
Data MULEs: Modeling a Three-tier Architecture 
for Sparse Sensor Networks 

Rahul C. Shah Sumit Roy Sushant Jain, Waylon Brunette 
Intel Research Intel Corp. University of Washington 

Seattle, WA 98105 Hillshoro, OR 97124 Seattle, WA 98105 

Abstract-This paper presents and analyzes an architecture 
to collect sensor data in sparse sensor networks. Our approach 
exploits the p m n c e  of mobile entities (called MULES) present in 
the environment. MULEs pick up data from the sensors when in 
close range, buffer it, and drop off the data to wired access points. 
This can lead to substantial power savin@ at the sensors BS they 
only have to transmit over a short range. This paper focuses an a 
simple analytical model for understanding performance as system 
parameten are scaled. Our model assumes two-dimensional 
random walk for mobility and incorporates key system variables 
such as number of MULEs, sensors and access points. The 
performance metria observed are the data success rate (the 
fraction of generated data that maches the access points) and the 
required buffer capacities an the sensors and the MULEs. The 
modeling along with simulation results can be used for further 
analysis and provide certain guidelines for deployment of such 
systems. 

1. INTRODUCTION 
Advances in device technology, radio transceiver designs 

and integrated circuits along with evolution of simplified, 
power efficient network stacks have enabled the production 
of small and inexpensive wireless sensor devices [I], [Z], [31, 
[4]. These small and inexpensive devices can be networked 
together to enable a variety of new applications that include 
environmental monitoring, seismic structural analysis, data 
collection in warehouses, traffic monitoring etc. Such networks 
should collect data (typically infrequently) from the sensors 
for long periods of time without requiring human intervention. 
The sensors must he low in cost and work within a limited en- 
ergy budget. Therefore, in order to achieve network longevity, 
a primary concem in such networks is power management. 

Depending upon the application, sensors may need to be 
spread over a large geographical area resulting in a sparse 
network. The sensor distribution can be homogeneous (uni- 
form spread of sensors) or heterogeneous (islands of sensors 
separated by large distances). Sensors at each city intersection 
are an example of a homogeneous distribution while sensors 
for habitat monitoring [SI are distributed heterogeneously. 
Possible approaches to ensure connectivity in such sparre 
networks include: 

Installing of multiple base stations to relay the data from 

. Deploying enough sensors to effectively form a dense 
sensor nodes in their coverage area. 

connected network [6]. 

The base station approach trades off high communication 
power needed by the sensors with the cost of installing 
additional stations. On the other hand, deploying cheap nodes 
to form a dense, fully-connected ad-hoc network may not be 
cost-effective either. The proposed architecture in this paper 
seeks to retain the advantages of both approaches - i.e. achieve 
cost-effective connectivity in sparse sensor networks while 
reducing the power requirements at sensors. 

The key to making this feasible is the ubiquitous existence 
of mobile agents [7] in many of our target scenarios that 
we term MULEs (Mobile Ubiquitous LAN Extensions) [SI. 
In the case of traffic monitoring application, this role is 
served by vehicles (cars, buses) ouffitted with transceivers; in 
a habitat monitoring scenario, animals can perform this role. 
MULEs are assumed to be capable of short-range wireless 
communication and can exchange data from a nearby sensor 
or access point they encounter as a result of their motion. Thus 
MULEs can pick up data from sensors when in close range, 
buffer it, and drop off the data to wired access points when in 
proximity. 

The primary advantage of our approach is the potential of 
large power savings that can occur at the sensors because 
communication now takes place over a short-range. Promising 
new radio technologies like Ultra-Wideband (UWB) [9] which 
operate at extremely low-power with large burst data capacity 
are potentially suited for sensor to MULE communication. The 
primary disadvantage of this approach, however, is increased 
latency because sensors have to wait for a MULE to approach 
before the transfer can occur. Nevertheless for many data 
collection applications (that require data for analysis purposes 
only on the order of hours or even a day) such increased 
latency is acceptable. The proposed three-tier MULE archi- 
tecture is thus suitable for such delay-tolerant scenarios where 
power budgets at the sensor are the over-riding conslraint. Note 
that the above argument does not address the issue of energy 
consumed during radio listening. This can be potentially high 
because a sensor has to continuously listen to identify when a 

MULE passes by. The same issue occurs in ad-hoc networks 
also, where a node has to continuously listen because it  may 
have to forward some other node’s data. Many researchers are 
working on addressing this issue for ad-hoc networks [21 [lo]. 
We believe that the ideas can he extended to our architecture 
also and hove to address this more fullv in future. 

0-7ao3-7879-~0~~$17.w~zw3 IEEE. The relative strengths and weaknesses of various approaches 

30 

Authorized licensed use limited to: University of Washington Libraries. Downloaded on July 9, 2009 at 04:40 from IEEE Xplore.  Restrictions apply.



