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Abstract—Cognitive radio networks require fast and re-

liable spectrum sensing to achieve high network utilization

by secondary users. Current optimization approaches to

spectrum sensing to-date have focussed on maximizing ag-

gregate throughput while considering only a single param-

eter variable pertinent to sensing, notably the threshold

or duration, but not both. In this work, we consider joint

minimization of the average detection time for finding a

spectrum hole as a function of both parameters. We show

that the resulting non-convex problem is actually biconvex

under practical conditions and solve for a global optimum

detection time. Numerical results show that the proposed

approach can considerably improve system performance

in terms of the mean time to detect a spectrum hole.

I. INTRODUCTION

The shift to digital television broadcasting in June

2009 has opened up typical “white spaces” [1] in the

VHF and UHF bands. As a result, the Federal Com-

munications Commission (FCC) is encouraging use of

these under-used spectrum by unlicensed users [2] to

enhance overall utilization. The unlicensed users must

be cognitive, i.e., possess the attribute spectrum sensing

in order to detect available white spaces and subsequent

spectrum sharing. In such a scenario, the TV broadcast-

ing stations and receivers constitute the primary network

while the unlicensed users attempting to use white spaces

opportunistically are secondary users.

Efficient spectrum sensing is critical in the coexis-

tence of primary and secondary users in licensed bands.

Incorrect decisions at the sensing stage leads to two

consequences: a) mis-detection of active primary users

and imposing inadmissible interference to them or b)

missed transmission opportunity when a primary channel

is idle. Thus, sensing performance is evaluated in terms

of two probabilities: probability of false alarms (primary

users present but detected as idle by secondary users) and

probability of mis-detection (idle bands being detected as

active by secondary users). These are functions of both

the sensing threshold as well as the sensing duration.

Liang et. al. [3] proposed an optimal sensing du-

ration in order to maximize achievable throughput of

the secondary network. Later, the authors extended this

single frame optimization approach over multiple slots.

Quan et. al. [4] developed an optimization approach to

maximize the aggregate throughput for optimal sensing

thresholds for each sub-band. However no work to date

considers optimization of sensing with respect to both

threshold and integration time - this is the main contri-

bution of our work. Increasing the detection threshold

increases both the false alarms of primary users and

successful detections of spectrum holes. Similarly, inte-

gration over longer duration improves spectrum sensing

performance for a given threshold of mis-detections.

Accordingly, we

• Formulate an optimization problem of minimizing

mean time to detection subject to constraints on the

probabilities of missed detection and false alarm;

• Convert the resulting non-convex problem into a

bi-convex problem that allows ready computation

of the desired optimal values of the key variables

(integration time and threshold). time.

II. SYSTEM MODEL

A. Channel Searching Model

We consider a scenario where the spectrum is com-

posed of M contiguous channels, each of bandwidth

Bc. We assume that all secondary users are controlled

by a central controller to search for available channels.

We consider simple one-stage sensing techniques such

as random and serial search in this paper. Random

search looks for a spectrum hole (available channel) by

randomly choosing a channel, while serial search se-

quentially searches over the entire spectrum, as depicted

in Fig.1, until a free channel is found.



Fig. 1. Channel searching model

We assume that channel state is described by a set

of i.i.d Bernoulli variables, and the expected number of

available channels is L (<< M typically). Thus the

probability of each channel being free is L/M . The

average number of search steps to detect an available

channel for both random search and serial search for

small L/M is given by [6] :

Sdet =
M

PdL
, (1)

where Pd is the detection probability of an available

channel.

B. Signal Model

We consider a binary hypothesis test for spectrum

sensing of the k-th channel as follows:

H0,k : Rk = Nk,

H1,k : Rk = HkSk + Nk,

where Rk is the received signal at the detector of the

secondary user, Sk is the primary transmitted signal, and

Hk is the channel gain between primary transmitter and

the secondary receiver. We assume that Nk is an i.i.d

Gaussian random process with mean zero and variance

E[|Nk|2] = σ2
n. We also assume that Hk is an i.i.d ran-

dom process with mean zero and variance E[|Hk|2] = σ2
h

and Sk is the fixed power of the primary user, which is

normalized to 1.

