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Abstract

We are applying tools from computational topology and combinatorial geometry in our investigation of compu-
tational aspects of engineering design problems. We seek tractable algorithmic solutions by exploiting algebraic
formulations of the fundamental computational-topological problems arising in the kinematic and dynamic anal-
ysis of microelectromechanical (MEM) structures. In particular, we use concepts from computational topology
and geometry to determine the shape of microelectromechanical (MEM) structures, given specifications of their
parameterized geometry and their functionality (parametric design).

MEM structures are particularly suited for automated parametric design because of (i) their highly specialized and
automated production process, which allows only a very limited number of elementary structures, (ii) the tractable
geometry and functionality of the devices, and (iil) the possibly large number of devices produced simultaneously
in one manufacturing process. Kinematic interactions between mechanism components are reflected in their
configuration space. Each pair of components in contact is responsible for a (hyper-) surface region (algebraic
variety) in configuration space. We describe a class of mechanisms (micromechanical hinged structures) whose
kinematic interactions can be encoded by low-degree algebraic curves in configuration space. We then compute
the topology of the arrangement created by these curves. Two surface regions in the arrangement are adjacent
if and only if there exists a physically feasible mechanical transition between the corresponding contact states
of the mechanism. Adjacency relationships in the configuration space arrangement define a dual graph whose
nodes represent contact states of the mechanism, and whose edges represent mechanical state transitions. This
“configuration space graph” can be interpreted as a concise encoding of the relationship between configuration
space topology and kinematic behavior of the mechanism.

The problem of parametric design can be solved by determining design parameter values such that a required
mechanism behavior is achieved. The incorporation of design parameters into the mechanism geometry is re-
flected in configuration space by a particular family of surfaces parameterizations. The topology of the surface
arrangement will therefore depend on the specific parameter values. We describe an algorithm that determines
all possible arrangement topologies and their corresponding design parameter values for the class of microme-
chanical hinged structures. If the required mechanism behavior can be obtained by a certain configuration space
topology then the algorithm solves the parametric design problem. Now, general mechanical system behavior
is also constrained by dynamics, friction, and other constitutive differential inclusions. We intend to annotate
the permissible configuration space topologies for the mechanism with the dynamically feasible transitions by
lifting our analysis to the tangent bundle. Already, our kinematic analysis to design will significantly simplify the
solution of the other subproblems.

The microscopic size of MEM structures, the possibly large number of devices employed simultaneously, and
uncertainty in the manufacturing process suggest the use of randomizing assembly algorithms. We develop a
connection between randomization techniques and our approach for design automation.

1 Introduction The design process for an artifact can be viewed as

a series of transformations through different levels of
This paper describes our current work in engineering abstraction that characterize the artifact (Kannapan
geometric design. The goal of this subfield of industrial and Marshek 1991):

design is to find algorithmic, computational methods e requirements, specifying functionality and do-
that determine the geometry of an artifact such that main constraints;

it satisfies or optimizes given functional requirements e structure, describing the elementary components;
(“form from function”). e parametrization, giving a parameterized descrip-
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tion of the mechanism;

e geometry, fixing the exact dimensions of all com-

ponents;

o manufacture, specifying the production sequence.
Design automation aims at algorithmic solutions for
these transformations. Our work focuses on the tran-
sition from parameter space to geometry space (pam-
metric design) in the domain of microelectromechani-
cal (MEM) structures.

Our approach starts out with the configuration
space (C-space) of the mechanism (Lozano-Pérez 1983;

Brost 1989): If a mechanism has n degrees of freedom,
then each configuration can be identified with an n-
dimensional point. Each configuration in Euclidean
space corresponds to a point in C-space, and vice-
versa. This technique allows an elegant and convenient
identification of forbidden and allowed configurations
(C-space obstacles and free space). Forbidden config-
urations are e.g. configurations in which parts would
overlap. Points on the surface of C-space obstacles
correspond to configurations in which movable parts
of the mechanism are in contact.

These surfaces can be divided into regions with
uniform kinematic properties, similar to (Brooks and
Lozano-Pérez 1982; Donald 1989; Joskowicz 1989;
Joskowicz 1990; Brost 1991). E.g., all configurations
where a vertex of one part of the mechanism slides
along a surface of another part could form such a
region. The shape of every region is governed by a
unique set of conditions derived from the geometry
of the mechanism. (Donald and Pai 1992) describe
classes of mechanisms that generate low-degree alge-
braic equations for these conditions, and give an effi-
cient algorithm to compute them.