TABLE I 
PERFORMANCE OF DIFFERENT APPROACHES FOR DATA COLLECTION IN SPARSE WIRELESS SENSOR NETWORKS. 

for data collection in sparse sensor networks are qualitatively 
summarized in Table I. In the base station approach there 
are a few base stations (same as access points) that cover 
the entire geographical area and each sensor communicates 
directly with the nearest base station. In the ad hoc network 
approach, enough sensor nodes are present so as to form 
an ad hoc network. The sensors then send their data to the 
wired access points by multi-hop routing over this ad hoc 
network. Note that while the MULE approach suffers from 
higher latency, it has both low sensor power consumption and 
low infrastructure cost: characteristics that may be important 
for many applications. 

The use of mobility to improve performance in ad hoc 
networks has been considered previously in different contexts 
[ I l l ,  [12], [7], [13], [14]. The primary objective has been 
to provide intermittent connectivity in a disconnected ad hoc 
network. However, the application of mobility to the domain of 
sensor networks is relatively new and has not been addressed 
in detail; the ZebraNet project [SI and the Manatee project 
[15], [I61 are also exploring the idea of using mobility in 
sensor networks. These projects focus on ensuring the data 
reaches all access points, whereas the MULE architecture tries 
to deliver data to only one access point. 

The next section gives an overview of the MULE archi- 
tecture. After that, the rest of the paper focuses on modeling 
the system to obtain initial insights into the performance of 
such an architecture. The goal of modeling was to understand 
the scaling of the system characteristics as the parameters - 
number of sensors, MULEs etc. change. The model chosen 
was very simple, which enabled us to obtain closed form 
analytical results for many quantities of interest, including 
data success rate (the fraction of generated data that reaches 
access points) and buffer occupancies at MULEs and sensors. 
Although latency is an important performance metric, it is 
not analyzed in this paper due to lack of space. In addition 
to detailing the analysis, system simulation results are also 
presented. These verify the analysis while providing some 
more insight into system performance. The paper finally 
concludes with the insights gained from the modeling analysis 
and simulation results and outlines future research directions 
based on this initial work. 

11. THE MULE THREE-TIER ARCHITECTURE 

The MULE architecture provides wide-area connectivity for 
a sparse sensor network by exploiting mobile agents such 

w d a  a a a  a m a a ma am a h a  a & a I 

Fig. 1 
T H E  MULES THREE-TIER ARCHITECTURE 

as people, animals, or vehicles moving in the environment. 
The system architecture comprises of a three-tier layered 
abstraction (Fig. 1) that can be adjusted to different types of 
situations and distribution needs: . A top tier of WAN connected devices, 

A middle tier of mobile transport agents and . A bottom tier made of fixed wireless sensor nodes. 

The top tier is composed of access pointstcentral repos- 
itories, which can be set up at convenient locations where 
network connectivity and power are present. These devices 
communicate with a central data warehouse that enables them 
to synchronize the data that they collect, detect duplicates, as 
well as retum acknowledgments to the MULEs (acks may be 
necessary to ensure reliability of data for certain applications). 

The intermediate layer of mobile MULE nodes provides the 
system with scalability and flexibility for a relatively low cost. 
The key traits of a MULE are large storage capacities (relative 
to sensors), renewable power, and the ability to communicate 
with the sensors and networked access points. MULEs are 
assumed to be serendipitous agents whose movements cannot 
be predicted in advance. However as a result of their motion, 
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they collect and store data from the sensors, as well as deliver 
acks back to the sensor nodes. In addition, MULEs can 
communicate with each other to improve system performance. 
For example a multi-hop MULE network can he formed to 
reduce the latency between MULE and access point. - 

The bottom tier of the network consists of randomly dis- 
tributed wireless sensors. Work performed hy these sensor 
nodes should be minimized as they have the most constrained 
resources of any of the tiers. 

Depending on the application and situation, a number of 
tiers in our three-tier abstraction could he collapsed onto 
one device. For example, to reduce latencies in the traffic 
monitoring application, the MULEs can be equipped with an 
always-on connection (such as a cellular or satellite phone) 
which would allow it to act as the too and the middle tier. 

- 

Fig. 2 
A TWO DIMENSIONAL GRID WITH THE DlFFEl 

denotes access point 
denotes sensor 

denotes MULE 

denotes possible 
MULE movements 

LENT SYSTEM COMPONENTS 

Another key advantage of the MULE architecture is its 
robustness and scalability as compared to centralized solutions. 
No sensor depends on any single MULE, and hence failure 
of any particular MULE does not disconnect the sensor from 
the sparse network. It only degrades the performance. Also 
the MULE architecture is easily scalable as deployment of 
new sensors or MULEs requires no network configuration 
and (most importantly) obviates the need for algorithmic 
scalability for key functions such as routing of packets. 

To improve reliability acknowledgments can be used. One 
can choose to use an end-to-end or tier-to-tier acknowledgment 
system. In “tier-to-tier” acknowledgment system the MULEs 
ack the sensor and the access points ack the MULES in 
turn. It has the limitation that the MULEs may fail at any 
time without delivering the data to the access points and also 
because the MULEs may not be trusted agents (data sent by 
the sensors may also be encrypted for this reason). One of 
the key challenges in implementing an acknowledgment based 
protocol in such a scenario would be to determine when to 
retransmit due to high variability in end-to-end latency. 

