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SUMMARY Point-to-point optical and millimeter wave communica-
tion has recently been of interest, especially in urban areas. Its benefits
include simpler and easier installation compared with a land-based line.
However, this technology suffers when adverse weather conditions are
present, such as rain, fog and clouds, which induce scattering and absorp-
tion of the optical wave. The effects of scattering and absorption degrade
the quality of the communication link resulting in increase of bit-error-rate.
Therefore, there exists a need for accurate channel characterization in or-
der to understand and mitigate the problem. In this paper, radiative transfer
theory is employed to study the behavior of amplitude modulated signal
propagating through a random medium. We show the effect of the medium
to a modulated signal and relate the outcome on the quality of the commu-
nication link.
key words: multiple scattering, radiative transfer theory, random media,
optical wave propagation, free space optics, millimeter-wave

1. Introduction

Point-to-point optical (free space optics or FSO) and
millimeter-wave (MMW) communication has been of inter-
est in recent years due to the increase in demand for high-
speed data links, especially in urban areas. FSO and MMW
links provide simple and fast installation. Both systems re-
quire a line-of-sight propagation channel and are affected
by adverse weather conditions such as fog, clouds, and rain.
The maximum data rate is often limited by the channel con-
dition. Therefore, an accurate model of the communication
channel is required in order to characterize and improve the
quality of the communication link.

The deterioration of the propagation channel can be
classified into two cases: (i) due to fluctuation of index of
refraction and (ii) due to volume scattering by atmospheric
particulates. For a short distance communication link, the
dominant effect usually comes from the volume scattering
and we will focus on it in this paper. This is particularly true
for the MMW link.

When the size parameter ka, where k is the wave num-
ber and a is a radius of the particle, is much smaller than
1, the scattering is almost isotropic, and we can apply the
Rayleigh approximation. On the other hand, when ka is
greater than 1 which happens when the particle size be-
comes comparable to the wavelength, the Mie scattering so-
lution should be used [1]. FSO communication operates in
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the optical frequency range, and the common wavelengths
are around 0.85 µm and 1.5 µm. Therefore, fog and clouds
which have particle sizes in the same range have a strong
effect on FSO. However, for the MMW system with a wave-
length of few millimeters, rain will be the major problem. In
both cases, scattering and absorption of the wave by discrete
particles results in deterioration of the communication link.

One of the most accurate ways to characterize wave
propagation through random media is the exact numerical
solution for the radiative transfer theory. Although the ra-
diative transfer theory is based on the conservation of en-
ergy and is less strict than the solutions of the fundamental
Maxwell’s equation, we are only interested in the modulated
intensity (or power), and the full wave solution which is very
difficult to obtain is not required in our case. The ON-OFF
keying imposed on a carrier frequency, such as a digitally
modulated optical beam, can be viewed as an amplitude
modulation on carrier frequency. Because the square wave
can be decomposed into Fourier components, if we solve the
radiative transfer equation for different modulation frequen-
cies and combine all the frequency responses, we should be
able to simulate the ON-OFF keying modulation. The fun-
damental radiative transfer equation is modified to include
the frequency modulation, which we explained in details in
our previous papers [2], [3]. The frequency modulated wave
or photon density wave has been used in several applications
because it is believed to better sustain the scattering effect in
turbid media [4], [5].

In this paper, we explain the limitation and the justi-
fication of using the radiative transfer theory for FSO and
MMW communication channels. Then, we express the vec-
tor radiative transfer equation with frequency modulation
and obtain its solution. The numerical results for different
cases will be discussed.

