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Optical Imaging Through Clouds and Fog
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Abstract—Imaging and detection of objects at optical wave-
lengths offers better resolution than at microwave or millimeter
wavelengths. However, the imaging is severely affected by scat-
tering from fog and clouds. This paper presents a study of optical
imaging through clouds by using the point-source vector radiative
transfer theory. The point-spread function including complete
polarization characteristics is presented with numerical examples
at 1 m wavelength showing the effects of aperture size and
optical depth on the shower curtain effects.

Index Terms—Optical imaging, optical propagation in random
media, optical scattering, point source, point spread function, ra-
diative transfer.

I. INTRODUCTION

T HE IMAGING and detection of objects through the atmos-
phere is an important problem of current interest. Optical

imaging offers much better resolution than microwave or mil-
limeter wave. However, the optical propagation is severely af-
fected by fog and clouds in the atmosphere. This paper presents
the imaging of objects through clouds and fog at a wavelength
of 1 m. The total distance between the object and the imaging
system is 20 km, and the fog or cloud thickness is 1 km.

If the optical depth is much smaller than one, the single-scat-
tering approximation can be used. However, light suffers con-
siderable scattering at large optical depth, thus, the diffusion
approximation is often used. In many practical situations, the
optical depth value is somewhere in between; therefore, neither
the single-scattering nor the diffusion approximations may be
appropriate. In this paper, we employ the complete vector ra-
diative transfer theory which is applicable to any optical depth
and any polarization state.

For the imaging problem, we need to consider the radiative
transfer equation with a point-source. However, this Green’s
function problem has not been solved yet. We present an approx-
imate solution to this problem, making use of the plane-wave so-
lution to the radiative transfer equation. Note that we derive the
full vector radiative transfer equation in this paper even though
we only use the intensity information in our calculations. Our
derivations are intended to be in a general form for use in the
future because polarization information is very useful and can
be exploited to improve the quality of the images.

The solution to the point-source radiative transfer is then used
in the optical system to derive the point spread function. The
image at the imaging plane and the resolution are studied in
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terms of the optical depth, the aperture size, and whether the
location of the fog is close to the object or close to the imaging
system. In this connection, we also discuss an important phe-
nomenon calledshower curtain effect. The shower curtain ef-
fect has been recognized in the applications of imaging through
random media for several years. It states that, in addition to the
properties of the random medium, the location of the random
medium also affects the image qualities. In a situation where the
properties of the random medium, i.e., concentration of the scat-
tering particles and the actual length of the medium, are fixed,
the image qualities when the random medium is close to the ob-
ject are better than the image qualities when the random medium
is close to the observer. In an everyday situation, we will see a
person behind the shower curtain better than that person sees us,
which is the source of the nameshower curtain effect.

There are several studies related to the shower curtain ef-
fect. Belov and Borisov [1] discussedT-Effectand shower cur-
tain effect. They showed that the image qualities decrease non-
monotonically as a function of the distance from the object to
the random medium. However, they concluded that this char-
acteristic depends not only on the properties of the scattering
medium and the location of the medium but also on the spatial
structure of the radiation properties of the object. In our calcu-
lations, we apply the concept of the point spread function. The
images are the result of the convolution of the object intensity
with the point spread function of the optical system including
the effect of the random medium. The counterpart of the point
spread function is the modulation transfer function concept. Ba-
sically, they are a Fourier transform pair in spatial domain. The
modulation transfer function (MTF) of layered inhomogeneous
random media was calculated [2], [3]. Several experiments were
performed to verify the shower curtain effect [2], [4]. Most of
this shower curtain effect is studied under the circumstances of
atmospheric imaging. However, the shower curtain effect has
recently been considered in the context of optical coherence to-
mography, which applies to biomedical imaging [5], [6].

We present the vector radiative transfer equation for the point-
source function in Section II. We explain the approximation
made from the plane-wave radiative transfer equation and the
limitations of this modified equation. Section III shows the anal-
ysis of the imaging system. The point spread functions are cal-
culated for various optical depths and aperture sizes. The shower
curtain effect is presented in terms of point spread function
broadening and the imaging of a cross pattern. Our conclusions
are in Section IV.