In summary, the benefits of our system include: 
Far less infrastructure than a fixed base-station approach. 
For applications with few sensors spread over a large area, 
the cost savings could be orders of magnitude. 
There is no overhead associated with routing packets from 
other sensors as compared to an ad hoc network approach. 
For large ad hoc networks, this overhead can lead to a 
substantial increase in energy consumption at a node. . Given a sufficient density of MULEs, the system is more 
robust than a traditional fixed network. Since sensors 
only rely on MULEs, and MULEs are interchangeable, 
the failure of any number of MULEs does not mean 
connectivity failure; it merely increases the latency and 
decreases the data success rate of the network. . System flexibility allows the same transport medium to be 
used simultaneously by different applications. The MULE 
system can be viewed as a mobile transport mechanism 
for connecting heterogeneous nodes. 

The drawbacks of our system are: . Latency for this type of network is high and limits the 
types of applications this solution would be applicable 

for. Deterministic delay hound guarantees seem feasible 
only if MULEs traverse fixed routes. . The system presupposes a sufficient amount of physical 
movement in the environment, which is a property of 
many sensor systems. . While no network is guaranteed to successfully deliver 
data all the time, our serendipitous network can encounter 
unexpected failures such as loss of a MULE or inability 
to reach sensors because of change in terrain causing 
limitations in mobility. 

111. SYSTEM MODELING 

We now focus on a simple and fully discrete (in time 
and space) model of the network that nevertheless allows 
us to investigate system performance as the parameters are 
scaled. Figure 2 shows a pictorial representation of different 
system components. We make the following assumptions in 
our modeling: 

The underlying topology on which sensors, MULEs and 
access points are placed is assumed to he a discrete 
and finite two-dimensional grid. Further, for analytical 
simplicity the planar topology is assumed to be the 
surface of a IONS (i.e the grid is wrapped in both the 
north-south and the east-west direction). 
Only a fraction of the grid points are occupied by sensnrs 
and access points. The access points are modeled to 
he uniformly spaced on the grid while the sensors are 
randomly distributed. 
The network evolves synchronously with a global clock. 
At every clock tick the following events take place: 
- Sensors generate one unit of data 
- Every MULE moves on the grid 

The MULE motion is modeled as a simple symmetric 
random walk on the grid. At every clock tick, a MULE 
moves with equal probability to any of the four neighbors 
of its current grid position. 
The MULEs communicate with the sensors or access- 
points only when they are co-located at the grid points. 
We assume sufficiently large bandwidth between the 
MULE and the sensor so as to transfer all the data 
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residing at the sensor in one contact. Although over 
simplistic we believe that for certain environments with 
less data to transfer this is a practical assumption. 
We ignore reliability issues and assume that the commu- 
nication is error-free. 
MULEs move independent of each other and do not 
exchange any data among themselves when they intersect 
(occupy the same grid point) 
Both sensors and MULEs have buffers to store data. For 
the sensors, generated data is placed in its buffer if it has 
space othenvise the new data is dropped. Similarly any 
data transferred from sensors to MULEs is placed in the 
MULE buffer only if space is available, else it is dropped. 
Initially all buffers are empty. 

Based on this model, we analyze the performance of the 
system as the grid size, number of access points and the 
number of MULES are changed. The performance measures 
that we focus on are: 

Data Success Rate: It measures the fraction of generated 
data at the sensors that the system is able to transfer to the 
access-points. In an ideal system all the data generated 
by the sensors would he transferred to the access-points. 
This would yield a data success rate of one. 
Buffer Sizing: As mentioned earlier both sensors and 
MULEs have buffers. While small buffers could lead 
to high packet drop rates, reducing the data success 
rate, large buffers have an associated penalty in terms 
of energy consumption, physical size and manufacturing 
costs. Thus  we would like to determine minimum buffer 
sizes that would ensure high data success rate while being 
cost-effective. 

The model presented above is very simple and excludes 
many real-world aspects such as radio propagation, link failure 
and bandwidth constraints. Another major concern is the 
choice of mobility model for analysis. We realize that a 
discrete random walk is not an accurate representation of the 
motion of vehicles, people etc. However, the simplicity of 
this model enables us to obtain closed-form results for the 
quantities of interest, giving us insight into system scalability. 
Also as mentioned in a recent survey [17], random walk is 
a widely used mobility model which is useful in modeling 
the unpredictable motion of entities. We hope to develop a 
more sophisticated stochastic model which can incorporate 
more generalized mobility models such as Smooth Random 
Mobility Model [181 or Brownian motion with drift [191, [20]. 
However note that with the increasing complexity of mobility 
models the hope of closed form analysis diminishes and one 
has to rely primarily on simulation. Thus we believe that a 
first order analysis with our simple model provides us with a 
useful base. 