We assume that the mechanism usually operates in
configurations corresponding to C-space surfaces, and
not in free space. This is a reasonable assumption, as
engineered devices are used mostly in such configura-
tions. This property may be enforced by gravity, or
by superimposing other dynamic constraints, such as
springs that push parts together.

Regions in C-space can be seen as different oper-
ation modes of the mechanism, as each of them is
governed by different sets of geometric conditions. To-
gether with their adjacency relationships, these regions
define a graph that gives a simplified description of
kinematic behavior, abstracting away from geometric
details. Let us call this graph a C-space graph.

When doing parametric design, we consider a pa-
rameterized mechanism geometry. Each design param-
eter can be seen as an additional degree of freedom of
the mechanism. If there are m design parameters, we
get an (n + m)-dimensional generalized configuration
space (Pai 1988; Donald 1989). The C-space graph of a
parameterized mechanism may have nodes and edges
that exist only for certain design parameter values.
Thus for different parameter values we get different
behaviors of the mechanism.

If the required behavior of the mechanism can be
specified as (paths of) nodes in a C-space graph, then
parametric design can be done by “unifying” these
nodes with a subgraph of the mechanism’s parameter-

ized C-space graph. The parameter values can then
be “collected” along this path.

In the following sections we briefly introduce MEM
structures and snap fasteners as a domain for auto-
mated design. We develop a model for these struc-
tures that is appropriate for the approach mentioned
above. We then give a sample hinged MEM structure
to demonstrate our ideas.

In the domain of MEM structures the issue of easy
assembly is of major importance. The small size and
the possibly large number of mechanisms make con-
ventional assembly techniques too expensive and too
time-consuming. Ideally one would like to have struc-
tures that are “self-assembling.” We investigate the
application of randomized strategies (Erdmann 1989;

Erdmann 1992) for assembly of MEM structures.
2 Sample Domains for Design
Automation

2.1 Microelectromechanical
Structures

(MEM)

A wide variety of micromechanical structures (de-
vices typically in the micrometer range) have been
built recently by using processing techniques known
from integrated circuit industry, including micromo-
tors, gears, tweezers, diverse sensors, among others
(see e.g. (Journal of MEMS 1992)).

As a consequence of the production process MEM
structures are essentially two-dimensional. Microfab-
ricated hinged structures (Pister et al. 1992) allow the
construction of three-dimensional devices. The basic
idea is to make a plate that can rotate about a single
axis defined by a pair of hinges (Figure 1). When the
plate rotates out of the wafer, it has to push a spring
loaded lock out of the way (Figure 2). The lock is de-
signed such that when the plate reaches a certain angle
(typically 7/2), the lock snaps down into a slot in the
plate, resulting in a rigid three-dimensional structure.
Two different spring loaded lock designs exist: Tor-
sional spring locks and cantilevered beam spring locks.
Torsional spring locks (Figure 1) have a rigid lock at-
tached to a long flexible beam that allows the lock
to deviate up to a certain angle from the wafer plate.
Cantilevered beam locks have a long flexible lock that
bends on its entire length if the plate is rotated.

The structures are rotated into place either by a
probe station under the microscope (which is very la-
bor intensive) or by hydraulic forces, i.e. shaking the
wafer under water, such that the random motion of the
water moves the parts into their final position (Burgett

et al. 1992).
The problem then is how to design such microme-
chanical devices. This involves
o satisfying functional requirements for the assem-
bled parts,
o satisfying geometric and engineering constraints
for the manufacturing process,
e and dealing with physical phenomenalike friction,
material properties, and liquid flow.
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Figure 1: Micromechanical Hinged Plate (Top
and Side View)

2.2 Snap Fasteners
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Figure 3: Snap Fastener

Screws and rivets are conventional fastening tech-
niques for assembly processes. In recent years as-
semblies have been simplified significantly by the use
of flexible parts (mainly made of plastic) that sim-
ply snap together: During assembly an external force
deforms the parts until their complementary surfaces
mate up (Figure 3). The force required to mate two
parts is usually much less than the force required to
take them apart. Snap fasteners are already widely
used, and they are particularly interesting for MEM
structures because of the simple assembly process
where one part remains fixed, and the other moves
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Figure 2: Micromechanical Hinged Mechanism
Rotating out of the Wafer Plane (Top and Side
View)

on a straight line towards the first part.
(Pai and Donald 1989; Donald and Pai 1989; Donald
and Pai 1992) show that under widely used assump-

tions (see e.g. (Whitney 1982)), the assembly process
with snap fasteners can be simulated and analyzed
with purely algebraic methods, avoiding numerical in-
tegration of velocities over time. We follow this ap-
proach of algebraic, symbolic simulation.