II. POINT-SOURCEVECTORRADIATIVE TRANSFEREQUATION

In this section, we first start with the vector radiative transfer
equation in the general form. Then, we derive the formulation
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in the point-source case. With some reasonable assumptions, we
are able to apply the method used in solving the vector radiative
transfer equation with plane-wave incidence in a plane-parallel
problem to this point-source problem.

A. Vector Radiative Transfer Equation

The vector radiative transfer equation in the general form is
given by

(1)
where is the modified Stokes vector given by

(2)

is the number density, and is the total scattering cross sec-
tion. The matrix is the Mueller matrix. The scattering char-
acteristics of the random medium are captured in the Mueller
matrix defined by

(3)

(3a)

(3b)

(3c)

(3d)

where , , , and are the scattering amplitudes cal-
culated using Mie scattering explained in Appendix A [7]. We
define the submatrices , , , and for the derivation in
the next subsections.is the source vector which is given by

(4)

where is the reduced intensity Stokes vector given by

(5)

where is the Stokes vector of the source;is the distance
through which light has travelled in the scattering medium;
is the direction of the source incidence; andis the direction of
observation. The directional gain function of the source is .
In the isotropic point-source case, . In other types of
transmitters (e.g., directional antennas), depends on the
direction of propagation. We concentrate on the plane-parallel
geometry shown in Fig. 1. Equation (1) becomes

for (6)

where , is theoptical distance, and
is theoptical depth.

Fig. 1. Plane-parallel geometry.

We assume that the only source of radiation is the incident
wave; therefore, the boundary conditions in this problem can be
written as

for

for (7)

The source vector is given by

(8)

For the plane-wave case, the reduced Stokes vector is

(9)

However, for a point-source or transmitter with directional
gain, represented by (5), the formulation shown in (6) is not
easily solved. Previously, we reported on the plane-wave
radiative transfer equation in the plane-parallel problem [8].
With some assumptions and approximations, we find that we
can modify the previous procedures to solve for the vector
radiative transfer equation in (6). In the next section, we discuss
these assumptions and approximations.

B. Approximation to the Point-Source Radiative Transfer
Equation

In contrast to the plane-wave incidence where the reduced
Stoke vector of the source propagates in only one direction, the
reduced Stokes vector for the point-source case propagates in
different directions. All the reduced Stokes vectors from those
directions contribute to the final results of the radiative transfer
equation. Furthermore, the reduced intensity is not a simple
function of and , but rather a function of spherical coordi-
nates , , and [9]. Therefore, the exact and complete formu-
lation of the point-source case has to be in spherical coordinates,
and the variation of the reduced Stokes vector in the source term
has to be considered.

We approach the point-source radiative transfer equation
from the plane-wave solution with the following assumptions
and approximations. Fig. 2 shows the geometry explaining the
approximation of point-source incidence from the plane-wave
incidence.
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Fig. 2. Point-source consideration geometry.

Fig. 3. Geometry of point-source problem.

1) The thickness of the slab of a random medium is small
compared to the total distance ( ).

2) The off-axis incident Stokes vector is approximated to
be normally incident on the slab of random medium and
propagates through the random medium with a distance
longer than . This distance increases by a factor of ,
where , and is the incident angle.

3) The result of the point-source radiative transfer at the
angle is the result of the plane-wave radiative transfer
equation at the angle from the incident angle . The
relationship between these angles is given by

(10)

(11)

4) The dependence from the reduced Stokes vector is em-
bedded in dependence and can be written as

(12)

This approximation is valid when the first assumption
holds. However, (12) cannot be incorporated directly into
the equation because ofdependence. We make an ap-
proximation of this dependence in the fraction form to
the exponential form by

(13)

Fig. 4. Comparison of angular spectrum between point-source and plane-wave
incidences when (A) optical depth is 10 and (B) optical depth is 20.

TABLE I
PARTICLE SIZE DISTRIBUTION OF FOG

where is given by solving (13) with equality at

(14)
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Fig. 5. An imaging system.

Fig. 6. Imaging geometry. (a) Large distance and small angle. (b) Small
distance and large angle.

Thus, (12) becomes

(15)
5) We find the solution of the point-source vector radiative

transfer for angle at the observation point by solving
the approximate plane-wave normally incident to the
plane-parallel medium with a slant path
(equivalent to optical depth of ). The reduced Stokes
vector in (15) is used in this case.

