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Efficient Spectrum Sensing for
Cognitive Radio Networks via Joint Optimization of
Sensing Threshold and Duration

Ling Luo and Sumit Roy

Abstract—Cognitive radio networks require fast and reliable
spectrum sensing to achieve high network utilization by sec-
ondary users. Optimization approaches to spectrum sensing to-
date have largely focused on maximizing throughput for sec-
ondary users while considering only a single parameter variable
pertinent to sensing - notably the threshold or duration, but
not both. In this work, we investigate the impact of true joint
minimization under two performance criteria: a) minimization
of the average time to detection of a spectrum hole and b)
joint maximization of the aggregate opportunistic throughput.
We show that the resulting non-convex problem is actually
biconvex under practical conditions for which effective algorithms
can be developed that yields reliable numerical procedures
to solve the resulting optimization problem. The results show
that the proposed approach can considerably improve system
performance (in terms of the mean time to detect a spectrum
hole and also the aggregate opportunistic throughput of both
primary and secondary users), relative to the scenarios with only
a single sensing variable or a sub-optimal ad-hoc optimization
approach used for two variable case.

Index Terms—Cognitive radio, spectrum sensing, biconvex,
joint optimization.

I. INTRODUCTION

HE shift to digital television broadcasting in June 2009
has opened up “white spaces” [1] (temporally under-
used spectrum) in the VHF and UHF bands. As a result, the
Federal Communications Commission (FCC) is encouraging
occupancy of these under-used spectrum by unlicensed users
[2] to enhance overall spectral utilization. The TV broad-
casting stations and receivers constitute the primary network
that must be protected when unlicensed users attempt to use
white spaces opportunistically. The unlicensed users must be
cognitive, i.e., possess the attribute of spectrum sensing in
order to detect available white spaces for occupancy and
subsequent spectrum sharing (release of the white space when
an incumbent re-appears).
Efficient spectrum sensing is critical to coexistence of
primary and secondary users in licensed bands. Incorrect deci-
sions at the sensing stage leads to two major consequences: a)
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miss-detection of active primary users results in inadmissible
interference to them when secondaries transmit as a result or
b) missed transmission opportunistic when a primary channel
is idle but the secondary fails to detect this. Thus, sensing per-
formance is evaluated in terms of two probabilities: probability
of false alarms (primary users present but detected as idle by
secondary users) and probability of miss-detection (idle bands
being detected as active by secondary users) that are functions
of two design parameters: i) the sensing threshold and ii) the
sensing duration.

Liang et. al. [3] investigated the optimal sensing duration
for detection that maximizes achievable throughput of the
secondary network. Later, the authors extended this single
frame optimization approach over multiple decision slots.
Quan et. al. [4] explored the scenario whereby the (wideband)
primary user occupies multiple bands, that are sensed simulta-
neously, and sought to maximize the aggregate throughput as a
function of sensing thresholds for each sub-band. However no
work to date considers optimization of sensing with respect
to both threshold and integration time - this is the main
contribution of our work. Often, a single-parameter spectrum
sensing formulation leads to a convex optimization problem
with readily available algorithmic solutions. However, this
ignores the potential from varying other available parameters
(that are kept constant).

Our formulation of sensing as a double-parameter problem
leads, at first sight, to a non-convex optimization; we later
prove that these problems are actually biconvex, for which
efficient numerical methods exist. This builds on our earlier
work [5] where we investigated the various trade-offs involved
in minimizing the mean time to detect a spectral hole, as a
function of sensing architecture and algorithm, but kept the
decision threshold fixed.

A. Our Formulation and Relation to Existing Work

In this paper, we formulate two different approaches, both
as a function of the two key variables (sensing threshold and
duration) -

« Minimizing the mean time to detection, subject to con-
straints on the probabilities of miss-detection and false
alarm;

« Maximizing the aggregate opportunistic throughput

We solve these two problems under a stochastic model where
the probability that state of channel is (un)occupied is fixed,
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where the continuous spectrum sensing is used instead of one-
shot sensing.

Although these problems are proved to be non-convex, we
demonstrate in both cases how these can be converted into a
biconvex optimization problem that can be efficiently solved
numerically.

The relevant literature on optimization of spectrum sensing
in cognitive radio networks can be classified along various
dimensions - such as a) static or dynamic nature of the primary
users’ channel occupancy, b) the metric being optimized (e.g.
mean time to detection of an available channel or aggregate
throughput) and algorithmic implications. For example, Lee
[6] investigated optimized sensing for a dynamic primary
channel occupancy scenario, modeled by a birth and death
process. In contrast, we assume a purely static channel sce-
nario. Further, CR metrics can be broadly classified as PHY
based - e.g. the mean time to detection of an available channel
or MAC based - e.g. the aggregate throughput enhancement
due to opportunistic use of the spectral holes by secondary
users. Huang [7] used a threshold-based sensing transmission
structure to maximize the secondary users’ utility, using MAC
layer utility maximization approach with static and dynamic
channels. On the other hand, Peng [8] optimizes the sensing
disruption by maximizing the average number of false detec-
tions, which can be treated as a PHY work.