3 Modeling

A model for the mechanism to design should have the
following key properties:

e Allow fast and robust analysis and simulation of
the mechanism.

e Keep track of correspondence between geometric
properties and functional properties.

o Abstract away from geometric and physical de-
tails by finding classes of “qualitatively equiva-
lent” design.

¢ Make it easy to compare different designs.

A model for snap fasteners has been developed in (Pai
and Donald 1989; Donald and Pai 1989; Donald and
Pai 1992). It differs from conventional models in that
analysis and simulation of snap fastener mechanisms
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(i) are purely algebraic, and hence exact, (ii) are com-
binatorially precise, in that the computational com-
plexity is exactly known, and (iii) require no (numeri-
cal) integration of motion. This model is the basis for
a similar model for hinged structures which will tackle
the above items. We will describe it in the following
subsections.

3.1 Modeling Assumptions

To model a hinged structure consisting of one plate-
lock pair we make the following assumptions:

3.1.1 Assumptions on Geometry

e The parts are a finite union of rectangular polyhe-
dra. This means that all cross sections are rect-
angular polygons. Furthermore a finite (usually
small) number of cross sections completely de-
scribes the parts.

e The hinged plate has one rotational degree of free-
dom.

e The spring loaded lock has one rotational degree
of freedom. This is a good model for torsional
spring locks, and a first approximation for can-
tilevered beam springs, as they bend over their
entire length.

e The thickness of the parts (perpendicular to the
wafer plane) is small compared to their total
length.

It follows that the configuration space of a hinged
structure with one plate-lock pair is C = (S*)2%. In
fact, since the parts cannot rotate into the wafer, the
configuration space reduces to C' = [0, 7]?.

3.1.2 Assumptions on Physics

We make the following assumptions on the physics
of body motion and interaction (for the first three

points see also (Whitney 1982; Pai 1988; Donald 1990;

Donald and Pai 1992)).

¢ Quasi-static motion:
forces.

¢ Instantaneous snap: if the lock snaps off an edge
of the plate, the time to reach contact again is
neglectable.

e Coulomb friction.

e The hydraulic force (when the plates are moved
in liquid) is proportional to the dot product of
surface and liquid velocity.

e The spring force in a spring loaded lock is pro-
portional to its vertical deviation from the wafer
plane.

no inertial and Coriolis

3.2 Geometric Model

Above we stated that the geometry of a hinged
mechanism is completely specified by a list of cross sec-
tions. Therefore it is sufficient if we develop a model
for the cross section of one plate-lock pair (Figure 4).

The cross sections of lock £ and plate P are mod-
eled by sequences of points L;, 2 = 0...n,., and P;,

Figure 4: Cross Section Model

J=0...n,. Let us look at the plate P. Py lies closest
to the center of rotation, and P, is the point furthest

from the center of rotation. We denote the distance
(center of rotation — P;) by p;. The points P; define
an alternating sequence of filled and empty rectangles
of the cross section of the plate, e.g. the rectangle be-
tween Py and P, is filled. Note that n, is always odd,
and that pg < p1 < ... <L Dn,, - Finally, the angle

between wafer plane and plate P is called ¢, .

For the lock £ we define analogous point sets L,
distances l;, where ¢ = 0...n,, and angle ¢.. At last,
we define A as the distance between the centers of
rotation of P and L.

Note that we reduce a three-dimensional mechanism
to “1%D” extrusion structures. By looking at the cross
section, we eliminate the direction perpendicular to
the cross section. Finally, the assumption that the
thickness of lock and plate is small compared to their
lengths yields a one-dimensional model, such that each
part is represented as an ordered list of line segments.

3.3 Dynamic Model

In this section we come up with a dynamic model for
a hinged structure with one plate-lock pair. It will be
used to deal with spring forces and forces due to liquid
flow. N N

Let us define P and L as unit vectors in the direction
of plate P and lock L, respectively. Define P and L, as

vectors normal to P and L (rotated counterclockwise
by 7/2).

The plate P has one rotational degree of freedom
¢». Due to liquid flow, P can exert a force Fp. This
force acts normal to P, it is proportional to the dot
product of the surface normal and the liquid velocity.
More precisely:

Nes

= LB

where ¢, is a positive constant, A, is the normal vector
to the plate such that |A,| is the size of the plate
surface, v is the velocity of the liquid, p is the distance
between the rotational center of P and the force center,
and p is the distance between the rotational center
and the point where E, is acting. {...,...) is the dot
product.
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Similarly, we model the lock £ as a part with one
rotational degree of freedom ¢.. Due to the spring the
lock generates a force E. This force is normal to the
lock and proportional to the vertical deviation. More
precisely:

o1
El=f = csingq
E = [(-L)
where ¢, is a positive constant, and [ is the distance

between the center of rotation of £ and the point where
I is acting.