Iv. GLOSSARY OF NOTATION A N D  SYMBOLS 

This section lists all the commonly used symbols and 
notation in this paper: 

(X")"tO A discrete-time Markov chain 

State space of the Markov chain 
The transition probability P{X,+l = 

Stationary distribution for the Markov chain 
The cardinality of a set A 
The number of points on the grid, i.e. the 
grid is fl on a side 
The number of MULEs in the system 
The number of access points (AP) in the 
system 
The number of sensors in the system 
The ratio of the number of MULEs to the 
grid size ( N m d N ) ;  (0 5 pmulea 5 1) 
The ratio of the number of access points to 
the grid size ( N a p / N ) ;  (0 5 p a p  5 1) 
The ratio of the number of sensors to the 
grid size (N,,,,,,,/N); (0 5 psensOT.. 5 1) 
The total buffer capacity on a MULE (in 
number of packets) 
The total buffer capacity on a sensor (in 
number of packets) 
Access point 
The hitting time to a sensor i in the grid, 
i.e. the time taken by a MULE starting from 
the stationary distribution to first hit i when 
there is only one MULE in the system 
The inter-arrival time to a sensor i in 
the grid, i.e. the time between consecutive 
MULE arrivals to i when there is only one 
MULE in the system 
The hitting time to a sensor i in the grid 
by any mule when there are Nmules in the 
system 
The inter-arrival time at a sensor i in the 
grid by any mule when there are NmUles in 
the system 
The time taken by a particular MULE to 
start from the set of access points and remm 
hack to it 
The buffer occupancy for a sensor i with 
SB = 00 when a MULE visits it 
The buffer occupancy for MULE k on one 
excursion from the set of access points back 
to the set. If there is only one MULE, then 
we'll drop the superscript for convenience 
The data success rate of the system, which 
is the fraction of generated data that reaches 
the access points 

jlX" = i}Vi,j E s 

V. BASIC RESULTS 

The simplest scenario consists of one access point ( N A P  = 
1) and one MULE (N,,i,, = 1) in the system. We assume 
that the MULE and the sensors have infinite buffer capacity. 
The AP is at some position (the exact position is not critical) 
in the grid of size fi on a side. The MULE is assumed to 
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perform a simple symmetric random walk on the grid. The 
state space S consists of the points on the grid scanned in 
any order to form a vector of length N (i.e., IS1 = N ) .  This 
simple model allows us to apply the large body of relevant 
results from discrete-time, finite state Markov chains. We rely 
on the stationary distribution li = (xi : i E S) to estimate 
average values of the quantities of interest. 

The transition probabilities for the Markov chain with state 
space S are: 

(1) 1/4 if (ij) has an edge 
otherwise Pij = { 0 

Since CiES lii = 1 and all states are equiprobable (i.e li; = 
lij V i , j  E S), we get, 

1 
= 3 

We next compute the following: . Average inter-amival time at a sensor node i, E[R;]  
Average length that the MULE traverses before it relums 
IO the AP, ElRap] . Average number of data samples the MULE picks up 

The average time it takes for the MULE to retum to the 
same sensor node i is the inverse of the stationary probability 
by Markov chain theory. Therefore, 

during one traversal, E [ M ]  

Since a unit data is generated every clock tick, this is also 
the average value of the buffer occupancy at the sensor E[Z,] 
when the MULE visits it (because SB = m, so the buffer 
occupancy is the same as the amount data generated). Note 
that this is the average value of the sensor buffer occupancy 
Observed only when the MULE visits the sensor, not over all 
instants of time (the second quantity is not of much use in 
analyzing the system and is also harder to characterize). 

Similarly, the average number of steps the MULE takes 
before returning to the access point is: 

The number of data samples the MULE picks up during 
one traversal depends on three things - the length of the 
traversal Rap, number of sensors encountered which depends 
on psensors and the buffer occupancy at the sensors Z;. Since 
the three quantities are independent, the average is simply 
given by (since M E  = w). 

E [ M ]  = E[Rap]  . psensors . E[Z,l 
= E[RAPI psensors.  EIR,] 

( 5 )  

The above results provide useful preliminary insights into 
the performanceof the system as the grid is scaled. Clearly, the 
time between MULE visits to a sensor grows linearly with the 
grid size as shown in (3). This has two implications. Firstly, the 

- - p.en,o,sN2 

+t+++-t 

Fig. 3 
A TWO DIMENSIONALGRID WITHTHE SQUARES REPRESBNTINGTHE 

POSITIONS OF THE ACCESS POINTS 

required buffer at the sensor needs to scale with the grid size 
to prevent loss of datal. Secondly, the latency for data samples 
also increases with the grid size. Both these problems can be 
mitigated by having multiple MULES in the system, a case 
considered in section'VI1. 

The second insight is that with only one access point in 
the system, the length of MULE excursions from the AP to 
the AP grows linearly as shown in (4). Similar to the case 
above, there are two implications. The first is that the required 
MULE buffer needs to he large to prevent loss of data. In fact. 
the required buffer size grows as the square of the grid size 
as shown by (5 )  above (Again we use E [ M ]  to get an idea 
of the buffer sizes needed to avoid packet drops). The second 
implication is that the latency for the data when traveling from 
the sensor to the access p in t s  grows linearly. This means that 
the number of access points in the system needs to scale with 
the grid size, a case considered in section VI. 

VI. SCALING WITH NUMBER OF ACCESS POINTS 

In this section, we analyze the effect of multiple access 
points in the system. We assume that the access points are 
spaced at a distance of fi points on the grid in both the x 
and y directions. Therefore, K = NjNAp = 1 jpAp. We still 
assume that only one MULE is present in the system. 