Nearly all existing work employs one or the other formu-
lations; here we consider optimization using both approaches
to highlight the important differences in the ensuing optimal
points and ensuing design trade-offs.

Most of the existing CR optimization formulations lead to
single-parameter convex optimization, for which well-known
approaches - such as interior-point method - exist. Since multi-
parameter (joint) optimization is typically non-convex, prior
work have tended to use sub-optimal approaches - such as
sequential parameter-wise optimization in Quan [4]. In this
paper, we will prove that our joint optimization problem is bi-
convex [9], that allows efficient algorithms - such as Alternate
Convex Search [10]- to find globally optimal solutions.

The paper is organized as follows. Section II describes the
system (signal and interference) model, and search strategy
based on energy detection. Section III and IV respectively
formulate the minimization of the mean detection time and the
maximization of the aggregate opportunistic throughput. The
proofs of biconvexity and the resulting algorithms to determine
the optimal points are also given in these two sections. We
present numerical results in Section V and conclude the paper
with final remarks in Section VI.

II. SYSTEM MODEL
A. Channel Search

We consider a scenario where the band to be searched is
composed of M contiguous channels, each of bandwidth B..
Common sensing techniques include random and serial search
[12]. In random search, a secondary user looks for a spectrum
hole (available channel) by randomly choosing a channel for
sensing and detecting, while serial search sequentially searches
over the entire spectrum, as depicted in Fig. 1, until a free
channel is found.
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Fig. 1. Channel searching model.

We assume that the expected number of unused channels is
L out of M (L < M). Thus we can denote the probability of
any channel being free by A = L /M independent of all others.
It was shown in [12] that the average number of search steps to
detect an available channel for both random search and serial
search for small L/M is given by (within a constant to the
same order)
T
det — Pd B\ )
where P, is the detection probability of a free channel, i.e.
the product Py is the aggregate probability that a channel is
actually free, and that it is detected as such. Since the specific
method of channel sensing (serial vs. random) is unimportant
vis-a-vis search efficiency (at least for the assumed i.i.d
model), we will not focus on this for the remainder of our
work.

ey

B. Signal and Interference Model

We allow an underlay model, such that primary and sec-
ondary users can simultaneously transmit on the same channel,
subject to adequate protection for the primary users. The
reception model for any particular channel for this case
is shown in Fig. 2. S, and S, respectively represent the
transmitted power from a primary and a secondary user, while
R, and R, represent the received power. In this work, we are
interested in optimizing the sensing threshold and integration
duration instead of selecting certain channels for multi-user
communication. For the sake of simplicity, we assume that
the channel response is time invariant. Further, the channel
gains hypp, hps, hep and hgg from the primary (secondary)
transmitters to primary (secondary) receivers are assumed to
be the same over all the bands, consistent with the assumption
of a flat fading channel scenario. The additive noise for
primary and secondary users Z, and Z,, respectively, is
assumed to be i.i.d, zero-mean Gaussian process with variance
E(1Z,2) = E[1Z.) = o2.

Some models for cognitive radio networks [11] assume
sharing of causal side information between primary and sec-
ondary transmitters that allows joint pre-coding. We do not
entertain this possibility; and assume that the respective multi-
access interference components are treated as noise. Hence
if both primary and secondary users are transmitting at the
same time through the same channel, the SINR at primary
and secondary receivers are respectively given by:

Sph2,

SINR T
P Ssh2, + o2
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Interference model of a primary and a secondary occupying the same

S¢h?
SINR, = ———5% _,
Sphgs—i—o%

Then the capacities for both primary and secondary systems
are given by:

Ypp
Cpr = Bclog(14+ —2—), 2
PI c g( 1+”ysp) )
'Yss
C = B.log(1+ , 3
ST c g( 1+%S) 3)
S, h2 Ssh? S,h2
where 7y, = =5, Ysp = =3, Yss = Tz and yps =
SPhis
o2

On the other hand, if there are only primary (seconary) users
transmitting without co-channel interference, their respective
capacities can be written as:

Cp = Bclog(l+ ), )
CS Bc lOg (1 + ’YSS)' (5)

C. Energy Detector

We consider a binary hypothesis test for spectrum sensing
of primary occupation as follows:

Hy Ry = Zs,
H, RthpSSp—I—ZS,

where R, is the received signal at the detector of the secondary
user.