3.3.1 Type-A Contact

Figure 5: Forces at Type-A Contact

Assume that a vertex of the lock £ is in contact with
an edge of the plate P (type-A contact, see section 4.1)
at angle § = ¢, —¢, (Figure 5) . To compute the forces
and the conditions for sticking and sliding, we look at
the Free Body Diagrams of plate and lock (Figure 6).
Assume a force F acts on the plate in the contact
point at an angle 8 to the plate. If the system is in
equilibrium, then the component of F' normal to the
plate, E,’i, has to balance out the force due to liquid
flow, E,. The component of F parallel to the plate,
E,”, is a friction force.

A reaction force —F has to act on the lock under
an angle v = m — 6 — 3. For the system to be in
equilibrium, its normal component, IZL, has to balance
the spring force L.

We want to find the condition when lock and plate
are in contact and sticking. For the parts to remain in
contact, F, has to be positive. The lock sticks when
F lies in the friction cone:

Fr

> 0
Bz

| cot 5]

Now we compute the forces.

B = fsing(-P)
F;H = —fcosﬂﬁ
E = fsinyl,
= fsin(0+ B)L,
E = feoss(-)
= fcos(6+ B)L

In equilibrium £ is balanced by the spring force £,

E, is balanced by the hydraulic force on the plate £;.
}2“ and E,“ are balanced by the structure.

f = fsinp

L= [sin(0+5)

fsinfcosB + cosfsin 3
f. sin @ cos B + cos@sin 3
= £ = _
f’P Slnﬁ
= sinfcot [ + cosf
=cotf = 7]2/123.— cosf
sin 6

So finally we get as the condition for sticking:

>0 (1)
Jg/fp—cosﬁl @)

sin 6
(2) tells us that sticking depends on the ratio f. / f,, and
behaves somewhat similar to cotd. There are several
interesting cases:

po>

f» — 0: Then (2) — oo, so if E, becomes small, then
the area of sticking vanishes.

f. — 0: Then (2) — cotf. This is intuitively clear,
because we only have a force normal to the sur-
face.

9 = m/2: Then (2) = [./f., the ratio of parallel to
normal force.

6 — 0,7: Then (2) — 00, so no sticking occurs if lock
and plate are parallel unless f, ~ f.

Plugging in the force magnitudes we get:

(4p,v) > 0 (3)
c.sind.p 9
<, (4, wypl 08

> r 4

po= sin 6 (4)

Note: We were assuming a contact between a vertex
of the lock and an “inside” edge of the plate, i.e. and
edge of the plate on the side of the lock. It is also
possible to have a contact with an “outside” edge of
the plate. Then the condition for contact (1) changes
sign.
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Figure 6: Free Body Diagrams

3.3.2 Type-B Contact

Assume that a vertex of the plate is in contact with an
edge of the lock (Type-B contact) at angle 6§ = ¢, —¢..
By a similar argument as for Type-A contact, we get
as the condition for sticking:

£

> 0 (5)
po>

fp/i — cosf (6)

sin @

(5) is always satisfied, because we are assuming a pos-
itive spring constant. So finally we get:
cp (Ap )Pl
c.sing,p cos (7)
sin 0

po>

Note: The above condition is for “inside” edges of
the lock. For an “outside” edge (5) has to be negated.
The negated equation is never satisfied. Therefore
sticking at Type-B contact can only occur with “in-
side” edges.

4 Approach
4.1 (C-Space of Model

In the model for rigid bodies in compliant contact de-
scribed in (Donald and Pai 1992), contacts of mecha-
nism parts define curves in their two-dimensional con-
figuration space. These curves are algebraic of low-
degree. Simulation of snap fasteners then is reduced to
computing the arrangement of curves in the C-space
plane. This yields an efficient simulation algorithm
and avoids numerical integration of motion.