Result 1: If the access points are regularly spaced at a 
distance of fi points on the grid in both the x and the 
y directions, then the expected length of excursion for the 
MULE starting from the set of access points till it reaches the 
set again (could be the same AP or another one), 

E[Rap] = K 
(6) 

1 

PAP 
Looking at the symmetry of the grid in Fig. 3, 

'Notice ulal while we ~ssume SB = m. in reality h e  buffer capaciry har 
to be finilc but sufficiently large 10 avoid packer drops. Thus we use E[Ri]  
to provide m indication of suficienrly large. 

- _ -  
Pmof 
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Fig. 4 

FOLDED VERSIONOF THE TWO DIMENSIONALORID TO FORM A SMALLER 

GRID (THE TYPES OF NODES AND THEIR TRANSITION PROBABILITIES ARE 

ALSO SHOWN) 

we can reduce the state space to a smaller grid of size f i x  
as shown in Fig. 4. This can be seen to be the result of 

folding the entire grid onto the smaller box containing only one 
access point A (which represents all the access points). This is 
possible because from the perspective of a MULE, all access 
points are equivalent. The resultant grid also remains a toNS 
(wraps around in the north-south and east-west directions). 

As in section V the stationary distribution for a node i in 
this reduced grid (size fi x fi) can be shown to be: 

Using this stationary distribution, the return time to the point 
" A  can be calculated. This is also the required excursion time 
of the MULE from the AP set to the AP set since the point 
" A  represents all the access points of the original grid. 

I 
E[RAP] = g 

= K  
1 - _  - 

PAP 

w 
Thus we see that the MULE excursion length between the 

access point set is independent of the grid size as long as the 
number of access points scale as a fraction of the grid size. 

VII. SCALING WITH NUMBER OF MULES 

In this section, we analyze the case when there are multiple 
MULEs in the system. The fraction of MULEs in the system 
is kept constant as the size of the grid is increased, i.e., 
NmuteJN = pmulee. We first calculate the average number 
of visits observed at a Sensor per unit time. We then calculate 
the expected inter-arrival times for MULEs to a sensor. That 
will extend the result (3) obtained in section V. As mentioned 
before, we assume that all the MULEs are performing inde- 
pendent random walks, with no communication among each 
other. Also, note that every MULE s&s in the stationary 
distribution, and subsequently performs a random walk, thus 
remaining in the stationary distribution. 

Now consider a sensor and a particular MULE MO. Then 
the probability that MO intersects the sensor is given by, 

(8) 
1 

P{Mo intersects sensor} = - N 

Define: 

1 if one or more MULEs intersects 
the sensor at time k 

sensor at time k 

(9) .-( 0 if no MULE intersects the 

Hence the probability that no MULE intersects with the sensor 
is given by, 

P(Y, = O }  = 

Therefore the expected number of MULE visits to a sensor 
per unit time is, ' 

""lU 

= 1 - (1 - ;) 
(large N )  (1 1) 

c;: pmute8 (small p m d  (12) 

% 1 - e-Pmulr. 

Result 2: The average inter-arrival time between MULE 
visits to a sensor i when there are Nmuies in the system is 
given by, 

(13) 

% -  l-e-Ls (large N )  (14) 
-1 - Pmur.. (small Pmutes) (15) 

1 
"",*a I = 1-(1- k)Nm.tcs 

Pmof: To find the average inter-amval time at a sensor 
i, we consider the Markov chain composed of the product of 
the Markov chains of each of the MULES. Thus the new state 
space is given by, 

S' = s x s x . . .  x s - 
N-,L.,tlmes 

In the modified state space S', we are interested in the set of 
states A which represent one or more MULEs intersecting i. 
Since all the states are equally likely, the stationary distribution 
for the set A can be calculated as, 

IAl T ( A )  = - 
IS'I 
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Thus, using Kac's formula [21], the average inter-arrival time 
between MULE visits to a sensor i is, 

. .  
1 

1 - (1  - $)N-.t.. 
- - 

w 
Corollary 2.1: Average buffer occupancy on a sensor (with 

sufficiently large buffer capacity) can now be calculated as: 

E[Sensor Buffer] = E[R?] 

(17) 
1 

Pmu1es 
e- 

Here we have used the observation that the sensor buffer 
occupancy at the times of MULE visits is exactly the same 
as the inter-anival times between MULEs. Hence the average 
values are also the same. Also note that this is just the average 
buffer occupancy seen at the times of MULE arrivals at the 
sensor; not at all times. 

Corollary 2.2: Average buffer occupancy on a MULE (with 
sufficiently large buffer capacity) can also be calculated as: 

E[Mule Buffer] = p. . , ,~ ,E[Rap]E[Rf"y' . . ]  

(18) 
e P3ensors 

PAPPmules 

Similar to the previous corollary, we use the expected value 
of the inter-arrival times at a sensor as the expected value of 
the sensor buffer occupancy when a MULE visits it. Again 
similar to the sensor buffer occupancy, this is the average 
buffer occupancy on the MULE as seen at the times of MULE 
intersections with an AP; not at all times. Thus this is the 
average amount of data that is picked up by the MULE during 
one excursion between the AP set. 