The channel status is determined based on energy detection
with N samples. Thus, the sensing duration is 7; = N/B,,
and the test statistic for the energy detector is:

N

y = %; |Rali) 2. ©)

we denote the event “the secondary user claims that the
channel is idle” as Dy and the event “the secondary user
claims that the channel is busy” as D;. We then denote the
probability of successful detection of an available channel (hy-
pothesis Hy) as P; and corresponding false alarm probability
Py, (incorrect determination of a busy channel as free under

hypothesis H;). Therefore we have

Pr(Do|Hg) =
PT‘(Dl |H0)

Pda
1_Pd7
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P’I"(D()|H1) =
PT(D1|H1) =

Pfaa
1- Py,

For a large value of IV, by applying Central Limit Theorem,
we approximate Y to be a Gaussian random variable whose
mean and variance under the two hypothesis (H, corresponds
to channel idle and H; denotes channel busy) are given by:

E[Y|H) = o3,

E[Y|H] = (y+1)a;, )
2

VarlY|Hy] = Ncrfl,
2

VarlY[Hi] = S(v+1)%, ®)

where vy is the per-sample signal-to-noise ratio (SNR) at the
energy detector of the secondary user.
For a given sensing threshold =, P; and Py, are given by:

Piy(z,N) = Pr(Y <z|Hp)
— 1o VW) ©)
= 2 ,
Pto(x,N) = Pr(Y <z|Hp)

e e VA5 )

10
o2(y+1)V2 (10

where the Q-function is:

Q) = # / T ety

III. OPTIMIZATION APPROACH I: MINIMIZING MEAN
DETECTION TIME

In this section, we seek to minimize the average time to
detect an available (unused by primary users) channel by
secondary users as a function of two parameters of the energy
detector, i.e., the sensing threshold and the integration time.
Searching over multiple channels involves two components: a)
channel switching time 7 largely determined by the settling
time of the phase locked loop (PLL) used in the receiver
circuitry, and b) integration time 7; needed by the energy
detector to arrive at a reliable detection [5], which in turn
is determined by the sensing bandwidth and the number of
sensing samples.

Thus, the net mean time to detect an available channel is
given by

Tdet = %(TS + 111)7
1 N

Considering Eq. (11), we note an immediate trade-off
between the average number of detection steps and the in-
tegration time: a longer integration time leads to a better
Py — Py, performance, hence reducing the mean number of
detection steps (and consequently reducing the detection time),
and vice versa. Moreover, for any given integration time, the
energy detector with higher sensing threshold results in higher
detection and false alarm probabilities. Hence, we focus on
jointly optimizing the sensing threshold and the number of
sensing samples in order to minimize the average detection
time.

(1)
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Therefore, the joint optimization problem is mathematically
formulated as below:

S 1 N
i Tae T
mip Tae =Rt )
subject to 1)Py(z,N) > a;

2)Pfa(xaN)§ﬁ (12)

where the detection Py(-,-) and false alarm Py,(-,-) proba-
bilities are functions of sensing threshold (z) and the number
of integration samples (/V). The parameters o and 3 denote
appropriate constraints on detection and false alarm probabil-
ities.

The formulation Eq. (12) leads generally to a non-convex
optimization problem. For practical systems, a high detection
probability o and a low false alarm probability 5 are desired.
Next, we will prove that the original non-convex problem
can be transformed into a biconvex optimization problem [10]
when @ > 0.5 and 8 < 0.5.

Defn: A function f(z,y) : X x Y — R is biconvex if
and only if f(x,y) is convex in y given x € X and convex
in x given y € Y. A brief tutorial of related definitions and
properties of biconvex functions and optimization problems is
presented in Appendix L.

A. Biconvexity

To show that the 0pt1m1zat10n problem (12) is biconvex, we
ﬁ,n— VN and let 7 = T, B,. We
denote [E and H as the fea51b1e sets for € and 7. Combining
Egs. (9) and (10), the original optimization problem is re-
written as:

introduce variables € =

. 1 7+7?
Igl’lnn Tdet(gvn) - B1— Q(E’f])
subject to DQ(en) <1 —q;
V2 — v
- 1
) Q(ﬁ(7+1) )< B
3n=>1 (13)

Lemma 1: Given € = € € E, the function Q(€n) is convex
innif Py >1/2.

Proof: See Appendix II.

Lemma 2: Given € = € € E, the function —Q(
is convex in 7 if Pr, < 1/2.

Proof: See Appendix III.

Lemma 3: Given ¢ = & € E, the function Tye.(€,7) is
convex in 7, if Py > 1/2.

Proof: See Appendix IV.

Theorem I: The optimization problem (13) is biconvex for
ceEandneM,if P;>1/2and Py, < 1/2.

Proof: Combining Lemmas 1-3 we can conclude that
problem (13) is convex in 7 given € = £ € E, if P; > 1/2
and Py, < 1/2. Thus we are left to show that optimization
problem (13) is convex in € given n = 7 € H, if Py > 1/2
and Py, < 1/2.