Our hinged structure has two rotational degrees of
freedom. This makes the curves that describe the con-
tact constraints more complicated. A simplification to
algebraic curves as in (Donald and Pai 1992) is possi-
ble, but leads to polynomial curves of high degree, so
the approach is not applicable. On the other hand, we
observe that in the geometry of the mechanism model
there is a lot of structure that can be exploited to find
a simple description of C-space curves. Consider a
configuration where lock £ and plate P are in contact,
the contact points being at [ and p distance units from
the center of rotation, respectively. Then we get the
following two conditions (see Figure 4 again):

Ising, = psing,
lcos¢. —pcosp, = A
Squaring, we get
P—Pcos’¢ = p°—p°cos’g,
(lcosg, — A)* = p°cos’ 4,
Eliminating cos ¢,,,
(lcosg. — A2 = p?> =12 +1%cos? ¢,
2~ p2 4 A2
= cosqg, = oA (8)
And similarly,
lZ _ p2 _ AQ
cos¢, = oA (9)

Note that ¢ +— cos¢ is a one-to-one map on [0,7].
The C-space of our mechanism maps one-to-one into
the square [—1,1] x [-1,1]. So by taking the cosines
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of the angles ¢, and ¢. as arguments to the C-space
curves, we obtain a purely algebraic representation
without trigonometric functions. Also, no trigonomet-
rical functions are necessary to e.g. sort configurations
with respect to cos @, (and thus ¢, ).

Let’s consider the different possibilities of contact:

1. Vertex-edge contact: A vertex [; of the lock is
sliding along an edge (p;, p;j+1) of the plate (type-
A contact, following the convention of (Lozano-
Pérez 1983; Canny 1986; Donald 1987), as in Fig-

ure 4).! Using equations 8 and 9 we get the follow-
ing parametrization of the corresponding C-space
curve:

12— p? — A2 l?—pZ—I—AQ)
2pA ’ 20;A ’

(cos @y, cos¢;) = (

where p € [pj,pj+1]
2. Edge-vertex contact: A vertex p; of the plate
is sliding along an edge (I;,1;41) of the lock (type-
B contact):
12—p?—A2 l2—p§+A2
2ij ’ QZA )’

(COS ¢y, COS ¢z) = (

where [ € [Zz', l¢+1]

3. Edge-edge contact: This happens only at an-
gles

(¢P7¢L) = (07 0)7 (07 7r)7 (71', 0)7 (7r7 71')

or, equivalently

(cosgp,cos ) = (1,1),(1,-1),(-1,1),(-1,-1)

4. Vertex-vertex contact: This is the intersection
of a vertex-edge contact and an edge-vertex con-
tact within a cross section. A vertex [; touches a
vertex p; of the plate:

2-p2 - A2 zg—p§+A2)
2ij ’ QliA

(cos @, ,co8d.) = (

5. Vertex-edge and edge-vertex contact: This
is the intersection of a vertex-edge contact and an
edge-vertex contact in different cross sections. A
mechanism with more than one cross section may
have configurations in which one cross section is in
vertex-edge contact, and another cross section is
in edge-vertex contact. The formula for this case
is the same as for vertex-vertex contacts. We call
this case “type-AB.”

INote that we refer to vertices and edges in the cross section
model. A vertex in the model corresponds to an edge in the
mechanism. So a type-A contact occurs when an edge of the
lock touches a surface of the plate. Vertex-edge or vertex-plate
contacts do not occur in the mechanism, assuming rectangular
part geometry.

4.2 Example: A Hinged Structure

Consider the hinged structure in Figure 7. It con-
sists of two cross sections which are shown separately
in Figures 9 and 11. Their respective configuration
spaces are shown in Figures 8, 10, and 12. The vertices
and edges in the cross section model are numbered out-
ward from the rotational center, from front to back. In
Figures 13 to 19 all possible edge-edge, vertex-vertex,
and type-AB configurations of the hinged mechanism
are shown. All pictures were generated automatically
(see section 4.6).

4.3 (C-Space Graph

As we have seen in the previous section, the behavior
of the system can be described with two kinds of states.
We distinguish zero-dimensional events (edge-edge,
vertex-vertex, type-AB contacts) and one-dimensional
transitions (edge-vertex, vertex-edge contacts). Using
events and transitions, we can map the C'-space of the
mechanism to a graph (C-space graph) whose nodes
are states and transitions, and whose edges reflect the
adjacency relationships of the nodes. This graph can
be seen as a discrete map of the C-space, where curve
segments map into transition nodes, curve endpoints
map into event nodes, and adjacency relationships are
preserved.

Note that the C-space graph is bipartite with re-
spect to events and transitions. For a given hinged
structure the number of nodes is O(n,n,) if the plate
has np vertices, and the lock has n, vertices. The
graph is sparse, because the number of outgoing edges
for each state is bounded by 2, one each for moving
clockwise or counterclockwise on the C-space curve in-
finitesimally.

