Digital Microfluidics

Author: Karl F. Böhringer

Date 4/13/04, version 1.3

Date 4/06/03, version 1.2

Date 3/23/03, version 1.1

Date 3/14/03, version 1.0

This software implements algorithms for finding the optimal paths for moving one or more droplets in a digital microfluidic system. In a digital microfluidic system, droplets are moved in discrete time steps in a discrete grid. The motion may be achieved by electrowetting caused by a voltage applied to specific grid points, or be dielectrophoretic forces induced from an array of electrodes.

This software finds an optimal solution, i.e., given the initial grid points and the final grid points, a shortest path for the droplets is found to move from the initial point to the final point. This path can be constrained by rules to keep droplets at a “safe” distance, or by obstacles in the grid.

The entire grid is defined in a global variable called FIELD, which should be a binary array. Entries of ‘0’ indicate points that are admissible for droplets, and entries of ‘1’ indicate obstacles. Start and final points are given as 2D coordinates in this grid. The optimal path is found by an A* search algorithm.

Note: This software is a simple implementation in Matlab. While the resulting paths are provably optimal, the algorithms for obtaining these paths are not. Furthermore, non-ideal implementations of basic datastructures such as lists and queues further increase the running time of the code.

A* Search Algorithm

A standard A* search algorithm is implemented to find the shortest path from the start state to the goal state. We can consider these states “nodes” and the transitions between states “edges” in a directed graph.

function found = astar(start,goal,neighbor,estimate,equal)

start and goal are nodes representing the initial and the final state, respectively.

neighbor is a function that generates a list of all nodes reachable from a given node with a single state transition.

estimate is a function that generates an (under)estimate for the distance between two nodes (i.e., it is an “admissible” metric for the A* search).

equal is a function that compares two nodes.

found is a list of nodes that gives a shortest path between start and goal.

This algorithm suffers from prohibitive computational complexity even for very small fields and small numbers of droplets. In fact, it is exponential in the number of droplets. A more efficient algorithm searches for paths on droplet at a time; thus, droplets have a priority ranking, in which higher priority droplets ignore lower priority droplets, and lower priority droplets consider higher priority droplets as given moving (i.e., time-dependent) obstacles. This approach eliminates the exponential complexity in the number of droplets, but obviously the solutions are no longer globally optimal or even complete:

function found = astar_prioritized(start,goal,neighbor,estimate,equal)

start and goal are nodes representing the initial and the final state, respectively.

neighbor is a function that generates a list of all nodes reachable from a given node with a single state transition.

estimate is a function that generates an (under)estimate for the distance between two nodes (i.e., it is an “admissible” metric for the A* search).

equal is a function that compares two nodes.

found is a list of nodes that gives a shortest path between start and goal.

Function path_merge(newpath)

Merge previously computed solutions (i.e., droplet paths in the global variable PATH) with a new solution newpath.

function show_path(p)

Graphically visualize the solution path p generated by astar function.

function show_path_steps(p)

Graphically visualize the solution path p generated by astar function step by step in subplots.

function [rows,columns] = extract_rows_columns(p)

Determine the sequence of rows/columns that need to be activated to achieve the given path. This function assumes a valid path with simple row/column addressing.

Discrete Priority Queue

An essential component of the A* algorithm is a prioritized queue, which organizes the visited nodes according to their distance from the start plus their estimated distance to the goal. This means that (a) the shortest path will always be found (if a path exists), and (b) the search always proceeds from the most promising node.

The following functions implement a priority queue with discrete integer priorities. Valid priorities are all positive integers. The lowest number indicates the highest priority. Among queue entries with equal priorities, the order is undetermined.

The queue is currently implemented as a global struct called QUEUE with two fields, index and element. index and element are lists of equal length.

function dqueue()

creates an empty priority queue.

function dqueue_empty()

tests whether priority queue is empty.

function dqueue_push(priority,element)

adds a new element with a given priority to the queue.

function [element,priority] = dqueue_pop()

removes an element from the queue and returns it and its priority value.

function dqueue_show()

simple text output of priority queue.

function dqueue_viz(element,priority,continuous,current)

Graphically visualize state of priority queue.

Figure 1 continuously plots all visited nodes if continuous=1 (default)

Figure 2 plots currently visited nodes if current=1 (default)

Note: this is a simple function, which assumes that element.node is an array of 2D coordinates.

Node List

Another important component of the A* algorithm is a data structure that keeps track of the nodes that have already been visited. The node list is currently implemented as a global struct called NODELIST with two fields, index and element. index and element are lists of equal length.

function nodelist()

creates an empty node list.

function nodelist_add(element)

adds a new element to the node list.

function element = nodelist_get(i)

get the ith element from the node list.

function in = nodelist_in(element,equal)

check whether element is already in the node list with an equal or lower (better) value, if so, return TRUE.

function l = nodelist_length()

length of node list.

function nodelist_show()

simple text output of node list

Functions for Array Indices

function e = array_equal(a,b)

check if lists of 2D array indices a and b are equal

function e = array_estimate(a,b)

distance estimate between two lists of 2D array elements a and b.

Note: an admissible metric for A* search must be used; currently implemented with Manhattan metric.

Determining Neighbors

function l = array_neighbors(a)

list of all neighboring 2D array elements that represent valid moves.

function l = array2_neighbors(a)

list of all neighboring pairs of 2D array elements that represent valid moves.

function l = array2lines_neighbors(a)

list of all neighboring pairs of 2D array elements that allow valid moves when generated with simple row/column electrodes.

function l = arrayP_neighbors(a)

list of all neighboring 2D array elements that represent valid moves while taking into account time-dependent obstacles.

Auxiliary and Miscellaneous Functions

function c = cell_ismember(l,el,equal)

ismember function for cell lists, optional argument equal is a function to test equality between cells.

function d = droplet(x,y,r,alpha,c)

draw a partial droplet that resembles a droplet; (x,y) is the center of the droplet, r is its radius, alpha is its contact angle, optional c is the offset in the color index.

Demos

array_test.m

Various examples for the initial implementation of this software (up to version 1.2). Caveat: some demos may take very long to finish. File includes code to generate figures for this paper:

Karl F. Böhringer, “Optimal Strategies for Moving Droplets in Digital Microfluidic Systems.” Seventh International Conference on Miniaturized Chemical and Biochemical Analysis Systems (MicroTAS’03), Squaw Valley, CA, October 5-9, 2003.

array_mems04.m

Code to generate figures for an IEEE MEMS’04 abstract.

array_icra04.m

Various examples for the Winter 2004 implementation of this software (version 1.3). Faster algorithm with prioritized droplet path planning is demonstrated here. File includes code to generate figures for this paper:

Karl F. Böhringer, “Towards Optimal Strategies for Moving Droplets in Digital Microfluidic Systems.” IEEE International Conference on Robotics and Automation (ICRA), New Orleans, April 26 – May 1, 2004.

