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ABSTRACT

Automatic layout algorithms are commonly used
when displaying graphs on the screen because they
provide a “nice” drawing of the graph without user
intervention. There are, however, a couple of disad-
vantages to automatic layout. Without user inter-
vention, an automatic layout algorithm is only capa-
ble of producing an aesthetically pleasing drawing of
the graph. User- or application-specified layout con-
straints (often concerning the semantics of a graph)
are difficult or impossible to specify. A second prob-
lem is that automatic layout algorithms seldom make
use of information in the current layout when calcu-
lating the new layout. This can also be frustrating to
the user because whenever a new layout is done, the
user’s orientation in the graph is lost.

This paper suggests using layout constraints to solve
both of these problems. We show how user-specified
layout constraints may be easily added to many au-
tomatic graph layout algorithms. Additionally, the
congstraints specified by the current layout are used
when calculating the new layout to achieve a more
stable layout. This approach allows a continuum be-
tween manual and automatic layout by allowing the
user to specify how stable the graph’s layout should
be.

KEYWORDS: Graphical user interfaces, graph lay-
out algorithms, layout constraints.
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1 INTRODUCTION

Graphs, consisting of a set of nodes and a set of edges,
are one of the most fundamental ways of representing
relationships among objects. Programs that display
a set of relationships as a graph [12, 11, 14, 2, 4] have
become more prevalent in recent years because of two
major factors. Firstly, a person is usually able to com-
prehend information better when it is presented pic-
torially (for example a graph) rather than in textual
form. This is partly due to the fact that structural
properties such as planarity, symmetry, and hierar-
chy are readily apparent from a well drawn graph
and recognition of these properties seems to help the
user “understand” the graph. Secondly, the prolifer-
ation of high quality graphics workstations has made
the use of graphs as a significant part of the graphical
user interface affordable and available to many users.

1.1 Definitions

This subsection will provide some definitions that will
be used throughout the paper. The position of each
node and edge in the graph is called the layout of
the graph. Graph layout can either be done man-
uwally, meaning that each node and edge is placed
by the user, or automatically, meaning that an algo-
rithm computes the position of the nodes and edges to
produce a “nice” layout. What constitutes a “nice”
layout depends on the type of graph, the applica-
tion, as well as on the user’s taste. Typically, an
automatic graph layout algorithm tries to meet one
or more (possibly conflicting) aesthetic goals. Mini-
mizing the number of edge crossings, maximizing the
symmetries, or minimizing the total area of the graph
are some of the many possible aesthetic goals.

Automatic layout has the advantage of relieving the
user of the tedious chore of layout, but usually does
not produce quite as good results as a manual layout.
One of the main reasons is that most automatic layout
algorithms are not designed to take a user’s layout
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constraints into account. For example, the user might
request that one node be to the left of another or that
a particular group of nodes be placed near each other.
Since these constraints are specified explicitly, they
are of higher priority than the aesthetic goals of the
layout algorithm.

A graph whose layout does not change much when it
is newly layed out is called stable. Structural stability
is concerned with meeting the user-specified layout
constraints. If many user-specified layout constraints
are specified and satisfied then the graph will not have
much freedom of movement. Dynamic stability is con-
cerned with minimizing the difference between succes-
sive layouts of the graph [15]. Messinger [6] suggests
that the difference be measured as “how many and
how far vertices and edges move from their previous
locations”. Ideally, making a minor change in the
graph’s structure should cause only a minor change
in the layout. Most automatic layout algorithms do a
complete new layout without taking the current lay-
out into account at all. This implies that the new
graph layout may be dramatically different from the
previous one. This can be very frustrating to the user
because they lose their orientation in the graph.

1.2 Overview Of Our Solution

This paper will describe a general mechanism for ex-
tending automatic layout algorithms to be able to
handle layout constraints. One particular layout al-
gorithm is used throughout as an example, but the
same approach would work on many other layout al-
gorithms as well.

Our solution [3] uses layout constraints to achieve
both structural and dynamic stability. As can be
seen from the overview of our solution (Figure 1),
our approach is layered. Constraints for a single di-
mension are specified at the lowest level. The next
higher level manages those constraints. On top of
this comes the 3-D constraint manager which com-
bines the constraints from the three dimensions and
provides a common interface to the graph layout al-
gorithm used by the application.

