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Abstract

The problem of polarized light propagating through scattering media can be explained using the vector radiative

transfer equation. This equation is an integro-differential equation and is well-known to be unsolvable analytically. One

of the approximate solutions is discrete ordinates method which is based on the discretization of the Stokes parameters

and the Mueller matrix. Although it produces accurate results, it requires a lot of computational resources. In addition,

there are limitations on the calculation for angles that are very close to the optical axis. The solutions at these angles are

necessary for some applications such as atmospheric imaging. First-order scattering approximation has been applied to

mitigate the computational resource situation. It can also be used to calculate the solution at the angles that are very

close to optical axis. However, it lacks information about the cross-polarization and it is inaccurate when light en-

counters more scattering events. Second-order scattering approximation provides more accurate solutions and offers

some information about cross-polarization. We develop the first-order and second-order scattering approximations and

their solutions for the pulse wave case. We investigate the second-order approximation solutions and compare them to

the solution from the complete vector radiative transfer equation in several cases.
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1. Introduction

The behaviors of polarized light propagating through random media have recently been under inves-
tigation. The findings will be valuable to many practical problems such as imaging through atmosphere,

biomedical imaging, etc. It is well known that the Vector Radiative Transfer Equation (VRTE) is an in-

tegro-differential equation. As of now, there is no complete analytical solution to this equation. However,
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there are several effective approximations. The Discrete Ordinates Method (DOM) is one of the standard

methods [1–4]. It is based on the angular discretization of the Stokes parameter and the Mueller matrix.

Then, the integro-differential equation can be transformed into a much simpler matrix equation. The main

disadvantage of this method is the substantial amount of computational resource required for the solutions.

The matrix equation solver requires a lot of memory and computational time, especially in the case of very

small time and angle resolutions.
First-order scattering approximation is much simpler and applicable in the cases where the scattering

effect is small [4]. It can be employed to calculate for small time and angle resolution. However, it does not

contain information about the cross-polarization. Second-order scattering approximation provides more

accurate solutions [6]. It also provides information about the cross-polarization. Thus, second-order

scattering approximation is a much easier way to solve for very small time and angle resolutions while

providing rather complete description of the co-polarized and cross-polarized components. The purpose of

this chapter is to establish the valid range where the first-order and second-order approximations are ac-

curate and to compare the solution of first-order and second-order approximations to the solution of the
complete radiative transfer equation.

In Section 2, we explain the nature of the problem and derive the first-order and second-order scattering

approximations from the pulse vector radiative transfer equation. Section 3 expresses the solution in the

linear and circular polarization cases under certain assumptions. In Section 4, we numerically calculate the

solution in several cases. The comparison between radiative transfer and the first-order and second-order

approximation are explained.

2. First-order and second-order approximations of the vector radiative transfer equation

We consider polarized light propagating through a slab of random medium in a plane parallel geometry

shown in Fig. 1. The random medium, in this case, is randomly located dielectric spheres suspended in a

homogeneous background. Such media can be realized in practical environments such as fog or clouds in

the air, biological tissues, etc. The optical distance s is defined by s ¼ qrtz, where q is the number density, rt
is the total cross-section of a single particle, and z is the actual distance in the medium. The optical depth s0
is defined by qrtL, where L is the thickness of the slab of random medium.
The equation that governs the behaviors of the light pulse propagating through a source free discrete

random medium is the pulse Vector Radiative Transfer Equation (VRTE). The frequency dependent form

of this equation is expressed in Eq. (1)

l
o

os
Iðx; s; l;/Þ þ 1

�
þ ðl � 1Þix

s0

�
Iðx; s; l;/Þ

¼
Z 2p

0

Z 1

�1
Sðl;/; l0;/0ÞIðx; s; l0;/0Þ dl0 d/0 for 06 s6 s0; ð1Þ

Fig. 1. Plane parallel problem.
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where l ¼ cos h is the cosine of the polar angle. This equation can be solved with the boundary conditions
of