It is easy to prove that Q(e7) and —Q( ‘/;E_J)f]) are all
convex in & under the constraints P; > 1/2 and Py, < 1/2
by using a similar technique. Then taking the second order

V26—~
Vi)

IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 60, NO. 10, OCTOBER 2012

partial derivative of T.:(,7), we have:

O Taet(e,7)  T+172
) T4 F(en))

which is clearly positive. Hence the convexity in € given n =

[7*G (7,

€) +2G(ij,e)*

1 € H follows, and Theorem 1 is proved. O
52H(5 n) 2 2 82772 2,2
Z caet\= ) F(e, T+ _6*577/2
de0m (e,m)"[(r +07)( NG
_1EN _.2,2 1 2,2 /9
b Ryt een - L
(=) )
N 2772 6—52172/2]
V2T

It is tediously straightforward to check that the determinant
of the Hessian matrix 2 nga‘(s 1) O et (e.1) (a %;g(s )2 i
not always non-negative, which shows that the problem (13)

is non-convex.

B. Feasible Algorithms for the Optimal Points

Several feasible algorithms are outlined in [10] to determine
the optimum points in general biconvex optimization prob-
lems. For our specific biconvex optimization problem, we will
describe a fast and simple method to find the globally optimal
x and N by exploiting some problem-specific information.

For any given np = 77 € H, because Py(e,7) = 1—Q(e,7) is
monotonic increasing in €, we see that the ObjeCtIVC function

in the problem (13), i.e., Tiet = W 1S monotonic

decreasing in €. To minimize Ty is thus equivalent to achieve
the maximum e under the given constraints. Note that for a
given 1) = 7, the detection probability constraint Py > « gives
the lower bound for ¢ and the false alarm probability constraint
P =1— Q(f;‘s +I 7) < [ gives the upper bound for ¢.
This can be explained as follows: the system benefits from the
high detection probability for a pre-defined sensing threshold,
which in turn leads to the high false alarm probability. The
system achieves the minimum average detection time when
the detection probability reaches the highest feasible value,
if and only if the false alarm probability reaches the upper
bound. Let Pro(eopt, ) = B, if Q(eopti]) < 1 — v, then we
reach the upper bound of the false alarm probability and

Q'1-Br+1) v
Eoptimal = Eopt = = + —,
pt l pt i \/5

where Q~1(-) is the inverse Q-function. Otherwise, the upper
bound of € is achieved when (Q(e7j)) = 1 — «. Note that
Pyo(e,7) < B in this case, and thus

Q'(1—0a)

Eoptimal = —— = -

n
Because the problem (13) is biconvex, there exists a global
optimal (€optimal, Moptimal) corresponding to minimum aver-
age detection time. Thus we can derive the relationship of
global optimal points for 7 and e:

Q'1-pB)(v+1) N

Toptimal

o Q!
\/57

(1-a),

Eoptimal = maX( "
optimal
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In general, we claim as follows:

Claim I:1f Q71 (1 _ﬁ) ('Y+ 1) —*—770;0ti7nal'7/\/§ > Q71 (1 -
«), the minimum average detection time is attained when the
false alarm probability reaches it’s constraint.

Claim 2: 1f Q71 (1 _ﬁ) ('Y+ 1) —*—770;0ti7nal'7/\/§ < Q71 (1 -
«), the minimum average detection time is achieved when the
detection probability constraint is attained.

To reduce the region of 1 for initiating the search for optimal
points, we can observe from (13) that:

Q'1l-0a) en 1
Y+ 1 \/5(7+1)§7+1 \/5(7+1)§Q =8
Thus the achievable region for 7 is:
Q'l-a) 4 V2(v+1)
> — 1- :
nz( P Q™ (1-5)) 5

Using Eq. (14), we can convert the problem (13) into a
single-parameter optimization problem, since it is convex for
any given ¢ = £ € [E, Therefore, we can numerically solve
the global optimal values of 1 and ¢ by using penalty method
in terms of variable 7.

IV. OPTIMIZATION APPROACH 2: AGGREGATE
OPPORTUNISTIC THROUGHPUT

Minimizing the mean time to detection of a spectral hole is
an appropriate physical layer metric for optimization a cog-
nitive network. However, this ignores the impact of incorrect
link layer decisions; for example, if there is a false alarm
for a busy channel, the primary and the secondary users will
simultaneously transmit and the co-channel interference will
significantly decrease the throughput from both primary and
secondary systems. Therefore, it is more appropriate to use
a MAC layer metric - notably the aggregate opportunistic
throughput of both primary and secondary users, so as to
uncover newer system trade-offs not captured by the earlier
method.