2. Channel Characterization Using Radiative Transfer
Theory

In classical communication theory, the channel can be char-
acterized in the time domain or in the frequency domain.
In the time domain, the impulse response exhibits the time
characteristic of the channel. On the other hand, in the fre-
quency domain, the frequency response which is the Fourier
transform of the impulse response, shows the characteristics
of the channel as a function of frequency. For a frequency
limited signal, the frequency response is a more compact



1456
IEICE TRANS. ELECTRON., VOL.E87–C, NO.9 SEPTEMBER 2004

way to evaluate the channel characteristics. We want to
investigate the response to an information carrying optical
wave. In this investigation, we consider the ON-OFF keying
modulation. We assume that the data transmitted through
the channel is a square wave which represents alternating
zero digits and one digits. The frequency spectrum of the
input wave is easily realized as a Fourier series with a funda-
mental frequency of half of the bit rate. Frequency compo-
nents of the input pulse is an infinite series of odd harmonics
of the fundamental frequency. However, at higher harmon-
ics the amplitude is reduced by a factor 1/N where N is the
harmonic order. Therefore, we can ignore the contribution
from a higher order. As a result, characterizing of the chan-
nel using the ON-OFF keying signal in the frequency do-
main will reduce the computational resource required and
provide adequate information.

To characterize the propagation channel, the scattering
and absorption effect from the medium have to be accounted
for. One way is to start with analytical theory involving
Maxwell’s equations. This method is complete in the sense
that all wave phenomena are included, but it poses a mathe-
matical challenge and, in practice, is nearly impossible to
solved [6]. The radiative transfer equation, on the other
hand, starts with statement of energy conservation. Thus, it
relaxes the rigorous mathematics which exists in Maxwell’s
equations. However, it does not include some of the wave
phenomenon. It also assumes there is no correlation be-
tween fields. In this particular problem where only the in-
tensity is of consideration, radiative transfer theory can be
applied to explain the behavior of the intensity of the wave
propagating through a random scattering medium.

We model both the FSO and MMW channels with the
following assumptions. The medium is a slab of a homo-
geneous background of air with suspended particles. The
particles are assumed to be spherical water droplets. The
distribution of the particles throughout the slab is uniform.
An important parameter indicating the randomness of the
medium is the optical depth τo defined by τo = ρσtL where
L is the length of medium. In our calculation, we use
L = 200 m. The concentration of particles ρ depends on
the condition of the weather. This parameter should be care-
fully considered since radiative transfer theory works only
in the case where the particles are not too dense. The total
scattering cross section of a single particle σt can be cal-
culated using the Mie solution with assumption of spherical
shape.

In the FSO channel, we employ data from reference [7]
which give the distribution of fog particles in Table 1. The
wavelength used in the calculation is 0.8 micron. We con-
sider cases of weather varying from light fog with visibility
about 1–5 km corresponding to optical depth of about 0.8 to
the heavy fog with visibility less than 200 m corresponding
to the optical depth of more than 7 [8]. Our calculations
show the result of the optical depth of 1 and 15. For the
MMW case, we use a frequency of 220 GHz and the parti-
cle distribution of rain given by reference [9]. We consider
four types of rain ranging from light rain (1 mm/hr) to heavy

Table 1 Particle size distribution of fog.

Diameter of Particle (µm) Number of particles

0.4 3

0.6 10

0.7 40

1.4 50

2.0 7

3.6 1

5.4 9

8.0 2

Fig. 1 Size distribution of rain droplets.

rain (100 mm/hr). Figure 1 shows the volume distribution
for several rain rates.