It is interesting to note that the problem of increasing buffer 
requirements at the sensor as the grid increases which we 
encountered in section V is eliminated. As long as pmules 
remains constant, the buffer requirements remain the same. So 
far we have just found the average value of the inter-anival 
times for MULES to a sensor. We next need to obtain the 
probability distribution. However, we first find the probability 
distribution for the hitting time at a sensor as that is needed 
for the result on the inter-arrival times. 

A. Hitting lime distribufion at a sensor 
For our purposes, the hitting time for a sensor a is defined 

as the first time a MULE hits i when all the MULEs start 
from the stationary distribution. We first find the probability 
distribution of the hitting time for a system with a single 
MULE before evaluating the general case of multiple MULEs. 
[21] shows that the mean of the hitting time for a single 
MULE is B ( N  IogN) for simple symmetric random walk on 
the surface of a torus. Furthermore, the distibution of hitting 
times for an ergodic Markov chain can be approximated by 
an exponential distribution of the same mean 1211. Therefore, 

where the constant c e 0.34 as N -t 00 (valid for N 2 25)  
[22]. Note that this result uses the continuous time version of 
the discrete time Markov chain, but the result is still correct 
for the discrete time case [21]. However, writing in continuous 
time simplifies the analysis considerably, thus all the hining 
and retum time probability distribution results will be for the 
continuous time chain. Using this we can now extend the result 
for the case when there are ",,lea(> 1) in the system. 

Result 3: The hitting time for a sensor i when there are 
N,,,,,., in the system, all of which start in the stationaty 
distribution is given by: 

Proof: Let H r '  denote the hitting time to sensor a for 
a single MULE k. Then, 

Thus, we obtain, 

P{H,!"'"'" > t }  = [ P { H ,  > t}lN-"'" 

w 
B. Inter-arrival time distribution (11 a sensor 

To find the inter-anival time distribution at a sensor i ,  we 
first consider the case when there is only one MULE in the 
system. In that case, the inter-arrival time at i is the same 
as the return time R; for the MULE. Unfortunately, there is 
no closed form result for the distribution, but can only be 
approximated as ?i/logt f o r t  --t m for an infinite grid [231. 
For smaller times and for finite grid sizes, this only provides 
a very loose upper bound on the tail probability. 

To obtain a better characterization we derive a recursive 
equation to compute P { R ,  = t )  (inter-arrival time distribution 
for a single MULE). Let the initial position of the MULE be 
at the grid position 0. Define L,, j ( t )  to be the number of paths 
starting from a and ending at j of length t ,  avoiding the point 0 
at all the intermediate steps. Also, let the neighbors of a node 
k in the torus be denoted by the set N(k).  Then, without loss 
of generality, for any sensor node a, 

P{& = t }  = L0,0(t)/4' (22) 

In the above equation, Lo,o(t) denotes the total number of 
valid paths that re" to 0 in t steps and 4' denotes the total 
number of possible paths o f t  steps. The following recursive 
equation can now be used to compute Lo,o(t): 

Li,j(t) = CkEN(i)hk+O L k , j ( t  ~ l),  > 
1 if j E N(i) 
0 otherwise Li&) = 
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Result 4 If the number of MULEs in a system is N,,,,., 

P{RT"'"'" > t }  p[Hfi-=I=~-~ > t }  . P{& > t} (23) 
To find the inter-arrival time distribution at a 

sensor i, we consider only the moments at which one MULE 
intersects the sensor. We ignore multiple MULEs at the sensor 
which is a very unlikely event for low mule densities. At 
this time instant, the rest of the MULEs are in the stationary 
distribution. Thus, 

the inter-arrival time at a sensor i can be written as: 

ProoR 

min (4, Hfim-Ie*- '  ) RTmdea = 

since the MULE at the sensor has to return to the sensor, but 
for the (N,,,"les-l) remaining MULEs, it is identical to hitting 
the sensors starting from stationarity. The result follows from 
this observation. w 
C. Rerum time distribution to the access points ser 

We now compute the distribution of the excursion times 
of a MULE between the access point set. As in section VI 
we consider the folded toms (Fig. 4) in which all the access 
points are represented as a single grid pint .  Since this point 
represents the set of all access points, we need to compute the 
remm time distribution to this single grid point. For this we 
can apply (22) to the folded toms to obtain the required return 
time distribution. Thus, 

PIRAP = t }  = Lo,o(t) /dt  (24) 

with Lo,o(n) defined on the surface of the folded grid of Fig. 
4. 

VIII. DATA SUCCESS RATE 
We now have the pieces in place to calculate the data 

success rate. We define the data success rate as the ratio of 
the average amount of data delivered to the access points by 
time t to the total data generated by time t as t + 00. 