C. Energy Detector

The channel status is sensed based on energy detection

with N samples. Thus, the sensing (integration over N
samples) duration is Ti = N/Bc, and the test statistic

for the energy detector for the k-th channel is:

Yk =
1

N

N∑
i=1

|Rk(i)|2. (2)

We denote the probability of successful detection for

availability of the k-th channel as P k
d and the false alarm

probability as P k
fa. Because Hk is i.i.d:

P k
d = Pd, ∀k,

P k
fa = Pfa, ∀k.

Here, the detection probability Pd is the probability

for successfully detection of an available channel under

hypothesis H0,k. The false alarm probability Pfa is the

probability of miss-detection of a primary signal under

hypothesis H1,k.

For large value of N , by applying Central Limit

Theorem, we approximate Yk to be a Gaussian random

variable whose mean and variance under the two hypoth-

esis (H0 corresponds to channel idle and H1 denotes

channel busy) are given by:

E[Yk|H0,k] = σ2
n,

E[Yk|H1,k] = (γ + 1)σ2
n, (3)

V ar[Yk|H0,k] =
2

N
σ4

n,

V ar[Yk|H1,k] =
2

N
(γ + 1)2σ4

n, (4)

where γ = σ2
h/σ2

n is the per-sample signal-to-noise ratio

(SNR).

For a given sensing threshold x, Pd and Pfa are given

by:

Pd(x, N ) = Pr(Yk < x|H0,k)

= 1 − Q(
x − σ2

n

σ2
n

√
2

√
N), (5)

Pfa(x, N ) = Pr(Yk < x|H1,k)

= 1 − Q(
x − (γ + 1)σ2

n

σ2
n(γ + 1)

√
2

√
N ) , (6)

where the Q-function is:

Q(x) =
1

2π

∫ ∞

x
et2/2dt.

III. OPTIMIZATION OF AVERAGE DETECTION TIME

Based on the detection and false alarm probabilities

derived in the previous section, we jointly optimize two

fundamental parameters of the energy detector, i.e., the

sensing threshold and the integration time, to minimize

the mean time to detect an available channel.

A. Detection Time

We denote the channel switching time and integration

time in the energy detector as Ts and Ti, respectively.

Ts is determined by the phase locked loop (PLL) design

in the receiver circuitry and is also known as the PLL

settling time [5]. On the other hand, Ti in the energy



detector is only determined by the width of sensing

bandwidth and the number of sensing samples. Thus,

the mean time to detect an available channel is:

Tdet = Sdet(Ts + Ti),

=
M

PdL
(Ts +

N

Bc
). (7)

B. Problem Formulation

In this work, we seek to minimize the average detec-

tion time of an available channel for secondary users.

A higher average detection time leads to longer delay

to allocate a feasible channel for an incoming secondary

user, hence decreasing their throughput. Moreover, if a

primary user becomes active in a channel, being used a

secondary user, switching (to another available channel)

must be accomplished by a secondary user within a short

delay for session continuity.

Considering Eq. (7), we note a trade-off between the

average number of detection steps and the integration

time: a longer integration time leads to a better Pd−Pfa

performance, hence reducing the mean number of de-

tection steps, and vice versa. As is shown in Section

II-C, the integration time is proportional to the number

of sensing samples. Moreover, for any given integration

time, the energy detector with higher sensing threshold

results in higher detection and false alarm probabilities.

Thereby, this paper focuses on jointly optimizing the

sensing threshold and the number of sensing samples

in order to minimize the average detection time.

Therefore, the joint optimization problem is mathe-

matically formulated as below:

min
x,N

Tdet =
M

PdL
(Ts +

N

Bc
)

subject to 1)Pd(x, N ) ≥ α;

2)Pfa(x, N ) ≤ β (8)

where Pd(·, ·) and Pfa(·, ·) are detection and false alarm

probabilities, respectively and are functions of sensing

threshold and the number of sensing samples. The

parameters α and β denote appropriate constraints on

detection and false alarm probabilities.

