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Abstract. This paper presents an analytical theory of rough surface Green’s functions based on
the extension of the diagram method of Bass, Fuks, and Ito with the smoothing approximation used
by Watson and Keller. The method is a modification of the perturbation method and is applicable
to rough surfaces with small RMS height. But the range of validity is considerably greater than
for the conventional perturbation solutions. We consider one-dimensional rough surfaces with
a Dirichlet boundary condition. The coherent Green’s function is obtained from the smoothed
Dyson’s equation using a spatial Fourier transform. The mutual coherence function for the Green’s
function is obtained by first-order iteration of the smoothing approximation applied to the Bethe—
Salpeter equation in terms of a quadruple Fourier transform. These integrals are evaluated by
the saddle-point technique. The equivalent bistatic cross section per unit length of the surface is
compared with that for the conventional perturbation method and the Watson—Keller result. With
respect to the Watson—Keller result, it should be noted that our result is reciprocal, while the Watson—
Keller result is non-reciprocal. Included in this paper is a discussion of the specific intensity at a
given observation point. The theory developed will be useful for RCS signature related problems
and low grazing angle scattering when both the transmitter and the object are close to the surface.

1. Introduction

Extensive studies of the rough surface scattering problem have been made. Most studies deal
with plane wave incidence and the scattering characteristics are expressed in terms of the cross
sections per unit area of the rough surface [1-3]. While this is appropriate for moderate angles
of incidence (less then 75°), the assumption of plane wave incidence is no longer appropriate
when the transmitter and target are near the ocean surface or for low grazing angle (LGA)
scattering. For larger angles of incidence, and scattering near the surface, careful examination
of the plane wave assumption is required. For LGA scattering, it has already been pointed
out by Barrick [4] that ‘propagation and scatter become inextricably connected’ and ‘the free-
space plane wave description may not suffice’. The wave incident at a point on a rough surface
is not the direct plane or spherical wave from the transmitter. The incident wave is modified
by the rough surface itself. The incident wave at a point on the rough surface is a sum of
the free-space plane wave from the transmitter and the scattered wave from the surface. In
this paper, we consider the radiation from a point source located at any point near the rough
surface, and thus the field on the surface is the total field.

In recent years, several numerical Monte Carlo techniques have been developed to obtain
numerical solutions to the rough surface scattering problem [5]. While this is an excellent
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approach to the study of rough surface scattering. when the grazing angle becomes small,
extremely large surface areas are required to take proper account of the large footprint area.
Thus fast, high-performance computers are required for solutions. The rough surface Green’s
function is analytical, and the computer requirement is reduced. Fast analysis of the rough
surface effects is possible. This is important when considering problems in which the rough
surface correction of scattering from near-surface objects must be included.

In this paper, we present an analytical theory of the rough surfacc Green’s function for a
one-dimensional Dirichlet rough surface. This provides a mathematically simple formulation
including the effects of rough surfaces, but it does not include cross-polarization effects. We
begin with Green’s theorem, and using an equivalent boundary condition, we obtain Dyson’s
equation for the coherent field which is obtained using a spatial Fourier transform. Since
the surface is Dirichlet, the equivalent impedance is zero for the flat surface. However, the
impedance is not zero due to the presence of roughness. Moreover, corresponding to this
impedance, there exist surface wave poles, giving rise to surface wave propagation along the
surface.

The coherent field case is shown to be equivalent to the Watson—Keller results. Next, we
examine the Bethe-Salpeter equation and obtain the first-order iteration solution, once again
making use of the spatial Fourier transform. The cross section per unit length is calculated
and is shown to be similar to the Watson—Keller result; but, more importantly, it is reciprocal.
Discussions are also included on power conservation and the specific intensity. This paper
discusses the first-order modified perturbation theory of the rough surface Green’s function
and the far-field approximation. In the future, we shall discuss the surface wave contributions
applicable to the LGA case and the second-order modified perturbation techniques which
extend the range of validity of this theory. Section 2 discusses the coherent Green’s function
and the equivalent surface impedance. Section 3 discusses the incoherent Green’s function
and asymptotic solutions. Sections 4 and 5 discuss the surface cross sections and the specific
intensity.

2. Coherent rough surface Green’s function

In this section, we present Dyson’s equation which is the integral equation for the coherent
Green’s function [3,6). We make use of the smoothing approximation [7, 8] and the spatial
Fourier transform to obtain the coherent Green’s function (G(r, rg)). Asymptotic forms for
the far fields are obtained using the saddle-point technique.