The signal is an ON-OFF keying modulation with a
modulation frequency of 50 MHz and 500 MHz correspond-
ing to the bit rate of 100 Mbit/sec and 1 Gbit/sec. The ON-
OFF keying signal can be decomposed in the Fourier series
with odd harmonics with respect to the fundamental fre-
quency. We are able to calculate the intensity of the wave
at particular frequencies using the radiative transfer and re-
combine them to construct the response of the input opti-
cal wave. As Fig. 2 shows, the FSO signal consists of the
DC term and the AC term. Both have to be considered to
complete the reconstruction of the output signal. Each term
creates the coherent and incoherent contribution to the sig-
nal after propagation through the medium. Therefore, there
are four terms that contribute to the output signal. Coherent
components are the result of waves that are no affected by
scattering and absorption. The amplitude of this component
dramatically drops as a function of the optical length ρσtz
where z is the distance in meters. As a result, at the other
end of the medium (z = L), the reduction is exp(−τo). On
the other hand, the incoherent components encounter multi-
ple scattering. These components obey the radiative transfer
theory. To find the output intensity on these components, the
radiative transfer equation must be employed. We choose
the frequency-domain pulse-vector radiative transfer equa-
tion which is an extension of the well-known radiative trans-
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Fig. 2 Model of optical propagation through a random medium using
radiative transfer theory.

Fig. 3 Plane parallel problem.

fer equation [10]. The frequency domain gives the capabil-
ity to solve for a modulated signal. The vector formulation
provides information about the polarization. Thus, we can
find solution in any kind of polarization orientation, circu-
lar or linear. Solving the incoherent component of the DC
term is merely solving the radiative transfer equation with
no modulation. However, the incoherent component of the
AC term is the solution of the radiative transfer equation
with frequency modulation. With the Fourier series expan-
sion, we can solve each harmonic separately.

There is an important parameter for the receiver called
field-of-view (FOV) which is the indication of ability to cap-
ture the intensity [11]. Wide FOV receivers are able to cap-
ture more intensity which improves the signal-to-noise ratio,
but also increases the effect from scattering because they
also capture multiple scattered signals.

The limitation and justification of this modelling are
the following. Based on radiative transfer, the medium can-
not be too dense. We limit ourselves to the plane wave in-
cidence on a plane parallel geometry shown in Fig. 3 be-
cause the formulation and computations can be simplified
substantially. This approximation of plane wave should be
valid in this case since the geometry in these calculation can

be considered in the far-field regime. This geometry is also
a reasonable assumption in practice. In general, radiative
transfer theory should work in any geometry with careful
consideration of the boundary conditions. We assume that
the particle is spherical to be able to use the well-established
Mie solution to calculate the phase function. Any other par-
ticle shapes can be included if their phase functions can be
calculated.

3. Radiative Transfer Equation and Its Solutions

The frequency-domain pulse-vector radiative transfer equa-
tion in plane-parallel problem is given by(

µ
∂

∂τ
+ 1 − i

ω

τo

)
I(ω, τ, µ, φ)

=

∫ 2π

0

∫ 1

−1
S(µ, φ, µ′, φ′)I(ω, τ, µ′, φ′) dµ′ dφ′

+ J(ω, τ, µ, φ), for 0 ≤ τ ≤ τo (1)

where I is the modified Stokes parameter given by

I =
[
I1 I2 U V

]T
=

[ 〈
E1E∗1

〉 〈
E2E∗2

〉
2� 〈

E1E∗2
〉

2� 〈
E1E∗2

〉 ]T (2)

µ = cos(θ). The optical distance τ is given by τ = ρσtz. S is
the scattering matrix or Mueller matrix given by

S =
[
S1 S2

S3 S4

]
(3)

where submatrices S 1, S 2, S 3, S 4 are given by

S1 =

[| f11|2 | f12|2
| f21|2 | f22|2

]
(4)

S2 =

[�( f11 f ∗12) −�( f11 f ∗12)
�( f21 f ∗22) −�( f21 f ∗22)

]
(5)

S3 =

[
2�( f11 f ∗21) 2�( f12 f ∗22)
2�( f11 f ∗21) 2�( f12 f ∗22)

]
(6)

S4 =

[
2�( f11 f ∗22 + f12 f ∗21) −2�( f11 f ∗22 − f12 f ∗21)
2�( f11 f ∗22 + f12 f ∗21) −2�( f11 f ∗22 − f12 f ∗21)

]

(7)

The scattering amplitudes f11, f12, f21, and f22 are given by
Cheung and Ishimaru [12]. J is the source term. In most
cases, the particles have various sizes, which may be ex-
pressed in a size distribution. We calculate the scattering
amplitude at all size and then use the distribution of the size
to make an average. Thus, the resultant scattering ampli-
tudes capture the characteristics of all the particle in an av-
erage fashion.