Result 5: The data success rate of the system is given by, 

E [min(p,,,,,,, cz: min(RT="lcs,SB), MB)] 

E ~ R A P I N ~ ~ , , ~ .  
s= 

&MULES 
(25 )  

Pmoj We use renewal reward theory [24] to derive data 
success rate. One excursion of the MULE from the access 
point set back to the set is considered as a cycle. Therefore 
RAP is the length of a cycle. Recall that the sensors generate 
data at the constant rate of one packet per unit time therefore 
the average data generated in the system per unit time is 
N,,,,,,,. We now get the data success rate S as, 

S =  E [ C k E M U L E 3  M(k)l 
E [ R A P ] N ~ ~ ~ , ~ , ,  

Here, 

M ( k l  = 

= min(p,,,,,,, $I, M B )  

Data picked up by the MULE IC in time R a p  
R a p  

,=I 

TABLE I1 
INPUT PARAMETERS TO THE SIMULATOR 

The min-function is because the buffer capacity of the MULE 
bounds the total mount of data a MULE can carry. Now, YJkl 
is the amount of data at a sensor visited by MULE k at time 
i. This is given by, 

~ ( ~ 1  = min(Z;, SB) 

Similar to the previous step, the sensor buffer capacity bounds 
the amount of data that can be present at a sensor, hence the 
min-function. Also, since 2, is the amount of data generated 
and not yet picked up at the sensor, it has the same distribution 
as the inter-arrival time at a sensor. 

Hence, putting this all together, 

E [min(p,,,,,,, Cp=4' min(R~'""lcs, SB), MB)] 

E [ R A P ] N ~ ~ ~ ~ ~ ~ ~  
s= 

kEMULEs 
w 

Ix. SIMULATION SETUP 

A custom event driven simulator was written to verify the 
preceding analysis and also explore the conditions under which 
it holds. In this section we present a brief description of the 
simulator. 

The simulator is a discrete event driven simulator where 
time is measured in abstract units of clock-ticks. The under- 
lying grid structure is the surface of a toms with the size 
N specified during initialization. Depending on the values 
of psensors and pmules, appropriate number of sensors and 
MULEs are placed randomly on the grid in the beginning. 
Buffer sizes on both the sensors and the MULEs can also 
be specified and are completely empty when the simulation 
is started. Finally, the APs can be either randomly placed 
on the grid or regularly spaced3, with the number of APs 
depending on the value of pap. All the input parameters to 
the simulator are shown in Table 11. A summary of the various 
events handled by the simulator is given in Table 111. 

The simulator also assumes a perfect radio channel, i.e., 
there is no loss of packets during transmission. The only way 
packets can be lost is if the sensor or MULE buffers overflow. 
However, the sensors do not maintain any state (such as acks 
etc.) to implement reliability. Also there is no MULE to MULE 
interaction, even though they may occupy the same grid point. 

'Intererlingly, simulations showed similar rcsulll for bath uniform and 
random placement of access p i n t s .  
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I I 11 in the buffa If the =mor buffer IS full I 
dab is dropped 

MULE-Sensor Inm- Transfers all data f" be sen- to the 
action MULE. If the MULE buffa is full, all the 

exm dab is dropped 
MULE-AP Transfen all dab from the MULE to the AP I 1 :-- 

TABLE 111 
EVENTS DEFINED B Y  THE SIMULATOR 

1 . . . I  I '  

, . .  . . , . . . . . . . . . . . , . .  

lo* 
Id lo* 

Gnd *e IN) 

Fig. 5 
E [ R a p ]  WHILE SCALING THE GRID SIZE WITH 

paP = 1%,5%. 10% A N D Z ~ %  

X. SIMULATION RESULTS 

In this section, simulation results are presented which verify 
all the major results of the analysis and also provide certain 
insights. 

To verify scaling with access points, E[Rap] was measured 
for a variety of grid sizes from 25 x 25 to 200 x 200. As 
expected, E[Rap] remained constant across all grid sizes (Fig. 
5) when PAP was kept constant, verifying (6). 

Fig. 6 shows the effect of scaling the number of MULEs on 
the average inter-arrival time to a sensor. As expected E[&] 
remained constant for different grid sizes as long as the value 
of pmulea did not change, in accordance with (15). 

Fig. 7 plots the cumulative distribution function of the 
hitting time Hy-"'ca for pmulea = 1%, 10% and 20% on a 
20 x 20 grid. The figure verifies that using the hitting time 
result for the continuized chain is valid for the discrete time 
case also. Similarly, Fig. 8 plots the cdf of Rr-"'sa for a 
20 x 20 grid with the same values of pmuler. Finally, Fig. 9 
plots the cdf of RAP for a mule on a 20 x 20 grid where 

Figs. 10 and 11 plot the data success against the normalized 
pap = 0.25%, 1% and 4%. 

Id I d  
Gnd size (N) 

Fig. 6 
E[R;]  WHILE SCALINGTHE GRID SIZE WITH 

pmulca = 1% 5% 10% AND 20% 

sm 

pWe = 1 % (Simuiation) 
p,,= l%(Eq".20) 
pma i 10% (SimuUIbn) 
0,- = 10% m n .  20) 

- P,,- i 2ooh (SimUlaUM) 
pWs i 20% (Eqn. 20) 

I _  I _  

Time (# 01 steps) 

Fig. 7 
CDF OF THE HITTING TIMES (H,N--'=*) AT A SENSOR (zn x zn GRID) 

MULE and sensor buffers respectively. 