A. Average Aggregate Opportunistic Data Rate

We assume that secondary users periodically sense the
spectrum frame by frame. The duration of a frame is of
fixed length 7, and thus the average transmission time for
a secondary user is 7' — Ty,; per frame. On the other hand, a
primary user uses whole frame duration to transmit its signal
when occupying a certain channel. We assume the presence
of a central controller that searches for available channels
and then assigns any such channels to the secondary user.
Two situations of successful detection and false alarm are
shown in Fig. 3, leading to different aggregate throughput.
In the rest of the paper, we use the term TH’ to denote
the opportunistic throughput per frame per channel. Note that
the sensing scheme in our paper is NOT one-shot. If the
scheme misses a free channel (with probablility 1 — Py), it
will NOT simply give up but go on sensing, which means
that the search scheme will ultimately find a channel for the
secondary user, either in hypothesis Hy (channel vacant) or H
(channel occupied by a primary signal). The searching time
of the wasted chances due to the miss-detection probability is
related to calculating the average detection time.
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Fig. 3. Two cases for secondary occupation of the channel.

Fig. 3(a) shows the successful occupation of a free channel
by a secondary user. The average aggregate opportunistic
throughput in this case is thus given by:

)Cs. (15)

When a channel is occupied, the false alarm of busy
channel status as shown in Fig. 3(b) will result in secondary
transmissions on the same channel, resulting in co-channel
interference. The opportunistic throughput obtained by the
secondary user per frame per channel in the presence of the
primary is given by

Tdet
T
However, the average throughput of the primary user is
composed of the time-average of that without and with sec-
ondary interference, respectively:

Tdet
T
The pertinent quantity is the change (reduction) in through-

put of the primary user due to secondary interference, given
by

THyeelHy = (1 — —+)Cs1

Tdet
Cpr.
T ) PI

THp.|H\ = Cp+(1-—

T;ft)(CPI - Cp).

We introduce a factor to signal protection of the primary
user throughput from secondary interference by weighting it
higher in the aggregate throughput !, i.e. the average additional
aggregate throughput under primary channel occupancy is now
modified as follows:

TH|H, =

TH!

pri

|Hy = THp|Hi — Cp = (1—

TH.eo[H, +J - TH),

Tye
;_,t)(CSI + JCpy — JCP)

H,y

ri|

= (1-

(16)

Note that the only situation when the sensing scheme stops
is that it claims a free channel is detected, although this case
might be a false alarm with probability Py, . Thus, the through-
put is TH|Hy under hypothesis Hy, while the throughput is
T H|H, Psq under hypothesis H;. Combining Eqns. (15) and
(16), the average aggregate opportunistic throughput can be
re-written as:

TH = THI[HoPr(Ho)+TH[H,P;,Pr(H;)

1J = 1 is the direct sum of the throughput a) increase by opportunistic
secondary occupation and b) decrease seen by the primary user due to
secondary interference.
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(1= 26— pPpa),

where (;5 = )\CS and Y = (1 — )\)(JCP — JOPI - 05[).

A7)

B. Maximizing Average Aggregate Opportunistic Throughput

Following the constraints setup in the previous section, to
maximize the average aggregate opportunistic throughput, we
can formulate the problem as below:

max  TH
x,N
subject to DPi(z,N) > oy

2)Pro(x,N) < f3; (18)

It can be observed that TH = ¢— [Tt (¢ — pPy,) + ¢ Pya)-
Because 7' and ¢ are of constant positive values, we can then
re-write the original optimization problem (18) from Eq. (13)
as:

, Tiet
min - K = ;t(¢—¢Pfa)+@Pfa
subject to DQ(e,n) <1 —a;
V2e —
2) - Q=L <p-1;
) Q(\/i(%q)n)_ﬁ
3)m > 1; (19)

C. Biconvexity under Constraints

The equivalent optimization problem (19) is still non-
convex and seemingly not biconvex. However, we will prove
that it is biconvex under the constraints below:

J(Cp—Cpr) > Csr; (20)
¢—pPra > 0; (2D
o< 0 (22)

Firstly we will discuss the physical meaning of the con-
straints above. Constraint (20) is equivalent to ¢ > 0. It can
be achieved when the system desires a strong protection of
primary users, i.e., J > 1. In this case, the interference
from a secondary user in the same channel leads to the
decrease in aggregate opportunistic throughput. Constraint
(21) is achieved when Py, is relatively small, implying
that the system requires a small probability that secondary
users interfere with primary users. Constraint (22) is achieved
when PLL settling time is very small, compared with the
integration time in the energy detector. Under this constraint,
Ts = 7/B. < n?/Be. N/B,. The PLL design [13]
(Ts = 0.009us) in TV channel detection (B, = 6 M H z) is an
example of this case. Then we say T;.; approximately equals:

T+n?
1- Q(E, 77)

Theorem 2: The optimization problem (19) is biconvex for
e € E and n € H under constraints (20)-(22), if Py > 1/2
and Py, < 1/2.

Proof: See Appendix V.

Taet = ~nPF(e,n) .

D. Algorithm of Solving Biconvex Problem

To solve this biconvex optimization problem, we use an
Alternate Convex Search [10], which is a special case of
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Fig. 4. Minimized average detection time: varying o.

the Block-Relaxation Methods proposed by Leeuw [18]. The
algorithm is as follows:

Step 1: Suppose that B is the convex set for € and 7 as
described in Appendix I. Choose an arbitrary available starting
point (g;,7;) and set i = 0.