2.1. First-order smoothed Dyson’s equation

We derive the fundamental Dyson’s equation which will be used in describing the rough surface
Green’s function using Green’s theorem [3, 6-9]. This is a nonlinear equation for the coherent
Green’s function. To simplify the problem, a first-order smoothing operation is applied to
Dyson’s equation making it linear. The Green’s function for a given point source located at
r = r¢ satisfies the equation

(V2 + k)G, 19) = —8(r — 10). 1)

The Green’s function must also satisfy the boundary conditions G(r, rp) = 0 on the rough
surface z = h. The rough surface is described by a surface profile £(x) which is a random
function of the surface height. We convert this boundary condition to an equivalent boundary
condition at z = 0 by expanding the Green’s function about the surface height h(x). The
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Figure 1. The rough surface is described by i = £ (x). The source point is at 1y and the observation
point is at + and r; is on the surface at z = 0.
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boundary condition G(rs, 7o) = 0 about z = 0 becomes

h?(x) 82

—G(r, ) +...=0 2
2 52 (r1, 7o) (2)
where 71 is on the flat surface at z = 0. We keep the first-order term in & and the higher-order
powers of h are neglected (figure 1). We now use Green’s theorem

d
G(ri, o) + h(x)'é"“G("'l, To) +
21

a d
G(r, 7o) = Go(r, 7o) +/S (G(T, TI)E’;‘GO("'I, T9) — Go(r, 7‘1)5;:6(7‘1 , To)) ds; 3

where Go(r, o) is the flat-surface Green’s function satisfying the Dirichlet condition
Go(r, To) = O on the flat surface. Applying the equivalent boundary condition (2) to Green’s
theorem and making use of the flat-surface Green's function and its boundary condition, Green’s
theorem simplifies to

d 0
G(r,1r0) = Go(r, T0) +/ (—h(xl)—G("‘l, 7‘0)) —Go(ry, 70) dx;.
s 0z 0zy

We rewrite this in terms of the random surface potential of the rough surface.

G(r, o) = Go(r, ro)+/Go(r1,ro)V(r1)G(r1,ro) dx @
S
where we define
V() = — o h(n) = 5)
) = ——h(x1)—
! az ! az1

as the random surface potential [3} which is a function of the random surface height h(x).
The arrows on the derivatives indicate the direction in which the derivatives are operated.
Starting with (4), we can obtain Dyson’s equation for the average (coherent) Green’s function
(G(r, mg)). Itis derived using the diagram method [6]. Figure 2(a) shows Dyson’s equation
in diagrammatic form,

(G(r, 70)) = Golr, 7o) + / Go(r, r)M(ry, 7)(G(r1, 7o) dxrdxy  (6)

and M is called the mass operator.

Note that equation (6) applies to any point r, above the surface at z = 0. As r approaches
the flat surface, Gy (r, 75) becomes zero, but Go(r, ro) inside the integral is not zero, because
M includes the derivative 3/3z. In addition, note that (G (7, ry)) is not zero on the flat surface.
Dyson’s equation is a nonlinear equation for the coherent Green’s function. To simplify
Dyson’s equation, the mass operator may be approximated using the first-order smoothing
operation or the ‘Bourret approximation’. This approximation is also called the ‘smoothing
first-order’ approximation [6]. Figure 2(b) shows Dyson’s equation using the first-order
smoothing in diagrammatic form.
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Figure 2. (@) Diagrammatic form of the nonlinear Dyson’s equation for the coherent Green’s
function. (b) Dyson’s equation with smoothing approximation.

The mass operator under this approximation is given by
M(ry, m1) = (V(r)V(r1))Golrz, r1). )
Rewriting the expression for the first-order smoothing mass operator, we have
M(ry, 1) = (V(r)V(r))Go(ra, r1) = (V(r2)Go(ra, )V (1))

ac a9~ ¢ a~
= (a—z;h(xz)a—zz-Go(rz, rl)ah(xl)gz‘)
9= 92 -~

a
Go(r2, r){h(x2)h(x1)) PP ®)

" 022 822921
Dyson’s equation then becomes

(G(r,m0)) = Go(r,ro)+/Go(r, T2){(V(r2)Go(r2, )V (r))(G (71, 70)) dxy dxa. ®

Thus, we must solve Dyson’s equation (9) for the given mass operator (8) under the first-order
smoothing operation.

2.2. Dyson’s equation in spatial Fourier transform representation
We first rewrite Dyson’s equation (9) explicitly

(G(r, o)) = Go(r, o)

3 2
+ / —Go(r, T2)
922

2
3 Go(r2, 1) (A (r2)h (1)) — (G (11, o)) dxy dx3. (10)
2122 az

To solve Dyson’s equation for the coherent Green’s function, we make use of a spatial Fourier
transform representation. The flat-surface Green’s function is then given by

1 .
Gol(r, 7o) = o f Golk: 7, 20)e™ ™ dk. 1y

We also note the following expressions in Dyson’s equation. We define the variables and the
corresponding spatial Fourier transform pair for the derivatives of the Green’s functions:

0 9«
A(r,72) = Gol(r, 1) — = Ak, 2, 22) = GolK; 2, 22)—
, azs \ 022
B(ry,m) = Go(ry, 1) = Blk; 20, 21) = Golx; 22, 21) (12)
82207; 352821

C(ri,mo) = a—zl(G(’f'l,T‘o)) = C(x, 21, 20) = E(G(K; 21, 20))-
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Inserting these elements into Dyson’s equation and taking the spatial Fourier transform
we obtain

1 ; 1 ,
T _/ (Gk; 7, 20))" " ™ dic = — / Go(x; z, 20)e™*7™) dic
1 . 1 y
+/dx1 dxz——/A(K: z, 2p)e" O dK—fe'” ®2=%) B(k'; 25, 21)dK’
2m 27T

X/eix”(xz—n)w(xn) dK,IIZL/eiK’l’(xl—xo)C(K”’; Zl,ZO) de™” (13)
4

where the surface height correlation is given by the spatial Fourier transform of the spectral

density W(x),
h(r)h(ry)) = / W k)1 gy, (14)

The integrals over the surface dx; dxv, may be simplified by noticing the following
rclationship:

/dxl =2n8(—k" — k" +k™) _/dxz =2w8(—k + &’ +«"). (15)
This implies that the integrals in the spatial frequency can be integrated.

/dx”’ k" =i i =k /dx” L (16)
Making use of these integral identities, and removing the common

eik (x—xg) dx

27

we simplify and obtain the spatial Fourier transform representation of Dyson’s equation.
(G(k; z,20)) = Golk; z,20) + A(K)C(K)/ Bk )Wk — «")dx’'. an
For a point source, the flat-space Green’s function is given by:
1 i ) .
Go(r, ro) = — | — [elkele20l _ gik:(z+20)] gik@—x0) g 18
o) = 5= [ [ ] as)
Then, the spatial Fourier transform representation is:
i . .
Go(k: 2, 20) = — elkedz—zol _ eikz(z+20)] 19
of 0) o, [ ) 19

Likewise, the spatial Fourier transform representation of the coherent Green’s function may
be written in a similar manner,

(Glki 2, 20)) = 5= 457!+ RO @] (20)
2

Inserting (19) and (20) into (17), we arrive at a solution for the reflection coefficient,
RkY+1=k,(1—- R(x))/k;W(/c —«')ydi'. 21n

The reflection coefficient for the rough surface is therefore given by:
0-1

R =571

where Q) =k, f kKW —«'ydc'. (22)
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Therefore. the coherent rough surface Green’s function is given helow where the reflection
coefficient is given by (22),

1 i : . .
(G(r,m9)) = o / _217 [elkzlz—Zol + R(K)exkz(z-uo)] e (x—x0} gy (23)
z

The integrand contains the reflection coefficient R(x) which has a pole at Q(k) = —1.
This pole gives rise to surface wave contributions from the rough surface. If we evaluate the
residue for equation (23), this represents the surface wave similar to the Sommerfeld dipole
problem.

Note that the coherent Green’s function is given in the spatial Fourier transform
representation. The evaluation of this integral will be performed using the saddle-point
technique.

2.3. Asymptotic form of the coherent Green'’s function

Let us examine the coherent Green’s function given in (23). The coherent element in the
Green’s function consists of three terms: the direct wave generated from the point source, the
unperturbed reflected wave from a smooth surface, and the coherent reflection from a perturbed
surface which was constricted from the stochastic process (figure 3). We wish to evaluate each
term in the far field, for kR — o0, so that the saddle-point asymptotic technique may be used.
The direct wave can be shown to be the following [10],

1 1 icxsiklz—zo i)
(G(r, 7o) direct = 5— / TR (et Hikdlz=al) ge = 7Ho (cRo)

i 2 ik Ro—im /4
e — 24
4v NkRoe @4)

where the last expression is the asymptotic form in the far field for large k Ro.

Next, we examine the second termin (23). Evaluation of the integral must be done carefully
due to the presence of the pole contained within the reflection coefficient. The second term,
representing reflection from the rough surface, can be evaluated for large k Ry using the modified

<G>,
500 ). R direct e e F
0

< G >r¢ﬂnl

Figure 3. The coherent Green’s function {G) consists of the direct field {G)girc:, the far field from
the image (G )refiect, and the surface wave contributions (G )surface.-
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Figure 4. Original contour of integration C, steepest
descent contour (SDC), and the location of the pole ap.

saddle-point technique, taking into account the presence of the pole [10]. Here, however, we
give a simplified approximate evaluation. We make use of the transformation

2= Rcos8 x = Rsiné

k =ksina k, = Vk* — k%2 =kcosa.
The contour of integration along the path of steepest descent (SDC) is shown in figure 4.
The saddle-point is at o = 6, and 6, is the saddle-point when the SDC goes through the pole

at op. Therefore, the integral (23) is given approximately by
(G) = (G )direct + (G)reflected ?f@ < 9p 25)
(G)direct + (G)reﬂected + (G)surface if @ > ep-

The saddle-point evaluation of the reflected wave (G )refiected is given by

i 2 . : )
(G(r, 70))refiected & = | ——e*R TRk sin 6). (26)
4\ wkRy

The surface wave term (G )ariace 1S given by the residue evaluation [10],
{G)surface = 271 X (residue at o)

= ——————— ¢xp |ik;p(z + 20) +ixp(x — xp) 27
T @07y, (e T it = 0)
where k;, is the root of Q(xp) +1 = 0.