C. Optimization of Average Detection Time

The formulation in Eq. 8 is, in general, a non-convex

optimization problem. For practical systems, a high

detection probability α and a low false alarm probability

β are desired. In this sub-section, we will prove that the

original non-convex problem can be transformed into

a biconvex optimization problem [7] when (α > 0.5)

and (β < 0.5). Biconvex problems are in general global

optimization problems, unlike convex optimization prob-

lems. Hence, we resort to transform our optimization

problem into a problem on biconvex optimization.

Definition: A function f : B → R on a biconvex set

B ⊂ X × Y is called a biconvex function [7] on B if:

fx(.) := f(x, .) : Bx → R (9)

is a convex function on Bx for every fixed x ∈ X and

fy(.) := f(., y) : By → R (10)

is a convex function on By for every fixed y ∈ Y .

An optimization problem of the form:

min {f(x, y) : (x, y) ∈ B} (11)

is said to be a biconvex optimization problem if the

feasible set B is convex on X × Y and the objective

function f is biconvex on B.

To prove the above optimization problem to be bicon-

vex, we need to prove that each of the constraints satisfy

the convexity property. We introduce variables ε = x−σ2

n

σ2

n

√
2

,

η =
√

N and let τ = Ts

Bc
. We denote E and H as the

feasible sets for ε and η. Combining Eqs. (5) and (6),

the original optimization problem in Eq. (8) is re-written

as:

min
ε,η

Tdet(ε, η) =
M

BcL

τ + η2

1 − Q(εη)

subject to 1)Q(εη) ≤ 1− α;

2)− Q(

√
2ε − γ√

2(γ + 1)
η) ≤ β − 1;

3)η ≥ 1 (12)

Lemma 1: Given ε = ε̃ ∈ E, the function Q(ε̃η) is

convex in η if Pd > 1/2.

Proof : Taking the second partial derivative of Q(ε̃η)
with respect to η gives:

∂2Q(ε̂η)

∂η2
=

ε̃3η√
2π

e−(ε̃η)2/2. (13)

Since Q(·) is a monotonic decreasing function and

Q(0) = 1/2, the condition that Pd = 1−Q(ε̃η) > 1/2 is

equivalent to the condition that ε̃η > 0. Because η > 0,

we have ε̃ > 0, and this condition satisfies the positivity

of
∂2Q(ε̃η)

∂η2 . Thereby Q(ε̃η) is convex in η. �

Lemma 2: Given ε = ε̃ ∈ E, the function

−Q(
√

2ε̃−γ√
2(γ+1)

η) is convex in η if Pfa < 1/2.

Proof : Taking the second partial derivative of the



function with respect to η gives:

∂2

∂η2
[−Q(

√
2ε̃ − γ√

2(γ + 1)
η)]

= − η√
2π

(

√
2ε̃ − γ√

2(γ + 1)
)3e−(

√
2ε̃−γ)2η2/[4(γ+1)2]

Similarly, because Pfa = 1−Q(
√

2ε−γ√
2(γ+1)

η) < 1/2, we

have
√

2ε̃−γ√
2(γ+1)

< 0. The positivity of the second partial

derivative proves the convexity of −Q(
√

2ε−γ√
2(γ+1)

η) in η.

�

Lemma 3: Given ε = ε̃ ∈ E, the function Tdet(ε̃, η)
is convex in η, if Pd > 1/2.

Proof : Taking the second partial derivative of the

function with respect to η gives:

∂2Tdet(ε̃, η)

∂η2
=

∂2

∂η2

Mτ

BcL
F (ε̃, η)−1 +

∂2

∂η2

M

BcL

η2

F (ε̃, η)
,

(14)

where F (ε, η) = 1− Q(ε, η) > 0.