Step 2: Solve for fixed 7; the convex optimization problem:

min{K (e,n;),e € By, }.

If there is an optimal point &' € B, then set ;41 = g,
otherwise stop.
Step 3: Solve for fixed €;41 the convex optimization prob-
lem:
min{K(ai-l-lv 77)? ne B5i+1 }

If there is an optimal point 7 € B, , then set 1,41 = 7/,
otherwise stop.

Step 4: If (e;41,mi+1) is a stopping criterion, then stop.
Otherwise, go back to Step 2.

V. FINDING OPTIMAL POINTS: NUMERICAL RESULTS

Iterative algorithms for finding the global optimum points
in the biconvex optimization problems are discussed in [10].
Here we use the algorithm described in Section III-C to solve
the minimized average detection time. We present results for
two scenarios: for fixed 8 and varying «, and vice versa. We
let M = 100,L = 4 and B, = 6M Hz conforming to the
bandwidth of a TV channel.

We note from the equivalent problem (13) that both 7
(proportional to T) and ~y (SNR) play important roles in
determining the minimum average detection time. Thus, we
consider two SNR cases (v = +3dB) and also two values of
switching time 75 = 0.005us (type I PLL) and Ts = 20us
(type II PLL). From Eq. 11 we can notice that the channel
switching time significantly impact the the minimized detec-
tion time. If T} is very small (type I PLL), minimizing Tys
is equivalent to minimizing P4A. On the other hand, N/ B¢
will be a dominant factor when T is relatively large (type II
PLL).

Fig. 4 shows the results for type I circuit, where the circuit
switching time is much smaller than the integration time. The



LUO and ROY: EFFICIENT SPECTRUM SENSING FOR COGNITIVE RADIO NETWORKS VIA JOINT OPTIMIZATION OF SENSING THRESHOLD . ..

v=3dB, 0=0.85, TS=20;AS

120k —6— Joint Optimized xand N| |
N — ¥ — Double of Optimal N
110 —B- - Half of Optimal N j
\

£
-~ \
i)
E 1r o ]
= N
< N
o N
§ 0.9 =N N -
j5
a
208
o
[
>
< o7

0.6

. . . .

05 . . .
0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
Constraints for the False Alarm Probability ()

Fig. 5. Minimized average detection time: varying 3, v = 3dB.
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Fig. 6. Minimized average detection time: varying 3, v = —3dB.

curves of "Joint Optimized x and N’ present the results of our
joint optimization method. The curves of "Double of N’ shows
the independent optimization of x when the number of sensing
samples is the twice of the optimized value from our method.
The average detection time increases with « as expected. The
We also note that the minimum average detection time is ap-
proximately constant for 0.6 < Pd1 < 0.85. This is because the
local optimal point €,p¢imar = W—I—% is invariant
w.r.t a while satisfying the constraint Q(EoptimaiMoptimal) <
1 — a. Thereafter, the optimal mean detection time is strictly
increasing for Py > 0.85, because €optimal = %
Figs. 5-6 shows the results for type II circuit, where the
circuit switching time is close to the integration time. We
compare the results of joint optimization with the results
of independent optimized x when N is half or double of
the optimized values. It can be noticed that all curves are
going down as « increases, because the higher constraints for
false alarm probability leads to less integration time, hence
decreasing the minimum average detection time. It can be also
observed that the optimal values of detection time are at least
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Fig. 7. Performance of joint optimization and single parameter optimization.

20% lower than taking half or double of the optimal number
of sensing samples.

To have a better sense of the advantage of joint optimization
over single parameter optimization, we change the value of
optimized sensing threshold and take various values of N
(N = 7n?) to explore the minimized average detection time.
Performance of two different approaches in the given scenario
(type H PLL, A = 0.04, a = 0.8, 8 = 0.2,7 = 3dB) is shown
in Fig. 7. Because of the constraints 1 — Q(en) > 0.8 and

1—62(%77) < 0.2, we can calculate that Np,;, = 11. The
circle line in the figure gives the average detection time for the
Eoptimal- By taking various values of the number of sensing
samples, we can find that Nypiimar = 11 and Tyer = 0.554ms
for joint optimization. The square line shows the performance
when we take half of €,p¢imar to set the sensing threshold. It
can be observed that the optimal number of sensing samples is
16 in this case. The minimized average detection time of this
sensing threshold by applying single parameter optimization
is 0.628ms, which is 13% higher than the value of joint
optimization.