Now, we use (15) as the reduced Stokes vector for (8) and
then plug it into the vector radiative transfer (6). The solution
procedure is explained in the following section. Note that it is
the same as for the plane-wave incident case [8].

C. Solution to the Vector Radiative Transfer Equation

To solve (6), we first expand the azimuthal dependence using
the Fourier series. Thus, the Stokes vector becomes

(16)

Fig. 7. One-dimensional cut from 2-D point spread function for large distance
geometry. (a) Optical depth= 10. (b) Optical depth= 25.

Different cases of incident polarization (linear or circular) can
be considered separately. In this paper, we consider only circular
polarization where . In this case, the
only nonzero mode is mode zero. Note that this is true only when
the approximation in assumption 2 in the previous subsection
holds. In nonnormal incident case, the Fourier series expansion
gives more terms resulting in more calculation time. However,
except for the first few terms, the contribution of the Fourier
expansions is expected to be small. Equation (6) can be reduced
to two uncoupled equations, which gives a faster solution time.
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The two uncoupled equations are the equation and the
equation. The equation is given by

for (17)

where

(18)

(19)

(20)

The equation is expressed as

for (21)

where

(22)

(23)

(24)

The functions and are defined in Appendix A.
We solve this integrodifferential equation using the discrete

ordinates method. It is based on applying the Gauss quadrature
formula [11] of order in dependence to (18) and (22). The
integrodifferential equation of (18) and (22) becomes a first-
order differential equation in the form

(25)

where

(26)

(27)

(28)

In the case of the equation, represents ; rep-
resents ; and represents . On the other hand, in the
case of the equation, represents , represents

, and represents . With the application of the boundary
conditions given in (7), we can find the complete solution. The
solution is in the discrete angle, and the accuracy of the solu-
tion depends on the number of angles. However, the required
computational resource increases as a function ofbecause we
have to solve the matrix eigen system of orderby .

Fig. 8. One-dimensional cut from 2-D point spread function for small distance
geometry. (a) Optical depth= 10. (b) Optical depth= 25.

D. Comparison Between Point-Source and Plane-Wave
Incidences

We perform numerical calculations of plane-wave and point-
source incidences on a slab of random medium as shown in
Fig. 2. The random medium is fog in an air background. We use
a wavelength of 1 m. Fog particles have the size distribution
expressed in Table I. The path length () of the random medium
is 1 km. For the comparison, we calculate the case where the ob-
ject is close to the slab of random medium ( km) with
a total length ( ) of 20 km, and the case where the object is
far from the slab of random medium ( km) with the
same total length as shown in Fig. 3. The calculation is made
with optical depths ( ) of 10 and 20. The angular spectrums
of the copolarized component are compared with those of the
plane-wave case, and are shown in Fig. 4. Note that the decibels
scale is the logarithm of the intensity calculated at the observa-
tion point. The results show the shower curtain effect. In the case
when the object is close to the random medium ( km), the
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angular spectrum is sharper than the case where the object is rel-
atively far from the random medium ( km). The results
also show that as the distance gets larger, the point-source
incidence angular distribution approaches the plane-wave inci-
dence. It is consistent with our assumption, and it is one of the
signs that our approximation is valid.

III. I MAGING SYSTEM AND THE SHOWERCURTAIN EFFECT

As the results from the previous section suggest, the shower
curtain effect is evident from the calculation of the point-source
radiative transfer equation. Therefore, we consider an imaging
system shown in Fig. 5 to investigate the imaging of an object
through a random medium. We calculate the point spread func-
tion according to the imaging system parameters. We investigate
an image of a cross through the random medium in several cases
and show the shower curtain effect on these cross images.

A. Point Spread Function

We consider an imaging system with an aperture diameter of
(radius ) and a focal distance of as shown in

Fig. 5. In the plane-wave case, the intensity at the imaging plane
is given by our previous work [10] as

(29)

where and . Notice that the
first term is the coherent component. The term is also
called theAiry patterngiven by

(30)

The coherent component is derived from the diffraction limit,
and the resolution is on the order of , which is very small.
The second term involves the incoherent (diffuse) component. It
introduces blurring in the image because its resolution depends
on the angular spectrum of , which is very coarse, especially
when compared with the coherent component.