The following section will describe how the con-
straints are represented and how the possibly conflict-
ing constraints are evaluated. Section Three describes
how a layout algorithm can be extended with a con-
straint manager to achieve structural and dynamic
stability. Section Four briefly describes how we have
integrated this solution into the EDGE graph edi-
tor [8, 16]. Section Five gives several examples that
demonstrate how using layout constraints contribute
to layout stability. Finally, Section Six summarizes
our work and suggests some future directions.

2 REPRESENTATION AND EVALUATION OF

CONSTRAINTS

In this section we describe the constraints used in
our system and the way they are managed. Fol-
lowing the architecture, we start with simple one-
dimensional constraints and end up with consistent
three-dimensional constraint networks.

2.1 Low Level Constraints

First let us describe the kind of constraints that a user
would typically like to have available. To constrain
the position of a node in a graph, there are three
different types of constraints:

Absolute Positioning: Constrain the node’s position
in regards to a fixed coordinate system. For example,
assuming that nodes are placed in horizontal levels,
constrain placement of a node to a particular level
(“level 47) or to a range of positions within a partic-
ular level (“level 2, position 3-5”).

Relative Positioning: Constrain the node’s position
in relation to other nodes. For example, “node A is
left of node B” or “node C is the top neighbor of node
D”,

Clusters:  Gather a group of nodes together to a
“cluster” which can then be further constrained. For
example, “cluster £ must have a maximum width of
3 units” or “all nodes in cluster F' are to the right of
node G”.

To describe these constraints, we introduce a coordi-
nate system. The x-axis runs from left of right, the
y-axis from top to bottom. The origin of the coordi-
nate system is assumed to be in the upper left corner.
For three-dimensional layout there may also be a z-
axis running from the front to the back.

The constraints can be formulated using the coor-
dinates of each node. For example “node A is verti-
cally above node B” is described by the two equations
A.z = B.z and A.y < B.y. This example reveals two
principles our system is based on:

1. Different dimensions are treated independently
from each other.

2. Constraints are restricted to linear equations.

We have found that these two principles pose no se-
vere restriction on the layout constraints we can de-
fine. Note that even constraints like “node A is above
and to the left of node B” can be described by the two
independent equations A.z < B.z and A.y < B.y.
The main restriction due to linear equations is the
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Figure 1: Overview of System Architecture

way distances are measured (Manhattan metric as op-
posed to Euclid metric ') and the lack of transcendent
or trigonometric functions.

On the other hand, principle 1 makes implementa-
tion much simpler (two- or three-dimensional con-
straints are no more difficult than one-dimensional
constraints). Principle 2 is crucial for an eflicient eval-
uation of the constraints. The evaluation of sets of
linear equations is an common problem, for instance
in temporal data bases [1, 10].

In conclusion of this section we define a low level (one-
dimensional) constraint as a linear equation of two
variables. We call any set of these constraints a con-
straint network.

2.2 Constraint Manager

For each dimension, there is a constraint manager
which has two main tasks:

e Maintain a list of all constraints and provide
functions to add, delete, and query the status
of constraints in the constraint network.

¢ Evaluate the constraint network and keep it con-
sistent. A set of constraints is defined to be con-
sistent if none of them are contradictory.

The purpose of the evaluation of the constraint net-
work (usually called “constraint propagation” [7, 5])
is to compute the global effects of local constraints.
For example, from a chain of order relations like
Ax < Bz, Bax < Cux, C.x < D.r the relation
A.x < D.z should be derived. This evaluation can
be done in linear time in the number of constraints
by an algorithm based on topological sorting. Af-
ter this preprocessing step, queries can be answered

Buclid: d(z,y) = \/m

Manhattan: d(z,9) = Y |2 — v

in constant time. For example, the system would
answer a query “A.xz < D.x 77 with “TRUE” or
“B.x = D.z 77 with “FALSE”, each in O(1) time.
This efficiency is important for layout algorithms
which may make extensive computations while re-
ordering nodes in the graph layout.

In the case where the constraints are not consistent
(i.e. there are contradictory constraints), the con-
straint manager computes a subset of consistent con-
straints by deactivating some of the constraints. The
selection of deactivated constraints can be influenced
by assigning priorities to them. The constraint man-
ager then tries to keep high priority constraints ac-
tive, while some low priority constraints are deac-
tivated. Among inconsistent constraints with equal
priorities, the selection is arbitrary. Deactivated con-
straints are ignored during the evaluation of the con-
straint network.

