Polymer-based Microgripper for Single Cell Manipulation

Nikolas Chronis and Luke Lee

Berkeley Sensor and Actuator Center University of California at Berkeley

Manipulating Biological Samples

Micro Capillaries

http://www.brinkmann.com

Dielectrophoretic Cages

NG Green et al., Appl. Phys. 33 (2000)

Optical Tweezers

http://atomsun.harvard.edu/tweezer http://www.intracel.co.uk

MEMS Microgrippers in Liquids

Actuation	Environment		Comments -
Mechanism	Air	Liquid	Limiting Factor
Electrostatic	\checkmark	X	 Non-activated in electrolytic media
Electrothermal (Si-based)	\checkmark	X	 High temperatures (T≈ 400-600°C)
Piezoelectric	\checkmark	X	Electrolysis (due to high voltages)Small displacement
Ionic Diffusion	Х	\checkmark	 Restricted motion (out of plane) Questionable biocompatibility

Electrothermal (SU-8 based)	\checkmark	\checkmark	Single Cell Manipulation in Solution	
--------------------------------	--------------	--------------	--------------------------------------	--

Electrothermal SU-8 Actuators

SU-8 Actuators In Action

*BIOPOEMS : Bio-PolymerOptoElectroMechanical Systems

Microgripper Design

Fabrication Process

Best sister to rest 20 μm) Oxidization of the participation of the part

The Fabricated Device

Microgripper Performance

Critical Issues:

Temperature at the Tip

→ Minimize Cell Damage

- Maximum Temperature
 Avoid Boiling
- Maximum Displacement
 → Cell Size
- Operation Voltage

→ Avoid Electrolysis

ThermoMechanical Modeling (ANSYS)

Simulation Results (ANSYS)

Operation in Aqueous Environment (experimental)

- Operation voltage: ~ 1.5 2 V in D-PBS (11 μm displacement)
- No electrolysis is observed
- * D-PBS: Dulbecco's phosphate buffered solution

ThermoMechanical Analysis

- $\Delta T_{net} < 45^{\circ}C$ for the full range of motion ($11 \mu m$)
- ΔT_{max} < 65°C (extracted from simulations)

Single Cell Manipulation

Conclusions

Property	Specifications	Comments	
Actuation	Electrothermal	 'Hot and Cold Arm' design 	
Material	SU-8	 CTE = 52x10⁻⁶ ppm 	
Fabrication	Surface Micromachining	 Two Mask Process 	
Operation Environment	Air, Physiological Media	 Single Cell Manipulation in Solution 	
Operation	0.3 V (air)	 No electrolysis observed 	
Voltage	1.6 V (liquid)	 AC can also be used 	
Gripper Opening	11 μm	 Able to grasp cells 8-20 μm in diameter 	
Power	3 mW (air)	• 5-10 times lower than similar poly-	
Consumption	60 mW (liquid)	based actuators	

Acknowledgements: DARPA (BioFlips program)