The maximized opportunistic throughput is shown in Fig. 8,
where we set A = 0.04,B. = 6MHz,8 = 0.05,T =
1ms,J = 2. The SNR of secondary transmission at both
primary and secondary receivers is 10dB, and the SNR of
primary transmission at primary receivers, secondary receivers
and energy detectors is 3dB. The experiment needs 1000
iterations to converge. It can be observed from the graph
that the maximized opportunistic throughput decreases as the
constraints becomes tighter. When o < 0.87, the maximized
opportunistic throughput keeps the same, because the optimal
points (Noptimar = 16) is inside the region determined by the
constraints of detection and false alarm probability. On the
other hand, the maximized opportunistic throughput is going
down for o > 0.88, since the optimal points are achieved when
the system reaches the constraint of detection probability. For
example, Noptimar = 26 for the case of a = 0.99. Intuitively,
the less detection time leads to the larger throughput. However,
taking the false alarm probability into account from Eq. (17),
there is no guarantee that the optimal points of the minimum
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average detection time result in the maximum opportunistic
throughput. Shown in Fig. 8, the opportunistic throughput
when the system achieves the minimum average detection time
is about 10% lower than the optimal value.

Fig. 9 shows the 3-D plot of the aggregate opportunistic
throughput in the same scenario while & = 0.8 and 5 = 0.1.
It can be observed that the maximized aggregate opportunistic
throughput matches the results we have. We can also see
that there is only one saddle point in the achievable region.
Although the objective function has some other local minima,
they lead to either higher false alarm probability or lower
detection probability compared to the constraints for o and
B. In this scenario, the maximized aggregate opportunistic
throughput is 6.73 * 10 (bit/sec), and it is achieved when
Noptimal =33 and Eoptimail = 0.2.

By changing the ratio of available channels (\), we present
optimal integration time for the maximum opportunistic
throughput in Fig. 10. We set the SNR of primary transmission
at primary receivers, secondary receivers and energy detectors
to 3dB. The higher SNR of secondary transmissions, the less
integration time to achieve a good Py — Py, performance.
Hence the optimal integration time is smaller than the lower
SNR case. For a higher ratio of available channels, the mean
time to detect a free channel is shorter, implying that the
optimal integration time will not be longer than the low A
case. This can be also observed from Fig. 10.
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VI. CONCLUSION

This paper proposes a biconvex optimization approach for
spectrum sensing in cognitive radio networks. We formu-
late a joint optimization problem regarding both the sensing
threshold and the number of sensing samples in the energy
detector, to minimize the average detection time of an available
channel. Although this problem is non-convex, we prove that
it can be transformed into a biconvex problem under practical
conditions, followed by a feasible fast algorithm to solve
the optimal points. We then formulate a joint optimization
problem to maximize the average aggregate opportunistic
throughput and prove that it is also biconvex under some
conditions. Numerical results show that the proposed optimal
approach can significantly decrease the mean time to detect a
spectrum hole and increase the average aggregate opportunis-
tic throughput of both primary and secondary systems.

APPENDIX A
BICONVEXITY

Let X C R and Y C R be two non-empty convex sets over
the real line; and B C X x Y. Let B, and B, be x— and
y—sections of B:

B,
By

{yeY :(z,y) € B},
{r € X:(x,y) € B}

Definition 1. Set B is a biconvex set on X x Y if B, is
convex for every x € X and B, is convex for every y € Y.

A convex set is by definition, biconvex, but the reverse is
not true. Fig. 11 gives an example of biconvex set B, which
is non-convex.

B = {(z,y)eR?*:1<2,y<2}
U {(z,y) eR?:1<2<2,0<y<1}
U {(z,y)eR?*:0<2<1,1<y <2}

It can be easily checked from the graph that B, is convex for
all y € Y and B, is convex for all x € X. For example, given
y=05, B, ={(z,y) eR?: y=0.5,1 <2 <2}
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Fig. 11. An example of biconvex set.

Definition 2: A function f : B — R on a biconvex set
B C X xY is a biconvex function on B if f,(.) := f(x,.):
B, — R is a convex function on B, for every fixed z € X
and fy(.) := f(.,y) : By = Ris a convex function on B,, for
every fixed y € Y [10].

The set of convex functions is a sub-set of possible bicon-
vex functions. A convex function must have a non-negative
definite Hessian matrix, while a biconvex function might not.
Luenberger [14] provides the example below:

flz,y) =2 — 2%y +2y% 2 > 4,y € [0,10].

It is easy to check that the determinant of the Hessian matrix
is 4(—2% + 62 — 2y), which is not always non-negative. This
implies that the Hessian matrix is not positive semi-definite
and thus f(z,y) is not convex. However, we have

%f(z,y)
f(x,y)

implying that f(x) is convex for all y € Y and f(y) is convex
for all z € X. Thus, f(x,y) is biconvex. For this biconvex
function, the global minimum is (x,y) = (4,4), and thus
fmin(xay) = 32.

An optimization problem of the form:

min{f(z,y) : (z,y) € B}

is said to be a biconvex optimization problem if the feasible
set B is convex on X X Y and the objective function f is
biconvex on B.