Iðs ¼ 0Þ ¼ 0 for 06 l6 1; ð2aÞ

Iðs ¼ s0Þ ¼ 0 for � 16 l6 1; ð2bÞ
where I is the modified Stokes parameter, defined by

I ¼ ½I1 I2 U V �T: ð3Þ
S is the Mueller matrix expressed in Eq. (4),

Sðl;/; l0;/0Þ ¼ S1 S2
S3 S4

� �

¼ r�1
t

jf11j2 jf12j2 Rðf11f 

12Þ �Iðf11f 
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21Þ

2
664

3
775; ð4Þ

where f11; f12; f21; f22 are the scattering amplitudes explained in Appendix A. The submatrices S1;S2;S3, and
S4 are introduced for convenience in the derivation later in this paper. To find the time-dependent pa-

rameters, we apply the Fourier transform to Eq. (1). Then, we have

Iðt; s; l;/Þ ¼ 1

2p

Z
Iðx; s; l;/Þ exp i

x
s0

s

�
� ixt

�
dx; ð5Þ

where Iðt; s; l;/Þ is the time-dependent Stokes vector. With the application of the boundary conditions, the
solution consists of the reduced and the diffuse Stokes parameters shown below

Iðx; s; l;/Þ ¼ Iriðx; s; l;/Þ þ Idðx; s; l;/Þ; ð6Þ
where the reduced Stokes parameter Iri is given y

Iriðx; s; l;/Þ ¼ I0ðxÞ expð�sÞdðl � 1Þdð/Þ: ð7Þ
Eq. (1) is an integro-differential equation which cannot be solved analytically. One approach to the solution
is to transform the equation to a differential equation and apply the boundary conditions. The details of the

solution procedures are explained by Cheung and Ishimaru [4] and the solutions for pulse vector cases are

explained in our previous paper [1]. In summary, the frequency dependent radiative transfer equation in Eq.

(1) is reduced to an ordinary differential equation by the following steps.

(1) Integrate the Mueller matrix with respect to / dependent, that is

Lðl; l0Þ ¼
Z 2p

0

Sðl; l0;/0 � /Þ dð/0 � /Þ: ð8Þ

Then, the VRTE is reduced to

l
o

os
Iðx; s; lÞ þ 1

�
þ ðl � 1Þix

s0

�
Iðx; s; lÞ ¼

Z 1

�1
Lðl; l0ÞIðx; s; l0Þ dl0 for 06 s6 s0:

For the diffuse component only, the VRTE is given by

l
o

os
Idðx; s; lÞ þ 1

�
þ ðl � 1Þix

s0

�
Idðx; s; lÞ ¼

Z 1

�1
Lðl; l0ÞIdðx; s; l0Þ dl0 þ F0ðlÞ expð�sÞ

for 06 s6 s0;

where F0 ¼ Sðl; 1; 0ÞI0.
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(2) Apply the Gauss quadrature formula which approximates the integration by summation. The Gauss

quadrature formula states thatZ 1

�1
f ðxÞ dx �

Xm
j¼�m

ajf ðxjÞ; ð9Þ

where the coefficient aj�s are the weighting polynomials [3]. Assume that the function is approximated by
Gauss quadrature in the order of N. At a given set of angles of interest fli j i ¼ �N ; . . . ;�1; 1; . . . ;Ng, the
VRTE can be written in the form of

li
o

os
Idðx; s;liÞ þ 1

�
þ ðli � 1Þi

x
s0

�
Idðx; s; liÞ ¼

XN
j¼�N

Lðli; ljÞIdðx; s; ljÞ þ F0ðliÞ expð�sÞ

for 06 s6 s0:

Therefore, we can write the equations for every angle of interest in the form of matrix equation as

o

os
Iþ AI ¼ B expð�sÞ; ð10Þ

where

I ¼ Idðx; s; l�N Þ � � � Idðx; s; liÞ � � � Idðx; s; lNÞ½ �T; ð11Þ

Ai;j ¼
1

li
1

�
þ ðli � 1Þi

x
s0

�
�

Lðli; ljÞ
li

for i ¼ �N ; . . . ;�1; 1; . . . ;N and j ¼ �N ; . . . ;�1; 1; . . . ;N ;

ð12Þ

B ¼ F0ðl�N Þ
lN

� � � F0ðliÞ
li

� � � F0ðlNÞ
lN

� �T
: ð13Þ

(3) Solve this differential matrix equation numerically. A solution of Eq. (10) may be regarded as a sum

of the particular and the complementary solution. The complete solution can be found by applying the

boundary conditions given in Eqs. (2a) and (2b).