In our implementation the detection of which con-
straints are deactivated is done by a binary search
through inconsistent sets of constraints until all con-
straints causing an inconsistency are deactivated.
This solution, however, increases the time complexity
from O(n) to O(n*logn) (where n is the number of
constraints) in the worst case and this leaves some
room for improvement.

2.3 Three-dimensional Constraints

So far the dimensions have been treated indepen-
dently. However, in order to define a convenient inter-
face to the user, to the layout algorithms and to the
applications programs an interfacing module is used.
This module provides functions to translate three-
dimensional constraints into one-dimensional ones us-
ing the constraint managers for each dimension. Each
of these functions can be invoked in three ways:

DO: Insert a new constraint.
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UNDO: Delete an old constraint.

QUERY: Test whether a constraint is met.

3 INTEGRATION WITH AUTOMATIC LAYOUT

ALGORITHMS

In this section we want to show how layout con-
straints may be integrated into an automatic layout
algorithm. As we stated before, the constraints are
designed to meet user requests rather than the aes-
thetic goals of a particular layout algorithm. There-
fore, our system should be adaptable to several differ-
ent ones. In the following we describe the integration
into Sugiyama’s layout algorithm [13]. This layout
algorithm or some variation thereof is used in sev-
eral systems that display directed graphs [12, 6, 4].
First we show how structural constraints are taken
into account, then we use this mechanism to achieve
dynamic stability.

3.1 Structural Stability

The following is a description of Sugiyama’s layout
algorithm, which is divided into four phases:

Topological Sorting:  Assign nodes to levels accord-
ing to their depth (longest path of predecessors) in
the graph. Cycles in the graph are handled by tem-
porarily reversing the direction of an edge.

Subdivision Of Long-span Edges: Split “long” edges
that span more than one level into a series of shorter
ones by inserting “dummy” nodes at all in-between
levels.

Barycentric Ordering: Determine the relative posi-
tions of nodes within each level where the goal is to re-
duce the crossings with the adjacent level. Each node
is positioned based on its barycenter which, roughly
speaking, is the average position of its predecessors
(or successors). Several upward and downward passes
are made through the graph until no improvement is
detected or a threshold value has been reached.

Finetuning: Determines the actual x, y coordinates
of each node. The finetuning shifts nodes within their
level to center nodes in respect to their predeces-
sors/successors. The relative position of the nodes
is not allowed to change, so this phase will not con-
tribute to any more (or less) edge crossings.

For each of these phases some changes or extensions
to the original algorithm were necessary. Before do-
ing so we have to define the correspondence between
the coordinate system used by the constraints and the
layout algorithm. In x-direction coordinate units cor-
respond to subsequent positions. In y-direction the

levels are assigned subsequent numbers. Together a
constraint “A is the left neighbor of B” can be de-
fined by the two equations “A.x + 1 = B.z” and
“Ay = B.y”.

Integration of constraints into the first phase is easy
because constraint evaluation includes topological
sorting. For each edge, the algorithm introduces
one constraint stating that the source node should
be placed above the target node of the edge. These
automatically generated constraints receive a prior-
ity that is lower than user-specified ones. Evaluation
of the constraints then yields a proper level assign-
ment. Due to user-specified constraints, additional
back edges (source is below target) and also “flat”
edges (running between nodes on the same level) may
arise. Back edges are temporarily reversed like edges
forming a cycle. But as Sugiyama’s algorithm is not
designed to handle “flat” edges (it would draw an
edge straight through all intermediate nodes), an ad-
ditional constraint is generated which requires that
these nodes are immediate neighbors.

The second phase is also easy to adapt. If there are
two nodes constrained to lie in the same vertical line
it is reasonable to require that an edge between them
also runs straight on this line rather than being al-
lowed to bend. Therefore additional constraints are
generated to force all intermediate nodes to have the
same x-coordinate.

The main work of the Sugiyama layout is done during
the third phase when a total ordering of the nodes
in each level is determined. After computing the
barycentric ordering of the nodes (resulting for ex-
ample in A — B — (), corresponding constraints
(A, < B.,By < C,) are given to the constraint
manager. They receive a low priority so that in de-
termining the final ordering, the constraint manager
will give preference to user- or application-specified
constraints. It is important that the constraint man-
ager be as efficient as possible (in our case O(1) for
queries) since there is a large number of constraints
and because the levels are rearranged frequently.

