
Description of code flow for incoming and

outgoing packets

Iyappan Ramachandran

September 16, 2005

Description of packet flow

Since no real documentation exists on the NS-2 implementation, we provide
here a fundamental description of the flow of code when a packet outgoing or
an incoming packet is received by the MAC.

Outgoing

• The upper layer hands down a packet to MAC by calling
Mac802 15 4::recv(Packet *p, Handler *h).

• recv() then calls Mac802 15 4::mcps data request().
mcps data request() works by using a variable called step, which is
initialized to 0. Every time the function needs to pass control to a
different function it increments step so that when the control returns to
it, it will know where to proceed next.

• For direct transmission mcps data request() then calls
Max802 15 4::csmacaBegin(pktType) after incrementing step to 1.

• csmacaBegin in turn calls CsmaCA802 15 4::start(). start() calculates
the random backoff time, determines if it can proceed and starts the
macBackoffTimer with the backoff time determined.

• On expiry of the timer, CsmaCA802 15 4::backoffHandler() is called.
backoffHandler then turns on the receiver (through
Phy802 15 4::PLME SET TRX STATE request()) and requests a CCA
by calling Phy802 15 4::PLME CCA request().

• CCA is done exactly at the end of the 8th symbol time (i.e. 192µs) by
starting the CCAH timer with 8 symbol durations, which on expiry calls
Phy802 15 4::CCAHandler. CCAHandler determines if the channel is
idle and reports its finding by calling
Mac802 15 4::PLME CCA confirm().

1

• If the channel is found to be idle and if CW6=0,
CsmaCA802 15 4::CCA confirm() called by PLME CCA confirm()
decrements CW and in turn calls backoffHandler to perform CCA again.
If CW=0, it calls Mac802 15 4::csmacaCallback(). If the channel is found
busy, CsmaCA802 15 4::start() is called to go to the next backoff stage.

• csmacaCallback() subsequently returns control to
Mac802 15 4::mcps data request(), which enables the transmitter by
calling Phy802 15 4::PLME SET TRX STATE request() after
incrementing step to 2.

• Mac802 15 4::PLME SET TRX STATE confirm() then passes the data
to Mac802 15 4::txBcnCmdDataHandler(), which uses
Mac802 15 4::sendown() to give the data to
Phy802 15 4::recv(Packet *p, Handler *h)

• recv() then calls Phy802 15 4::PD DATA request(), which in turn uses
WirelessPhy::sendDown() (Phy802 15 4 is a sub-class of WirelessPhy) to
decrement energy and transmit the data to Channel::recv().

Incoming

• Channel::recv() then gives one copy of the packet to each node using
WirelessChannel::sendUp(), which subsequently passes the packet to
Phy802 15 4::recv() after propagation delay.

• Phy802 15 4::recv() uses WirelessPhy::sendUp() to decrement energy
and indicates packet reception to MAC using
Phy802 15 4::PD DATA indication(). Phy802 15 4::recvOverHandler()
involved here drops packets not intended for the node.
PD DATA indication() then calls
Mac802 15 4::recv(Packet *p, Handler *h).

• recv() drops the packet if there is a collision or calls
Mac802 15 4::recvData() if there is no collision. recvData() then calls
Mac802 15 4::MCPA DATA indication(), which passes the data to the
upper layer.

In the following the changes made to the NS-2 mode are described along with
the reasons for the modifications and list of files affected.

2