The C-space graph in our model for hinged struc-
tures is the equivalent to the arrangement of C-space
curves in (Donald and Pai 1992). However, in the C-
space graph only the intersections of the curves are
computed explicitly. Each curve segment is described
by a single transition node. This means no loss of in-
formation, because all points on this curve segment
obey the same equations. Thus each node of the C-
space graph can be seen as a class of equivalent be-
havior of the mechanism.

Each cross section of a mechanism generates a sep-
arate C-space, and thus a C-space graph. The free
space of the entire mechanism is the “geometric AND”
of the free space of all cross sections. Intersections
of C-space curves specify configurations where parts
in two cross sections are in contact. If the mecha-
nism’s configuration moves through such an intersec-
tion point, the contact changes from one cross section
to another. In our model this happens only in type-AB
nodes. Figures 21 and 22 show the C-space graphs of
front and back part of the mechanism described earlier
in section 4.2. Events are shown as rectangles, transi-
tions as diamonds. The graphs look somewhat trivial,
but in fact for a two-dimensional C-space only linear
graphs and simple loops are possible. For a three-
dimensional C-space all C-space graphs are planar.

The combined graph for both cross sections is shown
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Figure 15: V4-V3 Contact Figure 16: V4-F1/Ey-V1 (Type-AB) Contact

Figure 17: V3-E1 /FEy-V; (Type-AB) Contact Figure 18: V3-V3 Contact
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Figure 19: E;-FE; Contact Figure 20: Illegal Configuration

E(0)-E(0)-4 E(1)-E(0)-10

G G

E(0)-E(0)-10

V(1)-E(0)
V(1)-V(1) ‘ V(3-V(1) ‘
<> &>
E(0)-E(0)-7 V(2-v(1) ‘
E(0)-V(2)

<G>

Figure 21: C-Space Graph of Front Part Figure 22: C-Space Graph of Back Part
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Figure 23: C-Space Graph of Hinged Mechanism

E(1)-E(1)-4

V(3)-V(3)

E(1)-E(1)-7

in Figure 23. Ellipses denote type-AB events, their
edges to transitions (shown as dotted arrows) “domi-
nate” edges within the C'-space graph of the cross sec-
tion, i.e. if the mechanism is in motion, it will follow
the transition denoted by the dotted line, due to kine-
matic constraints between different cross sections. Re-
call that whenever the mechanism goes through such
a transition, the contact region changes from one cross
section to another.

Therefore some nodes in the combined graph be-
come unreachable. Figure 20 shows a configuration
where edge Ey of the lock is in contact with vertex 1
of the plate. This configuration would be possible for
the front cross section, but is impossible because the
parts in the back cross section would overlap. In Fig-
ure 23 we can see that when going counterclockwise
(see below) from node “Eo-V;” the edge to type-AB
node “V-E;/E¢-V1” dominates the edge to node “V;-
V'l'n

Some more notes on the C-space graphs in Fig-
ures 21 to 23.

e Edges in the graph are directed. Moving in di-
rection of an arc corresponds moving clockwise
around a C-space obstacle, i.e. with the obstacle
to the right.

e For each edge-edge contact, we distinguish be-
tween different possible configurations. This is
necessary because we neglect the vertical thick-
ness of lock £ and plate P, so there may be a
contact on either side of an edge, depending on
whether £ or P are at angles (¢,,¢.) = (0,0),
(0,7/2), or (n/2,7/2), and whether £ is above or
below P.

e Several extensions for this graph are possible. In
particular, one could imagine a labeling of nodes
and edges. These labels could include information
about dynamics (see section 3.3) or probabilities
of state changes (see section 5).

4.4 Parameterized C-Space Graphs

We are now ready to get back to the original prob-
lem of mechanism design. Consider a simple example.
Let’s assume that the mechanism in Figures 13 to 19
has one design parameter x that determines the length
of the front part of the plate. Le. x is the length of
the plate (the right part) in Figure 9. The C-space
and therefore also the C-space graph of the parame-
terized mechanism will depend on this design param-
eter. More specifically, many nodes and edges will
only exist for certain ranges of values for z. Figure 24
shows the C-space graph for the parameterized mech-
anism. All nodes whose existence depends on z have
their conditions on the design parameter = attached.
For our model of hinged structures, all constraints are
conjunctions of linear inequalities.