The input signal is the combination of the DC term and
the AC term expressed as

Itotal(t) = IDC + IAC(t) exp(iωmodt) (8)

where ωmod = 2π fmod and fmod is the modulation frequency.
The derivation from now on is based on the AC term which
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includes the modulation. The derivation and solution of the
DC term is the same except that the modulation frequency
is set to zero.

The solution of the radiative transfer equation can be
separated into reduced (coherent) intensity and diffuse (in-
coherent) intensity. Reduced intensity is the component that
does not encounter the multiple scattering from the medium.
Thus, the contribution from the scattering matrix S is ig-
nored. It obeys the equation

∂

∂τ
Iri = −Iri (9)

The solution to this equation in the normally incident plane
wave case is

Iri(t, τ) = Io f (t, τ) exp(−τ)δ(φ)δ(µ − 1) (10)

where Io is the incident modified Stokes vector. The pulse
shape function f (t, τ) for continuous wave is defined by

f (t, τ) = exp

[
−iωm

(
t − τ
τo

)]
(11)

where ωm = ωmod(L/c) is the normalized angular modula-
tion frequency. Note that t is this equation is also the nor-
malized time (tn = t(c/L)) but, throughout this paper, we
omit the subscript ‘n’.

To find the solution to the diffuse component, we go
back to the frequency dependent equation (Eq. (1)) where
the source term is the result of the incident modified vector.
The diffused modified Stokes vector Id satisfies(

µ
∂

∂τ
+ 1 − i

ω

τo

)
Id(ω, τ, µ, φ)

=

∫ 2π

0

∫ 1

−1
S(µ, φ, µ′, φ′)Id(ω, τ, µ′, φ′) dµ′ dφ′

+ Fo(µ, φ) f (ω, τ) exp(−τ), for 0 ≤ τ ≤ τo (12)

where Fo = S(µ, φ, 1, 0)Io, and f (ω, τ) is the Fourier trans-
form of f (t, τ) given by

f (ω, τ) = exp

(
−iω
τ

τo

)
2πδ(ω − ωm). (13)

Using ω = ωm + ω
′ and I′d(ω, τ) = Id exp(−iωτ/τo),

Eq. (12) is transformed to[
µ
∂

∂τ
+ 1 + (µ − 1)i

ω′ + ωm

τo

]
I′d(ω′, τ, µ, φ)

=

∫ 2π

0

∫ 1

−1
S(µ, φ, µ′, φ′)I′d(ω′, τ, µ′, φ′) dµ′ dφ′

+ Fo(µ, φ) f (ω′, τ) exp(−τ), for 0 ≤ τ ≤ τo (14)

where

f (ω, τ) = 2πδ(ω′). (15)

Equation (14) is solved by using boundary conditions

I′d(τ = 0) = 0 for 0 ≤ µ ≤ 1 (16)

I′d(τ = τo) = 0 for − 1 ≤ µ ≤ 0. (17)

The solution from Eq. (14) is in the frequency domain. To
transform into the time domain, we use

Id(t, τ) =
1

2π

∫
I′d(ω′, τ) exp

(
iω
τ

τo
− iω′t

)
dω′. (18)

We can further reduce the variable under assumption
that the azimuthal domain is symmetrical due to the plane
parallel geometry. The azimuthal dependence can be ex-
panded using Fourier series

I′d(τ, µ, φ, t) = I(0)
d (τ, µ, t)

+

∞∑
n=1

[
I(n)

dc (τ, µ, t) cos(nφ) + I(n)
ds (τ, µ, t) sin(nφ)

]
. (19)