Let G(ε, η) =
∂F (ε,η)

∂η = ε√
2π

e−ε2η2/2, and thus

∂2

∂η2

Mτ

BcL
F (ε̃, η)−1

=
∂

∂η

−Mτ

BcL
F (ε̃, η)−2G(ε̃, η)

=
Mτ

BcL
F (ε̃, η)−3G(ε̃, η)[2G(ε̃, η)

+F (ε̃, η)ε̃2η] (15)

∂2

∂η2

M

BcL

η2

F (ε̃, η)

=
∂

∂η

M

BcL

2ηF (ε̃, η)− η2G(ε̃, η)

F (ε̃, η)2

=
2M

BcL

[F (ε̃, η)− ηG(ε̃, η)]2

F (ε̃, η)4
(16)

As we have shown in Lemma 1 that ε̃ > 0, hence

G(ε̃, η) > 0. Because M , τ , Bc and L are of positive

values, (15) is obviously positive and (16) is non-

negative, leading to the positivity of (14). Thus Tdet(ε̃, η)
is convex in η. �

Lemma 4: Given ε = ε̃ ∈ E, the optimization

problem (12) is convex in η, if Pd > 1/2 and Pfa < 1/2.

Proof : Follows upon combining Lemmas 1-3. �

Lemma 5: Given η = η̃ ∈ H, the optimization

problem (12) is convex in ε, if Pd > 1/2 and Pfa < 1/2.

Proof : This can be proved using a similar technique

by showing that Q(εη̃), −Q(
√

2ε−γ√
2(γ+1)

η̃) and Tdet(ε, η̃)
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Fig. 2. Minimized average detection time: varying α

are all convex in ε under the constraints Pd > 1/2 and

Pfa < 1/2. �

Theorem 1: The optimization problem (12) is bicon-

vex for ε ∈ E and η ∈ H, if Pd > 1/2 and Pfa < 1/2.

Proof : Because ε and η are independent, this can be

proved from Lemma 4 and Lemma 5. �

D. Finding Optimal Points: Numerical Results

Iterative algorithms for finding the global optimum

points in the biconvex optimization problems are dis-

cussed in [7]. Here we use GOP algorithm of [8] to

determine the solution for our biconvex optimization

problem.

We present results for two scenarios: for fixed (β) and

varying (α), and vice versa. We let M = 100, L = 4
and Bc = 6MHz conforming to the bandwidth of a TV

channel.

We note from the equivalent problem (12) that both τ
(proportional to Ts) and γ (SNR) play important roles in

determining the minimum average detection time. Thus,

we consider two SNR cases (γ = ±3dB) and also two

values of switching time Ts = 0.005µs (type I PLL) and

Ts = 20µs (type II PLL).

Fig. 2 shows the results for type I circuit, where

the circuit switching time is much smaller than the

integration time. The average detection time increases

with α as expected. We also note that the minimum

average detection time is approximately constant for

0.6 ≤ Pd ≤ 0.85. This is because the local optimal point

εoptimal = Q−1(1−β)(γ+1)
ηoptimal

+ γ√
2

is invariant w.r.t α while

satisfying the constraint Q(εoptimalηoptimal) ≤ 1 − α.

Thereafter, the optimal mean detection time is strictly

increasing for Pd > 0.85, because εoptimal =
Q−1(1−α)
ηoptimal

.
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Figs. 3-4 shows the results for type II circuit, where

the circuit switching time is close to the integration time.

It can be also noticed that all curves are going down

as α increases, because the higher constraints for false

alarm probability leads to less integration time, hence

decreasing the minimum average detection time. It can

be also observed that the optimal values of detection time

are at least 20% lower than taking half or double of the

optimal number of sensing samples.

IV. CONCLUSION

This paper proposes a biconvex optimization approach

for spectrum sensing in cognitive radio networks. We

formulate a joint optimization problem regarding both

the sensing threshold and the number of sensing samples

in the energy detector, to minimize the average detection

time of an available channel. Although this problem in,

we prove that it can be transformed into a biconvex

problem under practical conditions. Numerical results

show that the proposed optimal approach can signifi-

cantly decrease the mean time to detect a spectrum hole.
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