Alternatively the design parameters could be viewed
as generating a generalized configuration space (Pai

1988; Donald 1989) with one additional dimension for
each design parameter, and a family of C-space graphs.
Figure 25 shows the generalized C-space for the pa-
rameterized mechanism mentioned above. The design
parameter x corresponds to the vertical axis. FEach
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Figure 24: Parameterized C-Space Graph of Hinged Mechanism
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slice in the generalized C-space gives the C-space for
a particular parameter value, and each C-space graph
represents the kinematic states of the graph for a par-
ticular range of design parameter values. However, in
the following we prefer a single parameterized C-space
graph with conditions attached to nodes and edges.

IHHRS—
il

1

Figure 25: Generalized C'-Space of Hinged Mechanism

Note that now the graph looks nondeterministic, in
that nodes can have multiple outgoing and incoming
edges, corresponding to multiple states as their clock-
wise or counterclockwise neighbors. Of course this is
not really an indeterminacy, because by replacing x
with any specific value we would get a deterministic
graph. Depending on the value of z the mechanism has
different states, and therefore exhibits different behav-
iors. The parameterized C-space graph in Figure 24
are a concise representation for the correlation between
parameter values and mechanism behavior.

4.5 Design Algorithm Outline

Suppose that the required behavior of a parameterized
mechanism can be specified by a set of desired states.
Then an algorithm that “unifies” this set with a C-
space subgraph of the parameterized mechanism can
determine the constraints on the design parameters.
In the above example, a design objective would be a
mechanism that has a configuration in which the mo-
tion of the plate is constrained such that it stands
up approximately vertically. This configuration is
achieved in the diamond “FEy-V1” that is bounded by
the two ellipses “V3-E1/Ey-V1” and “V3-E1 /Ep-V1” in
Figure 24 (see also Figures 16 and 17 again). As can
be determined from the constraints in Figure 24, z is
required to lie in (1,3). This makes sense, because if
z > 3 then the front part of the plate is not shorter
than the back part, and the plate cannot fit into the
slot in the lock. If z < I then the plate fits into the
slot in the lock, but the plate’s rotational degree of

freedom is not constrained. It is exactly for parame-
ter values of = ¢ (+,3) that we get back the graph of

1
Figure 23.

4.6 Implementation

We have started a Lisp implementation of the above
ideas. The current program computes the C-space
graph for a hinged mechanism. In particular, it gen-
erates input for the graph drawing program DAG
(Gansner et al. 1988). It can also generate input for

MATHEMATICA (Wolfram 1991) to draw the 2D con-
figuration space of the mechanism, and 3D pictures
of any configuration. MATHEMATICA is an interactive
system for mathematical computation. Figures 7 to 24
were generated by the program.

For example, this is the LISP representation of the
sample hinged structure from section 4.2:

(make-mechanism
(make-part
¢(, (make-rectangle
(make-interval 0 17/4)
(make-interval 1/2 1))

, (make-rectangle
(make-interval 0 13/4)
(make-interval 1 3/2))

, (make-rectangle
(make-interval 15/4 17/4)
(make-interval 1 3/2))))

(make-part

¢(,(make-rectangle
(make-interval 0 (make-parameter x))
(make-interval 0 1))

, (make-rectangle
(make-interval 0 3)
(make-interval 1 2))))

7/2)

In general, a mechanism is defined by two parts (lock
L and plate P), and their relative distance A. Each
part consists of a list of rectangles. The dimensions
are specified either by numbers or by symbolic values
(design parameters).

The algorithm to construct the C-space graph from
the geometric description of a hinged structure is
shown here:

Proc. NSF Design and Manufacturing Systems Grantees Conference, Charlotte, NC, January 1993.



input: Geometric description of hinged struc-
ture (L, P, A).

output: Its corresponding C-space graph.

for each [ in the set of vertices and edges of lock
L do
for each p in the set of vertices and
edges of plate P do
if there is a configuration for
which [ and p are in contact
then (1) create node(s) for
pair (I, p)
(2) compute the adjacen-
cies for new node(s)
end if
end for
end for

For the complexity analysis we assume that the lock £
has n, vertices, and the plate P has n, vertices. Let
us first consider the case without parameters. In a sin-
gle cross section of the mechanism, each node (events:
vertex-vertex, edge-edge; transitions: type-A, type-B)
has at most two neighbors. Events and transitions
form a bipartite graph. Graphs of different cross sec-
tions are connected via type-AB nodes, which in turn
have two neighbors. From this it follows that steps (1)
and (2) in the algorithm above can be computed in
O(1) time. O(n,n,) is the bound for computing the
C-space graph, and it is also the bound for the number
of nodes and edges in the graph. Therefore the graph
is sparse.