This method provides accurate solution to the VRTE. However, the solutions are provided only at the

angles determined by the Gauss quadrature formula, which depends on the order N . The only way to
increase the angular resolution or to investigate the solutions very near the optical axis is to increase N,

which requires more computational resources.

Another approach is to treat Eq. (1) as a differential equation form as shown in Eq. (14)

dy
dx

þ P ðxÞy ¼ QðxÞ; ð14Þ

where

y ¼ I; x ¼ s; P ðxÞ ¼ m=l; m ¼ ð1þ ðl � 1Þiðx=s0ÞÞ;
and

QðxÞ ¼ 1=l
Z Z

Sðl;/; l0;/0ÞIðx; s;l;/Þ dl0 d/0
� �

:

The solution to Eq. (14) is an integral equation

y ¼ ce�
R

P ðxÞ dx þ e�
R

P ðxÞ dx
Z
e

R
P ðx0Þ dx0Qðx0Þ dx0: ð15Þ

With the application of the boundary conditions, the solution consists of the reduced and the diffuse Stokes

parameters as shown in Eq. (6). The reduced Stokes parameter Iri is given in Eq. (7) The diffuse Stokes

parameter Id is expressed as

276 S. Jaruwatanadilok et al. / Optics Communications 216 (2003) 273–287



Idðx; s; l;/Þ ¼
Z s

0

exp

�
� m

l
ðs � s0Þ

� Z Z
Sðl;/; l0;/0ÞIðx; s; l0;/0Þ dl0 d/0

� �
ds0

l
: ð16Þ

Eq. (16) cannot be solved unless some assumptions are made. A way to handle this is to assume that I in the
integrand is approximately the reduced intensity Iri given in Eq. (7). The solution with this assumption is

called the first-order scattering approximation. For forward directions ð0 < l < 1Þ, it is given by

I
ð1þÞ
d ðx; s; l;/Þ ¼

Z s

0

exp

�
� m

l
ðs � s0Þ � m

l0
s0
�
Fðx; l;/Þ ds

0

l

¼ Fðx; l;/Þ l0
mðl0 � lÞ exp

��
� m

l0
s

�
� exp

�
� m

l
s

��
ð17Þ

and for backward directions, it is given by

I
ð1�Þ
d ðx; s; l;/Þ ¼

Z s0

s
exp

�
� m

l
ðs � s0Þ � m

l0
s0
�
Fðx; l;/Þ ds

0

ð�lÞ

¼ Fðx; l;/Þ l0
mðl0 � lÞ exp

��
� m

l0
s

�
� exp

�
� m

l
s � m

1

l0

�
� 1

l

�
s0

��
; ð18Þ

where Fðx; l;/Þ ¼
R R

Sðl;/; l0;/0ÞIriðx; s; l0;/0Þ dl0 d/, l0 ¼ cosðh0Þ, h0 and /0 indicate the incident
angle of the pulse wave.

Notice that the solution of the first-order approximation involves only integration. It does not require a

matrix solver. Therefore, it is computationally economical. Also, the solution can be evaluated at any angle
l. Thus, we can investigate angles that are very close to the optical axis. However, the accuracy of our
solutions are still limited on the accuracy of the Mueller matrix.

