" [7], and a more detailed
design and implementation of motion prediction al-
gorithms. The low-temperature SCREAM process is
compatible with conventional VLSI fabrication, which
allows mechanisms and logic on one chip. This com-
bination would make complex control strategies possi-
ble. Finally we also hope to address the case where the
actuator array \walks" on a 
at surface. This could
conceivably lead to walking or self-assembling chips.
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