The point spread function is the total intensity at the imaging
plane when a point-source is imaged. The two-dimensional an-
gular point spread function is given by

(31)

Notice that the coherent component is normalized bybe-
cause the spherical characteristic of the point-source wave. The
aperture size parameter has an effect on the Airy pattern and the
amount of incoherent component that incorporates in the point
spread function. Also, we will show that the total viewing angle
has an effect on the image. Therefore we consider the following

two cases of imaging conditions. First, we consider a large dis-
tance and small angle imaging. The geometry of this imaging
problem is shown in Fig. 6(a). The aperture size () is 3 cm and
the focal distance ( ) is 50 cm. The viewing angle is in millira-
dian range. This geometry corresponds to the telescopic viewing
of an object at a long distance. Second, we discuss the small
distance and large angle imaging geometry shown in Fig. 6(b).
The aperture size in this case is 3 mm with a focal distance of
1.6 cm. The viewing angle is in the radian range. This geom-
etry represents human observation of a relatively near object.
We calculate the point spread function using (31), and the re-
sult are presented in Figs. 7 and 8. Fig. 7 shows the point spread
function of the large distance geometry in the coherent domi-
nant and incoherent dominant cases. We show the point spread
function in the decibels scale where 0 dB represents the level of
coherent component if there is no random medium. In the case
of optical depth of ten, we can see that the peak of the point
spread function is at about43 dB, which corresponds to the

reduction factor. The point spread function consists
of the airy pattern and angularly flat incoherent component be-
having like a noise. Based on (31), the coherent part of the point
spread function explicitly depends on the distance. In our
calculations, the level of the coherent component in the case of
small is higher than the case of large . It is because the
intensity incidence on the random medium in the case of small

is larger. However, the plot shows that their amplitudes are
equal. It is because we normalized the intensity with the distance
to illustrate the effect of distance on the diffuse component.

At a large optical depth, the incoherent component domi-
nates. Therefore, the Airy pattern is submerged and the point
spread function is flat. In contrast, Fig. 8 shows the point spread
function of the small distance geometry. Because the viewing
angle is large, the point spread function is a combination of the
Airy pattern, which is approximately a single peak, and the in-
coherent component which exhibits a dome shape. Again, at a
large optical depth, the incoherent component is predominant.
The angular sharpness is obvious in this case and leads to the
shower curtain effect.

The results suggest that we can consider the imaging in two
conditions: coherent dominated and incoherent dominated. In
the coherent dominated regime, the point spread function ap-
proaches the diffraction limit and the scattering produces the
diffuse component, which acts like a noise. The contrast of the
image is impaired by this diffuse component where the images
still retains its resolution. Therefore, the resolution of the image
depends heavily on the size of the aperture and the wavelength
because the resolution in diffraction limit is proportion to .
In the incoherent dominated regime, the resolution of the image
reduced drastically. The angular spectrum of the diffuse compo-
nent governs the image quality. In this case, the scattering char-
acteristics of the medium have strong effects on the resolution
of the image. Therefore, in the discrete particles environment
that we consider, the particle size is the important factor in de-
termining the resolution.

B. Shower Curtain Effect on Cross Images

We perform numerical simulations to illustrate the effect of
the random medium. Cross patterns shown in Fig. 9 are imaged
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Fig. 9. Cross images for (A) large distance geometry and (B) small distance
geometry.

through a random medium with different geometries explained
in the previous section. We base our calculations on convolution
of point spread function calculated by (31) with the cross pat-
tern. The results are the intensity at the imaging plane under the
assumption that the detectors are infinitely small. These simu-
lations assume that the dynamic range is not limited and there
is no noise. As the point spread function results shown in the
Figs. 7 and 8, the dynamic range needed for the case of optical
depth of 10 is about 30 dB. These assumptions of infinitely small
detector, no noise, and unlimited dynamic range facilitate us to
concentrate on the effect of random media alone. When the de-
tector size is involved, the received power at each detectors is
considered instead of the intensity. All the cross pattern images
are normalized to their respective maximum values. They are
scaled to the same range of zero to 100 for a fair comparison,
where 100 represents the white color.