Minimization of edge crossings only makes sense in
two-dimensional space. If we use a third dimension
the resulting graph layout remains a two-dimensional
projection. This means that we have to minimize
edge crossings in the projection. Therefore we do not
introduce a third dimension until the final finetuning
phase. For nodes constrained to lie in front of each
other we rather generate internal constraints which
request that these nodes are immediate neighbors on
the same level. During the last phase we can adjust
them into the intended 21-D position 2.

22%-D means that the nodes will overlap slightly, like a
spread deck of cards.
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In the final phase (finetuning) the relative ordering of
the nodes is preserved, but the x-coordinates of the
nodes are determined in a level-by-level pass through
the graph. When determining the position of nodes
in the current level, the position of nodes in the previ-
ous levels must be taken into account. Additionally,
if three-dimensional layout is used, nodes which are
constrained to lie in front of each other are positioned
slightly overlapping to achieve the 2%—D effect.

3.2 Dynamic Stability

The previous section described how Sugiyama’s al-
gorithm could be adapted to handle structural sta-
bility. Now we will use the same constraint mech-
anism to achieve dynamic stability. Although it is
generally agreed that dynamic stability is a serious
problem with automatic layout algorithms, dynamic
stability is still a relatively unexplored research area.
Most approaches try some form of “incremental lay-
out” meaning that only a small portion of the graph
is newly laid out whereas the rest of the graph re-
mains constant. This is particularly important for
very large graphs where the extensive computations
of the layout algorithm may consume a considerable
time.

Our approach is to generate additional constraints
after each automatic layout. If the graph is edited
these constraints will be weakened in the vicinity of
changes. This causes the graph layout to be flexi-
ble in changed areas while it remains stable in the
remainder of the graph.

The wicinity of a change is a subgraph close to where
the change occurred. It includes the node(s) di-
rectly affected by the change plus nodes that are
some number of edge length away from the directly
affected nodes. The number of edge lengths is a user-
specified parameter that describes the degree in which
the layout should change. This may vary from ex-
tremely stable (vicinity contains only the directly af-
fected nodes) to unconstrained (vicinity contains all
nodes of the graph, therefore same results as standard
Sugiyama).

The constraints generated to achieve dynamic sta-
bility constrain each node to its level in the current
layout and connect nodes within a level into chains
representing their order. After a change has occurred,
flexible nodes are freed from these constraints. Dur-
ing the new layout they can move freely, while the
other nodes keep the relative positions they had in
the old layout. If all nodes on a level remain stable,
their order need not be recomputed, thus speeding up
the layout.

From our experience, the large number of generated

constraints degrades the performance such that their
is no significant gain in performance as compared to
the original layout algorithm. The performance, how-
ever, does not suffer too badly because the number
of generated constraints is linear in the number of
nodes and no inconsistencies are introduced. Thus
using this method results in a stable graph layout at
roughly the same speed as a completely new layout,
producing a trade-off between Sugiyama’s aesthetics
and dynamic stability.

4 INTEGRATION WITH GRAPH EDITOR

The EDGE graph editor [8, 16], which offers a choice
of several layout algorithms for displaying and edit-
ing graphs, was extended to include the modified
Sugiyama algorithm and the associated constraint
manager. The following three subsections briefly
describe the modifications made to the user, in-
put/output, and application interfaces.

4.1 User Interface

The user specifies editing operations via a set of pop-
up menus. We extended the set of menus so that the
user can list or alter the current list of constraints. To
alter a constraint, the user selects the list of nodes by
clicking them with the mouse, fills out a form-like
menu specifying the type of constraint, the priority
etc., and then selects “DO”, “UNDQO” or “QUERY”.
The appropriate command is then sent to the 3-D
constraint manager which responds accordingly.

4.2 Input/Output Interface

The default input/output format is a high-level tex-
tual description of the format and appearance of the
nodes and edges in the graph called GRL (Graph
Representation Language) [9]. The portion of the
GRL describing the constraints and their attributes
is delimited by keywords and each constraint is a set
of attribute:value pairs. The following is an excerpt of
a GRL description specifying that node A should be
to the left of node B (with a priority value of 10) and
that node B should be in the same vertical column as
node C (with default priority 0).
constraint:
constraint: left
nodes: ("A","B") priority: 10,
constraint: equal_column
nodes: ("B","C")
endconstraint:

4.3 Application Interface

EDGE can be customized to many graph-based appli-
cations (for example PERT charts for project man-
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Figure 2: Interdependencies in Physics

agement, call graph animation, or directory brows-
ing). The applications may invoke any of the func-
tions offered by the 3-D constraint manager to spec-
ify application-specific constraints. For example, our
PERT chart graph editor, which calculates the criti-
cal path of a project and highlights those nodes, uses
the “equal column” constraint to align all of the nodes
in the critical path.