For linear polarization, there are only two non-zero
modes in mode 0 (n = 0) and mode 2 (n = 2). On the
other hand, for circular polarization, only mode zero is non-
zero. Therefore, we can write Eq. (14) with the reduction of
the φ variable as

µ
∂

∂τ
I′d(ω′, τ, µ) +

[
1 + (µ − 1)i

ω′ + ωm

τo

]
I′d(ω, τ, µ)

=

∫ 1

−1
L(µ, µ′)I′d(ω′, τ, µ′) dµ′

+ Fo(µ) f (ω′, τ) exp(−τ), for 0 ≤ τ ≤ τo (20)

where L is

L(µ, µ′) =
∫ 2π

0
S(µ, µ′, φ′ − φ) d(φ′ − φ). (21)

The solution of Eq. (20) can be computed numeri-
cally. With the use of the Gauss quadrature, we approxi-
mate the integration as a summation of 2N terms (−N . . . −
1, 1, . . . ,N) [6]. Then, Eq. (20) become a matrix equation.
Note that this number of Gauss quadrature affects the com-
putational time tremendously. In our calculations, we use
N = 40. The solution to the matrix equation leads to the
solution of the diffuse component of the modified Stokes
vector. The solution for the coherent component of the mod-
ified Stokes vector is given in Eq. (10). Thus, by combining
these two solutions, we can reconstruct the optical signal
propagating through a random scattering medium. In all our
results, we use the vertically linear polarization where

Io =
[
1 0 0 0

]T
. (22)

4. Results and Discussions

In general, the scattering random medium induces absorp-
tion and scattering in the input signal. Therefore, there are
two main considerations to the characterization of the chan-
nel. First, the loss due to the absorption which causes the
reduction of the signal-to-noise ratio. The solution to this
problem is either increasing the transmission power, gain of
the receiver, or changing the wavelength of the carrier op-
tical frequency to reduce the loss. There are certain limita-
tions to these solutions. The transmission power is limited
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to a certain regulated amount because of the safety concern,
while the change of wavelength is limited by the available
frequency range. Thus, the attenuation is considered in our
calculation but will not be the main focus here. The other
degradation of the signal is the signal waveform distortion
created by the scattering effect. In the view of communica-
tion theory, the random medium can be realized as a transfer
function in the frequency domain or an impulse response in
the time domain. The random medium acts like a low-pass
filter. Due to the band limited nature of the medium, the
signal will suffer from spreading and Inter Symbol Interfer-
ence (ISI). Our results and discussions will concentrate on
characterization of this signal distortion effect according the
the medium when properties of medium, input signal, and
receiver vary.

4.1 FSO Characteristics

First, we consider the frequency response of the channel.
The randomness of the channel is governed by the optical
depth (τo) value; thus, we plot the frequency response when
optical depth varies in Fig. 4. The results show that the chan-
nel acts as a low-pass filter. The greater the optical depth,
the more pronounced the low-pass effect. The channel also
shows a non-linear phase response which indicates signifi-

Fig. 4 Frequency response of an FSO channel (A) Magnitude (dB) and
(B) Phase.

cant distortion.
Figure 5 shows the AC component wave form of the

output signal at the modulation frequency of 50 MHz corre-
sponding to a 100 Mbit per second data transmission. Since
we only combine the contribution of the wave up to the ninth
harmonic, even when a signal encounter small randomness
(optical depth of 1) it is not a perfectly square wave. Each
frequency component encounters different attenuation and
phase shift (or time delay). Therefore, at the receiver, the
composition of the wave shows signs of distortion. The
more randomness the signal encounters, i.e. the larger the
optical depth, the more distorted the signal output becomes
as shown in Fig. 5(b).