For the large distance geometry, the cross image corresponds
to the size of 20 m at the object plane and 0.5 mm at the image
plane assuming the focal length () is 50 cm. For the small

Fig. 10. Cross image through a random medium of optical depth 10 in the
large distance geometry. (a)R = 15 km. (b)R = 4 km.

distance geometry, the cross image corresponds to the size of
0.8 mat the object plane and 6.3 mm at the image plane assuming
the focal length ( ) is 1.6 cm. For large distance geometry, we
express the results in Fig. 10 and in the case of optical depth
of 10. For small distance geometry, the results are exhibited in
Figs. 11 and 12 for the cases of optical depth of 10 and 25,
respectively.

In the large distance geometry shown in Fig. 10, we observe
only a small viewing angle. Within this angle, we only see the
variation due to the Airy pattern. The incoherent component in
our calculation is a constant. Therefore, the image is formed
by mostly the coherent component with a background from the
incoherent component. When the optical depth is small, the co-
herent component contributes more to the images. Thus, the res-
olution of the image is on the order of the Airy pattern, which
is very small. The incoherent component can be considered as
a background noise at very small resolution. As a result, the
cross image still shows a good cross pattern with the contrast
depending on the level of background noise. For a large optical
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Fig. 11. Cross image through a random medium of optical depth 10 in the
small distance geometry. (a)R = 1:5 m. (b)R = 0:4 m.

depth, we have calculate the cross images for an optical depth
of 25. We found that the cross images disappear in all distance
cases. It is because the flat point spread function resulting from
domination of the incoherent component. Thus, we do not show
the cross images in this case.

For the case of small distance geometry, we view the large
angle. The point spread function behaves as a two-dimensional
delta function with a background from the incoherent compo-
nent with a flatter background in the case of larger. For a
small optical depth as shown in Fig. 11, the coherent component
is dominant. Therefore, the cross image still has good resolution.
On the other hand, in Fig. 12 when the large optical depth case
is considered, the incoherent component dominates. Therefore,
the resolution of the image depends on the angular resolution of
the diffuse intensity at the imaging plane from the solution of
the radiative transfer. The cross image in the case of largeis
almost invisible. However, in the small case, we can still see
some trace of the cross image because the angular spectrum of
it is sharper. This sharpness at small is the evidence of the
shower curtain effect. This shows that when scattering is domi-

Fig. 12. Cross image through a random medium of optical depth 25 in the
small distance geometry. (a)R = 1:5 m. (b)R = 0:4 m.

nant (optical depth is large), the case of small distance between
the object and the random medium (small) provides a better
image than the case of large distance between the object and the
random medium (large ).

From the result, we can conclude that the shower curtain ef-
fect is strong in the incoherent dominating region , i.e., optical
depth is large. Also, large viewing angles are desired to demon-
strate the shower curtain effect since we base our calculations
on the radiative transfer equation which provides very little in-
formation for the small angles close to optical axis. However,
we believe that the images would show the shower curtain ef-
fect in small viewing angles too. In other words, the point spread
function for the case of small distance between the source and
medium would be sharper than the case of large distance be-
tween the source and medium.

IV. CONCLUSION

We derive the point-source vector radiative transfer equation
in plane parallel geometry using the formulation of plane-wave
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incidence with some assumptions. Using the discrete ordinates
method, we are able to transform an integrodifferential form
of the radiative transfer equation into a first-order differential
equation, which is solved by imposing the boundary conditions.
Then, we compare the angular spectrum of the plane-wave case
to the point-source case with different distances between the
object and the slab of the random medium. Furthermore, we
study the point spread function of an imaging system. We show
that there are two cases under consideration, which are the co-
herent dominant and incoherent dominant. Cross patterns are
imaged through the random medium, and the results show that
the shower curtain effect is evident in the case of large optical
depth when the incoherent component is dominant.

APPENDIX

The scattering amplitudes for the spherical particles are given
by

(32a)

(32b)

(32c)

(32d)

where

(33a)

(33b)

(33c)

(33d)

(33e)

(33f)

(33g)

(33h)

( ) and ( ) corresponds to the incident and scattered wave
directions, respectively. The function and is related to
the scattering function and for Mie solution explained by
Van de Hulst [7] as

(34)
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