5 EXAMPLES

This section is intended to demonstrate the capabili-
ties of the system described above. To begin with,
we show an example for structural stability. Fig-
ure 2 depicts an overview of the interdependencies
between areas of physics. Sugiyama’s algorithm is ap-
propriate for the almost-hierarchical structure of the
graph. However, the positioning remains somewhat
arbitrary because the layout algorithm lacks knowl-
edge of the semantics of the graph. For example, the
user would prefer “statics” and “kinetics” as immedi-
ate neighbors, “mechanics”, “wave theory”, “optics”
and “atomic physics” on the same x position and “e-
statics” in front of “e-dynamics”. This is achieved by
introducing these constraints either interactively, in
the GRL file, or from the application. The result is
shown in Figure 3.

To demonstrate dynamic stability let us go back to

Figure 2 3. If we add an edge from “e-statics” to “nu-
clear physics”, then Sugiyama’s algorithm will yield
a graph layout like the one in Figure 4. We recognize
that small changes in the graph structure may cause
dramatic changes in the layout. Figure 5 shows the
same graph, but this time making use of dynamic sta-
bility. The shape of the graph remains quite similar
to Figure 2, making it easier for the user to keep his
orientation. Our approach tries to find a compromise
between dynamic stability and other layout aesthetics
such as the number of edge crossings. Nodes in the
vicinity of a change may alter their position. In this
example we used vicinity size 1, i.e. nodes involved
in a change (“e-statics”, “nuclear physics”) and their

»

immediate neighbors ( “electricity”, “atomic physics”,
MW

“quantum mechanics”, “el. particle physics”) were al-
lowed to alter their position.

The time to compute the graph layouts for Figures 2
— b lay between 3 and 4 seconds, measured as real
time on a Sun-3/110 with 8 MByte main memory.
This suggests that the additional time involved for
structural and dynamic layout is reasonable.

3We use Figure 2 rather than Figure 3 as our starting-point
because at this point we are concerned only about the dy-
namic (in)stability in Sugiyama’s algorithm. Structural stabil-
ity would help to overcome this problem, as well.
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6 RESULTS AND CONCLUSIONS

In this article we proposed a way to achieve stability
in automatic graph layout. To this end we defined
two types of stability, structural and dynamic. Struc-
tural stability deals with constraints on the graph lay-
out imposed by the user or by applications programs.
Dynamic stability is the effort to keep subsequent lay-
outs of graphs similar after the graph’s structure was
changed.

The system described above achieves both types of
stability by the same mechanism: layout constraints.
The problem was divided into two parts: The repre-
sentation of constraints, and their integration into an
automatic layout algorithm. This division makes it
possible to use the constraint representation in var-
ious layout algorithms. Representation provides the
management of any set of linear equations between
two scalar values, in particular components of the
node coordinates. This seems to be a reasonable com-
promise between expressiveness of the constraint lan-
guage and implementation and efficiency issues. Inte-
gration has to be done individually for different layout
algorithms, but the necessary changes are straightfor-
ward.

This approach allows a continuum between manual
and automatic layout because the user can use either

structural layout constraints or dynamic stability to
affect the stability of the layout. This approach al-
lows application-specific information to be incorpo-
rated while retaining the advantages of automatic
layout. The user is able to choose a desired degree
of dynamic stability by specifying a parameter repre-
senting the size of the instable region.

Although the system is definitely useful as it is, there
is, of course, still room for improvement and exten-
sions. In particular, the efficiency of the constraint
manager when encountering inconsistent constraints
could be improved. Application to non-cartesian co-
ordinate systems is also worth investigation. Because
constraints are restricted to linear equations, for ex-
ample in polar coordinates it is not possible to define
constraints like “A left of B” without trigonometric
functions. On the other hand, this might not be a se-
vere disadvantage, as the circular symmetry of polar
coordinates rather implies constraints like “A and B
lie in the same sector” or “A is near to the center”
which can be easily expressed with linear constraints
on the polar coordinates. Other improvements would
be a pattern matching mechanism in the “undo” com-
mand (for example “undo all constraints involving
nodes A and B”) or a more sophisticated edge rout-
ing in 21-D layout.
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