The second-order scattering approximation is derived from the first-order approximation as illustrated

in Fig. 2. It consists of the terms from the first-order forward scattering ðIð1þÞ
d Þ and first-order backward

scattering ðIð1�Þ
d Þ. In the forward direction, the second-order approximation is given by

I
ð2f Þ
d ðx; s; l;/Þ ¼ I

ð2fþÞ
d ðx; s; l;/Þ þ I

ð2f�Þ
d ðx; s; l;/Þ; ð19Þ

where I
ð2fþÞ
d is due to I

ð1þÞ
d and I

ð2f�Þ
d is due to I

ð1�Þ
d

I
ð2fþÞ
d ðx; s; l;/Þ ¼

Z Z
0<l0<1

Sðl;/; l0;/0ÞIð2faÞd ðx; s;l; l0;/Þ d/0 dl0; ð20Þ

I
ð2faÞ
d ðx; s; l;l0/Þ ¼

Z s

0

exp

�
� m

l
ðs � s0Þ

�
Ið1þÞðx; s; l;l0;/Þ ds

0

l

¼ Fðx; l;/Þ l0
m2ðl0 � l0Þ

l0
ðl0 � lÞ

� �
exp

����
� m

l0
s

�
� exp

�
� m

l
s

���

� l0

ðl0 � lÞ

� �
exp

���
� m

l0 s

�
� exp

�
� m

l
s

����
; ð21Þ

I
ð2f�Þ
d ðx; s; l;/Þ ¼

Z Z
�1<l0<0

Sðl;/; l0;/0ÞIð2baÞd ðx; s; l; l0;/Þ d/0 dl0; ð22Þ

I
ð2baÞ
d ðx; s; l; l0;/Þ ¼

Z s

0

exp

�
� m

l
ðs � s0Þ

�
I
ð1þÞ
d ðx; s; l0;/Þ ds

0

l

¼ Fðx; l;/Þ l0
m2ðl0 � l0Þ

l0
ðl0 � lÞ

� �
exp

����
� m

l0
s

�
� exp

�
� m

l
s

���

� l0

ðl0 � lÞ

� �
exp

���
� m

l0 s

�
� exp

�
� m

l
s

��
exp

1

l0

��
� 1

l0

�
s0m

���
: ð23Þ
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In the same fashion, the second-order scattering solution for backward direction is

I
ð2bÞ
d ðx; s; l;/Þ ¼ I

ð2bþÞ
d ðx; s; l;/Þ þ I

ð2b�Þ
d ðx; s; l;/Þ; ð24Þ

where I
ð2bþÞ
d is due to I

ð1þÞ
d and I

ð2b�Þ
d is due to I

ð1�Þ
d

I
ð2bþÞ
d ðx; s; l;/Þ ¼

Z Z
�1<l0<0

Sðl;/;l0;/0ÞIð2fbÞd ðx; s; l; l0;/Þ d/0 dl0; ð25Þ

I
ð2fbÞ
d ðx; s; l; l0;/Þ ¼

Z s0

s
exp

�
� m

l
ðs � s0Þ

�
I
ð1þÞ
d ðx; s; l0;/Þ ds

0

l

¼ Fðx;l;/Þ l0
m2ðl0 � l0Þ

l0
ðl0 � lÞ

� �
exp

1

l0

�����
� 1

l

�
ms0

�

� exp 1

l0

��
� 1

l

�
ms

���
� l0

ðl0 � lÞ

� �
exp

1

l

����
� 1

l0

�
ms0

�

� exp 1

l

��
� 1

l0

�
ms

����
; ð26Þ

I
ð2b�Þ
d ðx; s; l;/Þ ¼

Z Z
�1<l0<0

Sðl;/;l0;/0ÞIð2bbÞd ðx; s; l0;/Þ d/0 dl0; ð27Þ

I
ð2bbÞ
d ðx; s; l; l0;/Þ ¼

Z s0

s
exp

�
� m

l
ðs � s0Þ

�
Ið1�Þðx; s; l0;/Þ ds

0

l

¼ Fðx; l;/Þ l0
m2ðl0 � l0Þ

l0
ðl0 � lÞ

� �
exp

1

l0

�����
� 1

l

�
ms0

�

� exp 1

l0

��
� 1

l

�
ms

���
� l0

ðl0 � lÞ

� �
exp

1

l

����
� 1

l0

�
ms0

�

� exp 1

l0

��
� 1

l0

�
ms0

1

l

�
� 1

l0

�
ms

����
: ð28Þ

In order to obtain the second-order scattering approximation solution, numerical integrations are required

for solving Eqs. (20), (22), (25), and (27). There is a trade-off between accuracy and computational re-
sources in this process. However, the computational resources required in this approximation are signifi-

cantly less than those of the complete radiative transfer equation solution because we do not have to

compute the eigen system type of equations.