Since the distorted portion of the signal is the result of
the diffuse component, the larger the diffuse component, the
larger the distortion. Here, the coherent component is atten-
uated at the rate of exp(−τo), while the diffuse component
increase as τo gets larger. Therefore, we can roughly classi-
fied the behavior of the signal into two categories: the coher-
ent dominate regime and the incoherent dominate regime. In
the coherent dominate regime, the signal distortion is min-
imal because signal does not endure the scattering effect.
However, the signals show considerable distortion in the in-
coherent dominate regime. The FOV of the receiver also

Fig. 5 Received ac signal at the receiver with FOV of 50 mrad at 50 MHz
modulation (A) τo = 1 and (B) τo = 15.
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Fig. 6 Comparison of rms value of incoherent and coherent components
as a function of optical depth at 50 MHz modulation when FOV varies.

Fig. 7 Comparison of rms value of incoherent and coherent components
as a function of optical depth at 500 MHz modulation when FOV varies.

has a strong effect on the distortion of the signal because
it dictates the amount of diffuse component received. The
obvious question might be why not let the FOV be very
small so that we limit the distorted signal. The answer is
that the reduction of the FOV is limited by the physical re-
ceiver dimension. More importantly, when the optical depth
gets larger, the coherent component becomes so small that
we cannot detect anything. The incoherent component may
be used in those cases. Figure 6 shows where the coherent
and incoherent dominate regimes lie as a function of optical
depth in our numerical examples. Notice that when the FOV
increases, the intersection point of coherent and incoherent
components shifts to the left indicating that the incoherent
dominated region occurs at a smaller value of optical depth.

The choice of modulation frequency, which infers the
bit rate, is also very important. Figure 7 shows the coherent
and incoherence dominate regions in the case of a 500 MHz
modulation frequency. When compared with the 50 MHz
modulation frequency shown in Fig. 6, the incoherent dom-
inate region shifts to larger optical depth value when the
modulation frequency increases.

Fig. 8 Frequency response of an MMW channel with rain rate of
100 mm/hr (A) Magnitude (dB) and (B) Phase.

4.2 Millimeter Wave Communication Characteristics

We show the frequency response of the MMW channel as a
function of the optical depth in Fig. 8. The results show the
low-pass behavior and non-linear phase response, but both
are weaker when compared to FSO channel. It indicates that
MMW communication suffers less ISI effect from multiple
scattering.

Figure 9 shows the AC component wave form of the
output signal at the modulation frequency of 50 MHz, which
can be compared to Fig. 5 in FSO case. Only difference
here is the FOV which is larger in this case. Even with
larger FOV which include more scattering effects, the sig-
nals show less distortion than those in FSO case. This con-
clusion corresponds to the frequency response characteris-
tics stated previously.

We compare the effect of rain rate in Fig. 10. The re-
sults show that the higher the rain rate, the more the scatter-
ing effect because when the rain rate is high, the incoherent
dominate regime occurs when optical depth is small. This
can be explained by the fact that at higher rain rate, the av-
erage size of particles are larger, which results in more for-
ward scattering.
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Fig. 9 Received ac signal at the receiver with FOV of 200 mrad at
50 MHz modulation for rain rate of 100 mm/hr (A) τo = 1 and (B) τo = 15.

Fig. 10 Comparison of rms value of incoherent and coherent compo-
nents as a function of optical depth at 50 MHz modulation when rain rate
varies.

5. Conclusions

We explain the use of radiative transfer theory for the point-
to-point wireless channel characterization including the jus-
tifications and limitations. We express the formulation and
solution of the frequency-dependent vector-radiative trans-

fer equation. Based on these solutions, we are able to study
several aspects of the channel characterization, including the
properties of random medium, input signal and receivers.
From the numerical calculations, we show that the distortion
of the signal waveform occurs when the signal propagates
through a random scattering medium, especially in the inco-
herent dominated regime. Both optical wave and MMW are
investigated. We show the effect of the FOV of the receiver
which dictates the domination of the coherent and incoher-
ent components. This is useful information indicating where
communication is feasible.
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