Normalized MULE Buffer 
Actual value of the MULE Buffer 

E[MULE Buffer] (26) - - 

Normalized Sensor Buffer 
Actual value of the Sensor Buffer 

E[Sensor Buffer] (27) - - 

For Fig. IO, the sensor buffer size was infinitely large. Note the 
steep drop-off of the data success rate with the MULE buffer 
size. Also, more than 95% data success rate is achieved when 
each MULE buffer is greater than 10E[M]. Interestingly, the 
plot also shows that one can trade-off the number of MULEs 
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Fig. 8 
CDF OFTHE INTER-ARRIVALTIMES (RY"'"''") AT A SENSOR (20 x 20 

GRID) 

Fig. 10 
DATA SUCCESS RATE VS. NORMALIZED MULE BUWER SIZE FOR 

pmmUles = 0.1%, 1% AND 10% (20 X 20 ORlD) 

4 

~- pw = 0.25% (Simuaiw) 
- - pAP = 0.25% (Eqn. 24) 

~ . pW = 1% (Simulamn) 
pW = 1% (€W. 24) 

- pW = 4% (Simulamn) 

lime (Y 01 'tepr) 

Fig. 9 
CDFOFTHERETURNTIMES ( R A P )  FORT HE ACCESS POINT SET(^^ x 20 

GRID) 

I_L I 
Id 10' Id Id 

Normalized S e n ~ r  8uWsr 

Fig. I I  
DATA SUCCESSRATE vs. NORMALIZEDSENSOR BUEER SIZEFOR 

pmuica = 0.1%, 1% AND 10% (20 X 20 GRID) 

in the system with the amount of buffer capacity on each 
MULE. This is evident from the fact that the data success rate 
curves are roughly the same for different MULE densities, 
but reducing the number of MULEs by a factor k increases 
the expected MULE buffer size by k (and vice versa). This 
will obviously impact latency, as the sensors will have to wait 
longer (or shorter as the case may he) before a MULE comes 
by to pick up the data. However, the analysis of the latency 
is left as future work. 

Similarly, for Fig. 11 the MULE buffer size was infinitely 
large. Again, a steep curve was obtained for the data success 
rate. Also, the data success rate saturates for each MULE 
density when the sensor buffer capacity reaches roughly 
10EIRr-"'c*]. However, the figure shows that we cannot 

trade-off a decrease in MULE density by increasing the 
buffers at each sensor. Higher MULE densities lead to higher 
data success rates, in general, until the sensor buffers are 
sufficiently large. 

This can he seen more clearly in Table IV which shows the 
actual values of the buffer sizes needed to achieve data success 
rates of 50% and 90%. These are shown for both the cases of 
infinite MULE and infinite sensor buffers. For SB = M, the 
amount of MULE buffer needed to achieve a certain level of 
data success rate scales inversely as the mule density. However, 
when M B  = m, the sensor buffer needs to increase by a ratio 
greater than the decrease in the number of MULEs. 

The reason for this difference lies in the Law of Large 
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success rate I S"cCell rate 
pmules MULE buffer I MULE buffer 

TABLE IV 
SAMPLE VALUES of MULE AND SENSOR BUFFER SIZES FOR 50% AND 

90% DATA SUCCESS RATES 

Numbers. When MB = 03, the drop in the data success 
rate is due to packets getting dropped at the sensors. Now 
as Nmyt.. reduces, the inter-amival time at a sensor grows 
larger, and consequently, there are larger amounts of data that 
are dropped due to sensor buffer overflow. On the other hand, 
when SB = m, data overflow occurs at the MULEs when 
the amount of data it picks up from all the sensors exceeds 
the MULE buffer capacity. However, due to the Law of Large 
Numbers, the probability of the total amount of data on the 
MULE exceeding the buffer threshold is smaller than in the 
finite sensor buffer case. 

XI. CONCLUSION AND FUTURE WORK 
In this paper we have presented an architecture to connect 

sparse sensor networks at the cost of higher latencies. The 
main idea is to utilize the motion of the entities that are already 
present in an environment to provide a low power transport 
medium for sensor data. After introducing the architecture, the 
focus of the paper was on presenting a simple analytical model 
based upon two-dimensional random walks to provide insight 
into various performance metrics (data success rate and buffer 
sizes). Our key observations are: 

The sensor buffer requirements are inversely proportional 
to Pmules. 
The MULE buffer requirement are inversely proportional 
to both pmutes and PAP. 
When the sensor buffer is large the buffer capacity on 
each MULE can be traded-off with the number of MULES 
to maintain the same data success rate. 
The change in the buffer capacity on each sensor needs 
to be greater than the change in the number of MULEs 
to keep the same data success rate. 

We plan to expand our work in couple of directions. One 
is to develop a more complete stochastic model to address 
some of the current simplifications such as infinite bandwidth, 
random-walk mobility model and error-free communication. 
Here we plan to use ideas from queuing theory and renewal 
processes. 

An important issue that is not addressed in this paper due to 
lack of space is latency. Latency has two components - latency 
on the sensor before a MULE picks up the data sample and 
the latency on a MULE before it encounters an access point. 

We have obtained some prelimimary results and will address 
that in a future publication. 

From the protocol point of view, MULE-to-MULE commu- 
nication and reliability using acknowledgments are some of 
the interesting issues. Another limitation of current work is 
the assumption that the sensors have to continuously listen in 
order to identify a MULE'S presence. Approaches to increase 
the sleep time for sensors, such as reduced duty cycle, need 
to be explored alongwith their effect on system performance. 
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