Now consider the case when the geometry is param-
eterized. Define 7, (7,) as the maximum number of
lock (plate) vertices in any cross section. Then for each
vertex pair (I, p) there may be up to O(7, 7, ) type-AB
nodes, because there can be O(7,) plate edges that
form a type-A contact with {, and O(7,) lock edges
that form a type-B contact with p. Therefore steps
(1) and (2) have O(7,.7n,) worst running time. This
implies O(n, M, n,7,) < O(n2n’) as time bound for
constructing the graph, and as space bound for the
number of vertices and edges. Note that the introduc-
tion of design parameters does not affect the sparse-
ness of the C-space graph.

5 Randomized Assembly

Randomized strategies for assembly have been pro-
posed by many authors. They are used for exam-
ple in vibratory bowl feeders (Boothroyd et al. 1977;

Boothroyd et al. 1982) to align parts for an assembly.
Parts that are not properly aligned after a randomized
orientation phase are filtered out and oriented again.
(Lozano-Pérez 1985) develops ideas for an automatic
design of these filtering devices.

(Moncevicz et al. 1991) come up with the term of
“shake-and-make assembly” as an ideal assembly pro-
cess where devices are assembled by agitated random
motion. For this process to work, the completed as-
sembly has to have certain properties. E.g. it should

have a particularly low entropy relative to all possi-
ble configurations, or the assembly action should be
irreversible.

(Erdmann 1989; Erdmann 1992) gives a general ap-
proach for probabilistic strategies in robot tasks. The
basic idea is to use randomized motions whenever the
uncertainty in the sensor readings is too large to be
of any use for motion planning. This is of particu-
lar interest for the assembly of microelectromechanical
structures. In fact, (Burgett et al. 1992) use a ran-
domized strategy to assemble the hinged structures
described in section 2.1, by shaking the wafer under
water such that the random motion of the water moves
the plates into their final position.

(Erdmann 1989) investigates randomized strategies
for both discrete and continuous state spaces. For
the discrete case, he shows that the expected time of
goal attainment in randomized tasks is low if the state
space of the mechanism can be modeled by Markov
chains. This creates a promising connection to C-
space graphs. If we label C-space graph edges with
probabilities of being traversed, then we can apply
the theory developed in (Erdmann 1989) to predict
the behavior of the mechanism. In particular, we can
compute the probability that a certain desired state is
reached. The crucial task now is to determine these
probabilities. They will depend on both kinematic and
dynamic properties of the mechanism.

6 Summary

We have outlined an approach for automation of para-
metric design. A model suited for analysis, simu-
lation, and design of microelectromechanical hinged
structures was developed. The model compresses the
configuration space of a mechanism into a concise de-
scription of its kinematics, the C-space graph. Fur-
ther processing, incorporating dynamics and random-
ization, will yield a precise description of the mecha-
nism’s functionality. The resulting graph will possess
the following properties:

o It gives a concise description of the mechanism
behavior.

o It keeps track of the correspondence between ge-
ometric features and functionality of the mecha-
nism.

e It forms the basis for algorithms that automate
parametric design, by making explicit the rela-
tionship between design parameter values and
modes of mechanism operation.

o It provides a framework for analysis of random
assembly strategies.

We believe that our approach, though still in an early
stage, will advance design automation for useful sub-
classes of design problems. Models and techniques
that allow fast, exact analysis and simulation of the
mechanism to design are crucial for algorithms that
search for good designs. Randomization techniques
will extend the possibilities of algorithms for analy-
sis, simulation, and design of mechanisms. Microelec-
tromechanical structures offer a domain in which these
techniques are extremely useful.
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7 Future Goals

At the current stage of our work we want to focus on
the following problems:

e Extend the model by incorporating mechanism
dynamics, such as spring forces, and forces of lig-
uid flow. This will complete the model of MEM
hinged structures.

e Come up with a detailed algorithm (including
complexity analysis) for “unifying” C-space sub-
graphs. This will form the crucial part of the
proposed design algorithm for MEM hinged struc-
tures.

e This approach was developed for mechanisms
with two-dimensional C-spaces. Investigate ex-
tensions for C-spaces with higher dimensions.

e Incorporate randomization techniques into the
model. This will require analyzing the probabilis-
tic behavior of the mechanisms. The result will be
predictions on the probabilities for specific mech-
anism behaviors, and probabilities and expected
times for reaching specific mechanism states.

e Extend the current implementation to include the
items from above.

e Test the designed mechanisms by building MEM
structures.
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