Fig. 2. The second-order scattering schematic.
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3. Linear and circular polarization of the incident wave

From the previous section, we obtain solutions of the first-order and the second-order scattering ap-

proximations. They can be further simplified when Mie scattering is applied [5]. We explain the develop-

ment in linear and circular polarization cases separately.

3.1. Linear polarization of the incident wave

The reduced specific intensity Iri for a linearly polarized wave in the x-direction is given by

Iriðx; s; l;/Þ ¼ I0ðxÞ 1 0 0 0½ �T expð�sÞdðl � 1Þdð/Þ; ð29Þ
where

I0ðxÞ ¼ I0 for delta function pulse;
I0 expð�x2T 20 =4Þ for Gaussian pulse of width T0;

�
ð30Þ

where I0 is the total incident intensity. In all our calculations, it is assumed to be 1. The diffuse specific
intensity Idðx; s; l;/Þ can be decomposed into Fourier expansions as

Idðx; s; l;/Þ ¼ ½Id�m¼0ðx; s; lÞ þ
X1
m¼1

½Idc�mðx; s; lÞ cosðm/Þ
"

þ
X1
m¼1

½Ids�mðx; s; lÞ sinðm/Þ
#
: ð31Þ

For a normally incident plane wave (l0 ¼ 1), this expansion is reduced to two non-zero modes, which are,
mode zero and mode two. Then, the specific intensity Id is reduced to

½Id�0ðx; s; lÞ ¼ ½I1 I2�T; ð32aÞ

½Idc�2ðx; s; lÞ ¼ ½I1dc I2dc 0 0�T; ð32bÞ

½Ids�2ðx; s; lÞ ¼ ½0 0 Uds Vds�T; ð32cÞ
where m corresponds to the mode number of the Fourier series. m ¼ 0 is for mode zero, m ¼ 2 is for
mode two. With this expansion, the first-order scattering solution in forward direction from Eq. (17)

becomes

I
ð1þÞ
d

h i
m
ðx; s; lÞ ¼ ½F�mðx; lÞ l0

mðl0 � lÞ exp

��
� m

l0
s

�
� exp

�
� m

l
s

��
; ð33Þ

where ½Ið1þÞ
d �0 ðx; s; lÞ is the solution to mode zero, ½Ið1þÞ

d �2 ðx; s;lÞ is the solution to mode two, and

F½ �mðx; lÞ ¼

I0ðxÞ
2rt

jAllðlÞj
jArrðlÞj

� �
for m ¼ 0;

I0ðxÞ
2rt

jAllðlÞj
�jArrðlÞj

�2RjAllðlÞA

rrðlÞj

�2IjAllðlÞA

rrðlÞj

2
664

3
775 for m ¼ 2;

8>>>>>><
>>>>>>:

ð34Þ

where the functions All and Arr are explained in Appendix A. In the same fashion, the first-order solution in

backward direction in Eq. (18) and the second-order solution in Eqs. (19)–(28) for linearly polarized light

can be calculated by substituting ½I�m for I, ½F�m for F, and ½S�m for S, where
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½S�m ¼
S1 for m ¼ 0;
S1 S2
S3 S4

� �
for m ¼ 2:

8<
: ð35Þ

We can further simplify the solution by integration of S over / as

L1ðl; l0Þ ¼
Z 2p

0

S1ðl; l0;/0 � /Þ cosð2ð/0 � /ÞÞ dð/0 � /Þ; ð36aÞ

L2ðl; l0Þ ¼
Z 2p

0

S2ðl; l0;/0 � /Þ sinð2ð/0 � /ÞÞ dð/0 � /Þ; ð36bÞ

L3ðl; l0Þ ¼
Z 2p

0

S3ðl; l0;/0 � /Þ sinð2ð/0 � /ÞÞ dð/0 � /Þ; ð36cÞ

L4ðl; l0Þ ¼
Z 2p

0

S4ðl; l0;/0 � /Þ cosð2ð/0 � /ÞÞ dð/0 � /Þ; ð36dÞ

and we define

½L�m ¼
L1 for m ¼ 0;
L1 L2
L3 L4

� �
for m ¼ 2:

8<
: ð37Þ

Then, the second-order solutions from Eqs. (20), (22), (25), and (27) become

Ið2fþÞ� �
m
ðx; s; lÞ ¼

Z 1

0

½L�mðl; l0ÞIð2faÞðx; s; l; l0Þ dl0; ð38aÞ

Ið2f�Þ� �
m
ðx; s; lÞ ¼

Z 0

�1
½L�mðl; l0ÞIð2fbÞðx; s; l; l0Þ dl0; ð38bÞ

Ið2bþÞ� �
m
ðx; s; lÞ ¼

Z 1

0

½L�mðl; l0ÞIð2baÞðx; s; l; l0Þ dl0; ð38cÞ

Ið2b�Þ� �
m
ðx; s; lÞ ¼

Z 1

0

½L�mðl; l0ÞIð2bbÞðx; s; l; l0Þ dl0: ð38dÞ

In linear polarization, the co-polarized component is I1 and the cross-polarized component is I2.

3.2. Circular polarization of the incident wave

The reduced intensity Iri for a left-handed circularly polarized wave is given by

Iriðx; s; l;/Þ ¼ I0ðxÞ 1=2 1=2 0 1½ �T expð�sÞdðl � 1Þdð/Þ; ð39Þ
where I0ðxÞ obeys Eq. (30). It can also be expanded using Fourier series expansion in / dependence in the
same way as the linear polarized wave shown in Eq. (31). For a normally incident wave, the expansion

reduces to just a single zero mode. In this mode, the equation can be uncoupled into two separate equa-

tions, which are more numerically efficient to solve. Then, equivalent to Eq. (32a) for linear polarization,

the specific intensity Id is reduced to
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Id½ �nðx; s; lÞ ¼ I1 I2½ �T for n ¼ 1;
U V½ �T for n ¼ 2;

�
ð40Þ

where n corresponds to the uncoupled equation number, n ¼ 1 is for the equation of I1 and I2 in mode zero,
n ¼ 2 is for the equation of U and V in mode zero. Thus, the first-order scattering approximation solution
from Eq. (17) becomes

I
ð1þÞ
d

h i
n
ðx; s;lÞ ¼ F½ �nðx; lÞ l0

mðl0 � lÞ exp

��
� m

l0
s

�
� exp

�
� m

l
s

��
; ð41Þ

where ½Ið1þÞ
d �1ðx; s; lÞ is the solution to the equation of I1 and I2 in mode zero , ½Ið1þÞ

d �2ðx; s; lÞ is the solution
to the equation of U and V in mode zero,

½F�nðx; lÞ ¼
I0ðxÞ
2rt

jAllðlÞj
jArrðlÞj

� �
for n ¼ 1;

I0ðxÞ
rt

IjAllðlÞA

rrðlÞj

RjAllðlÞA

rrðlÞj

� �
for n ¼ 2;

8>><
>>: ð42Þ

and

½S�n ¼
S1 for n ¼ 1;
S4 for n ¼ 2:

�
ð43Þ

In the same fashion as in the linearly polarized wave case, we find the solution to second-order scattering

approximation for circular polarization case to be

Ið2fþÞ� �
n
ðx; s; lÞ ¼

Z 1

0

½L�nðl; l0ÞIð2faÞðx; s; l; l0Þ dl0; ð44aÞ

Ið2f�Þ� �
n
ðx; s; lÞ ¼

Z 0

�1
½L�nðl; l0ÞIð2fbÞðx; s; l; l0Þ dl0; ð44bÞ

Ið2bþÞ� �
n
ðx; s; lÞ ¼

Z 1

0

½L�nðl; l0ÞIð2baÞðx; s; l; l0Þ dl0; ð44cÞ

Ið2b�Þ� �
n
ðx; s; lÞ ¼

Z 1

0

½L�nðl; l0ÞIð2bbÞðx; s; l; l0Þ dl0; ð44dÞ

where

½L�n ¼
L1 for n ¼ 1;
L4 for n ¼ 2:

�
ð45Þ

In circular polarization, the co-polarized component is ðI1þ I2þ V Þ=2 and the cross-polarization com-
ponent is ðI1þ I2� V Þ=2.

