A Microfluidic Device for Electrofusion of Biological Membranes

G. TRESSET and S. TAKEUCHI The University of Tokyo

Electrofusion of liposomes and cells in a MEMS device

- Lab-on-a-chip integration
- Power reduction
- Future industrial <u>fabrication</u>

17th IEEE MEMS 2004 Conference

What Is a Liposome ?

Synthetic lipid-bilayer container

Principle of Electrofusion

Electroporation: $E \ge 1 \text{ kV.cm}^{-1}$

Pore size: 10-100 nm

17th IEEE MEMS 2004 Conference

Guillaume TRESSET

Microdevice Design

Reduction of <u>power consumption</u>
Easy to fabricate

17th IEEE MEMS 2004 Conference

Electrofusion Protocol

Liposome Fusion

Electrofusion of Bacteria

Membranes must be <u>soft</u> and <u>fluid</u> enough

E. Coli provacuoles fusion with bulk electrodes

17th IEEE MEMS 2004 Conference

Guillaume TRESSET

Towards Transfer of Microstructure

Microstructure delivery by vesiclevesicle electrofusion

Conclusions

- A <u>microfluidic device</u> for electrofusion of liposomes at <u>low power level</u> has been designed and tested. Fusion yield can reach <u>75 %</u>,
- Possibility to fuse cells but the membrane must be <u>soft</u> and <u>fluid</u> to obtain good fusion yield,
- Possibility to <u>deliver microstructures</u> into liposomes.

Prospects

Cell labeling for biomedical applications
Drug and gene delivery
Single molecule and femtoliter drug manipulation

17th IEEE MEMS 2004 Conference

Guillaume TRESSET

Prof. Hiroyuki FUJITA,Prof. Hiroyuki NOJI,Dr. Kazuhito TABATA,

of the University of Tokyo.

Jhank you for your attention !