Distinct from convex optimization problems, biconvex prob-
lems may have a large number of local minima [10]. Regarding
minimizing of a biconvex function f : X x Y — R with a
partial optimum (z*,y*) € X x Y, Wendell and Hurter [15]
proved that f(z*,y*) < f(z,y) Vo € U(z*) Yy € U(y*),
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where U (z*) and U (y*) respectively denote the set of optimal
solutions with x = z* and y = y* to the following biconvex
minimization problem:

min{f(z,y):z € X CR,y € Y CR}.

Based on this result, some methods and algorithms have
been developed which exploit the convex substructures of a bi-
convex minimization problem to arrive at the global optimum,
more efficiently than general global optimization methods.
Floudas [16] and Goh [17] provide two such algorithms to
solve for the global minimum of biconvex problems.

APPENDIX B
PROOF OF LEMMA 1

Taking the second partial derivative of Q(én) with respect

to n gives:
>*Q(én) _ £ o (Em?/2
on? s

Since Q(+) is a monotonic decreasing function and Q(0) =
1/2, the condition that P; = 1 — Q(&n) > 1/2 is equivalent
to the condition that én > 0. Because n > 0, we have € > 0,
and this condition satisfies the positivity of 62?—77(25"). Thereby
Q(én) is convex in 7. O

APPENDIX C
PROOF OF LEMMA 2

Taking the second partial derivative of the function with
respect to n gives:

9? V2 —y
8_772[_ (mﬁ)]
—__n @)38*(ﬁ5*7)2ﬁ2/[4(7+1)21.
V2r V2(y + 1)
Similarly, because Pr, = 1—Q(
V2Er - ). The positivity of the second partial derivative

V2(v+1) /3
proves the convexity of —Q( \/5?2:{)77) in 7. O

V2e—y
V2(v+1)

1) < 1/2, we have

APPENDIX D
PROOF OF LEMMA 3

Taking the second partial derivative of the function with
respect to 7 gives:

0T yer (€ 9> M 2 M n?
d t(é‘,’f]) - TF(?;:,??)_l 4+ ’rl ’
on? on? B.L on? B.L F(&,n)
(23)
where F'(e,n) =1 — Q(en) > 0.
Let G(g,n) = dFa(:’n) = \/%8_52772/2, and thus
0> Mt . Mt 4
o7 B.L En)— = BCLF(E,W) G(E,n)-
2G(Em) + F(E ™) (24)

n? B.L F(,1) B.L F(&,n)?

As we have shown in Lemma 1 that £ > 0, hence G(€,n) >
0. Because M, 7, B, and L are of positive values, (24) is
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obviously positive and (25) is non-negative, leading to the
positivity of (23). Thus Ty.:(€,7) is convex in 7. O

APPENDIX E
PROOF OF THEOREM 2

Firstly we will show that the problem (19) is convex in 7
under constraints (20)-(22), givene =€ € E, if P; > 1/2 and

Pt < 1/2. Lemmas 1-2 provide that Q(£,7), —Q(ﬁiﬁ)n)
1

are all convex in 7. We have also proved

and % LF(@ n)~
2° Tet o Pfa V2é—y
that S54et > 0, > 0 and G(\/—( H),n)

Py>1 / 2 > Py,. By taklng the second order partial derivative
of the objective function, we have:

< 0 when

azK _ (b - QDPfa (57 77) 82%(57 77)
on? T on?
 Taet(E,n), 9*Pra(é,n)
+(1 T on?
2 (\/55—7 n)MTl 2F(g,n) —nG(E,n)
T *V2(y+1) "V B.L F(g,n)?
2¢pMn V2E —
> F(e G
> et FEn A -
2F(&,m) = nG(E,n)]. (26)
Let I(z) = ze~*/2, and then aé(;) (1—22)e=*"/2 Itis

easy to check that I(x)mmq. = I(1) = 0.6 for € R. Because
P; > 1/2, we have:

5 5 5 En £202/2
2F(g,n) — nG(g, = 2P;(é,n) — —e~
(&,n) —nG(En) d(€,m) Nor
~ I(x)maz
> 2P4(E,n) — ———
> 2F4(E,m) or
> 0. 27)
Combining (26) and (27), we can conclude that K > 0.

Therefore, the convexity in 7 under the given constramts is
proved. g

Next, we show that the optimization problem (19) is convex
in € under constraints (20)-(22), given n = n € H, if
P; > 1/2 and Py, < 1/2 Similarly we know that Q(e, 7)),

Q(ﬁiﬁ)ﬁ) and M7 o F(e,7)7" are all convex in ¢, and
aa??d > 0, 8281: fa 2 0. The convexity in ¢ is proved, by

taking second partial derivative of the objective function gives:

K 2<p V2 —~ | Mif o
g = 7 V26 ) GRF(E)
L o= wPfa(e i) 0°Taet (¢, 1) Taer(e,7), 0°Prale, )
T 0e? +(- T )@ 02
> 0. (28)

Since ¢ and 7 are independent, Theorem 2 is proved. [
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