4. Numerical results

We apply the first-order and the second-order scattering approximations to a problem of a 1-lm-
wavelength light pulse propagating through a random medium. The random medium contains dielectric

spheres in the homogeneous background. The dielectric spheres have a Gaussian size distribution

with average diameter of 10 lm. We make some comparisons between the first-order approximation, the
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second-order approximation and the radiative transfer equation solution obtained from discrete ordinates

method with the same conditions.

First, we consider the angular behavior of the intensity. Fig. 3 shows the co-polarized components of the

angular spectrum of linearly and circularly polarized waves at an optical depth of 1. The results suggest that

both the first-order approximation and the second-order approximation are relatively accurate near the

optical axis. When the angle of observation gets further from the axis, the second-order shows better ac-
curacy than the first-order. This is expected since the wider the angle, the more the effect of multiple

scattering. The results also suggest that linear and circular polarizations have the same angular behaviors.

Next, we investigate the effect of the optical depth on the approximation. The angular spectrum com-

parisons for linear polarization are shown in Fig. 4. The results indicate that, as the optical depth gets

larger, the second-order approximation loses accuracy when compared with the complete radiative transfer

Fig. 3. Co-polarized component angular spectrum of comparison for the first-order (First), the second-order (Second) approximation

compared with the Discrete Ordinates Method (DOM) at the Optical Depth (OD) of 1: (a) linear polarization, and (b) circular

polarization.

Fig. 4. Linear polarization angular spectrum of the second-order approximation (Second) compared with the Discrete Ordinates

Method (DOM) at different Optical Depth: (a) co-polarization, and (b) cross-polarization.
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Fig. 5. Circular polarization angular spectrum of the second-order approximation (F+S) compared with the Discrete Ordinates

Method (DOM) at different Optical Depth: (a) co-polarization, and (b) cross-polarization.

Fig. 6. Linear polarization time-domain of the second-order (Second) compared with the Discrete Ordinates Method (DOM):

(a) co-polarization at OD¼ 0.1, (b) cross-polarization at OD¼ 0.1, (c) co-polarization at OD¼ 1, and (d) cross-polarization at OD¼ 1.
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solution. This is due to the fact that high-multiple scattering events increase as the optical depth gets large.

The second-order approximation is based on the combination of one and two scattering events only. The

accuracy of the approximation for the co-polarized component is better relative to the cross-polarized

component. That is also because the cross-polarized component is believed to have already encountered

many scattering events. Thus, more scattering orders are needed to capture the cross-polarization behav-

iors. Fig. 5 shows the same comparison as Fig. 4 for circular polarization. The co-polarized component
exhibits the same behavior as those of linear polarization. The cross-polarization shows considerable

variation at small angles close to the optical axis. This might be due to the fact that the approximation of

circular cross-polarized component comes from subtraction of two approximately equal numbers, which

are (I1þ I2) and (V ). Through the process of approximation, those numbers carry some errors already, and
upon subtraction, the effect of the errors is magnified.

Finally, we calculate the pulse-wave cases. The results are exhibited in a series of figures showing am-

plitude of co-polarized and cross-polarized components as a function of normalized time. Fig. 6 shows the

linear polarization for optical depths of 0.1 and 1. Fig. 7 shows the same for optical depths of 2 and 5.
There are some noticeable amplitude discrepancies in the cross-polarization results. The cross-polarized

component is created by many scattering events. Therefore, the approximations based on only one and two

scattering events may not be accurate. The pulse shape of linear co-polarized component using first-order

and second-order approximations in the case of optical depth of 0.1 coincide with that of discrete ordinates

method showing good accuracy. However, in the case of optical depth of 1, there are a small amplitude

Fig. 7. Linear polarization time-domain of the second-order (Second) compared with the Discrete Ordinates Method (DOM):

(a) co-polarization at OD¼ 2, (b) cross-polarization at OD¼ 2, (c) co-polarization at OD¼ 5, and (d) cross-polarization at OD¼ 5.
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difference between the first-order and second-order results and the discrete ordinates method indicating that
as the optical depth gets larger, the accuracy degrades. For the case of optical depth of 5, the amplitude of

the co-polarized component using the first-order and second-order approximations is about half (3 dB) of

that of the discrete ordinates method showing poor accuracy of approximations. It is to be expected be-

cause the optical depth is too high to be represented by only one and two scattering events. Also, there is a

large time spread in the cross-polarization case using radiative transfer solution. The second-order results

do not exhibit such a property because they are based on just one and two scattering events, which cannot

cause much time spread. Fig. 8 shows the circular polarization for optical depths of 0.1 and 1, while Fig. 9

shows the same for optical depths of 2 and 5. They suggest the same conclusion as in the linear cases except
that circular polarization appears to lose more accuracy in the cross-polarized component than that of

linear polarization for the same reason as discussed previously.

5. Conclusions

We have derived here the first-order and the second-order scattering approximations from the pulse

vector radiative transfer equation. The results suggest that they are accurate, compared to the full radiative
transfer equation solution, only when the angle of observation is close to the optical axis and the optical

depths are small. Also, the accuracy of approximation for the case of linear polarization is, in general,

better than that for the case of circular polarization.

Fig. 8. Circular polarization time-domain of the second-order (Second) compared with the Discrete Ordinates Method (DOM):

(a) co-polarization at OD¼ 0.1, (b) cross-polarization at OD¼ 0.1, (c) co-polarization at OD¼ 1, and (d) cross-polarization at OD¼ 1.
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Appendix A

The scattering amplitudes for spherical particles are given by

f11 ¼ ðl; lÞT1 þ ðr; rÞT2; ðA:1aÞ
f12 ¼ �ðr; lÞT1 þ ðl; rÞT2; ðA:1bÞ
f21 ¼ �ðl; rÞT1 þ ðr; lÞT2; ðA:1cÞ
f22 ¼ ðr; rÞT1 þ ðl; lÞT2; ðA:1dÞ

where

ðl; lÞ ¼ ð1
�

� l2Þð1� l02Þ
�1=2 þ ll0 cosð/0 � /Þ; ðA:2aÞ

(d)

Fig. 9. Circular polarization time-domain of the second-order (Second) compared with the Discrete Ordinates Method (DOM):

(a) co-polarization at OD¼ 2, (b) cross-polarization at OD¼ 2, (c) co-polarization at OD¼ 5, and (d) cross-polarization at
OD¼ 5.
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ðl; rÞ ¼ �l0 sinð/0 � /Þ; ðA:2bÞ
ðr; lÞ ¼ l0 sinð/0 � /Þ; ðA:2cÞ
ðr; rÞ ¼ cosð/0 � /Þ; ðA:2dÞ

T1ðxÞ ¼
ArrðvÞ � vAllðvÞ

1� v2
; ðA:2eÞ

T2ðxÞ ¼
AllðvÞ � vArrðvÞ

1� v2
; ðA:2fÞ

v ¼ cosH ¼ ½ð1� l2Þð1� l02Þ�1=2 cosð/0 � /Þ þ ll0; ðA:2gÞ
l ¼ cosðhÞ; l0 ¼ cosðh0Þ ðA:2hÞ

where ðh;/Þ and ðh0;/0Þ correspond to the incident and scattered wave directions, respectively. The func-
tions All and Arr are related to the scattering function s1 and s2 for Mie solution explained by Van de Hulst
[5] as

All ¼ is
2=k; Arr ¼ is
1=k: ðA:3Þ
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