2.4. Equivalent surface impedance

Let us consider the reflection coefficient R(x) given in (22). This is identical to the reflection

coefficient given by Watson-Keller and can also be compared with the field perturbation Ry,
and the phase perturbation Ry, methods [11]:

0-1 -
Ry (k) = a1 Ry =~1+20 Rpp = —€72€. (28)
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We also notc that we can express the reflection cocfficient in terms of the surface impedance
Z,. The wave impedance for an acoustic or horizontally polarized electromagnetic wave
obliquely incident on a surface is given by

k

Zy = Zo+ (29
k;
where 7, is the characteristic impedance of the medium. Therefore, we write
Zs—Z
== (30)
Zs + Z]
where the surface impedance Z; is given by
k
Zs=Zo-Q. (3D
k,

Note that the equivalent surface impedance of the rough surface is not zero, even though the
surface impedance for a flat Dirichlet surface is zero.

3. Incoherent rough surface Green’s function

In this section, we present the Bethe—Salpeter equation which will yield the integral equation
describing the second moment of the Green’s function. The second moment is also called
the mutual coherence function, and gives the spatial correlation and the angular spectra of the
incoherent field. The first-order iteration is applied to the Bethe—Salpeter equation yielding
a fifth-order integral. Using asymptotic approximations these integrals are evaluated. Our
first-order incoherent intensity is then compared with the existing first-order perturbation and
the Watson--Keller result.

3.1. First-order Bethe—Salpeter equation

The rough surface Green’s function G is given by the sum of the coherent ( G) and the incoherent
(fluctuating) G¢ Green’s function,

G(r, o) = (G(r, 1)) + Gy. (32)
To obtain the fluctuating Green’s function we must consider the second moment,

D(r,v'; 1o, 1) = (G(r, 7o) G*(r', 1)) . (33)
Noting (32), the mutual coherence function is given by

=Ty +T¢ 34)
where the coherent mutual coherence function is given by

Lo = (G, 7o) (G*(', rp)) (353)
which was determined in section 2. The fluctuating or incoherent mutual coherence function

¢ = (Ge(r, 1) G (', ) (36)

is now considered. The second moment I” satisfies the following Bethe-Salpeter equation
under the smoothing approximation [6].

(G(T, TO)G*(Tl7 7‘6)) = (G(’I’, TO)) (G*(r/, T(I)))
+ / dry drj(G(r, m)) (G* (@, DIV (r) VD) G (1, 1) G* (rf, 7)) BT)
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Figure 5. Approximation comparisons of the Bethe-Salpeter equation in diagrammatic
representation. (a) Smoothed Bethe-Salpeter equation. (b) Ishimaru’s first-order solution. (c)
Ito’s first-order solutions in diagrammatic form.

where
e i 9~
V) Ve)) = —h(x)— —h(x))—}.
(Ve)ve)D) ( PPN P 57 () 7 )
A diagrammatic representation of (37) is given in figure 5(a). We now consider the first-
order iteration shown in figure 5(b). The incoherent part of the mutual coherence function I'¢

is therefore given by
Ie = /dm dri(Gr, r)) (G* (', PNV )V D) (G (r1, 70)) (G* (7, 7). (39
Noting (38), the incoherent mutual coherence function is given explicitly by

2 0
Ty = [ drydrl——(G(r, 7)), (G*(, »D) (R(x)R(]))
aZI 321

(38)

d a
x=—(G(r1, 1) 5 (G (rf. ). (40)
41 4.1

To solve the first-order Bethe—Salpeter equation using the first-order iteration, we once
again make use of the spatial Fourier transform.

1 i . ; .
(G(r,rm)) = E/dxj (elkzlz"‘lll + R(K)exkz(uzl)) el G—x1)_ (41)
z

Substituting the coherent Green’s function (41) into (39), we arrive at the spatial Fourier
transform representation of the Bethe—Salpeter equation.

1 M 1 2t ! s *
Ty = / dx; dx) — / dic A(xc)e &= (,— / di’ A' (ke * -xﬂ)
2 m

1 . 1 )
X__/dKZW(KZ)emz(n—xx)__/dxlB(Kl)elxl(xl—xg)
2 2

*
x (L / dic| B )it ~x6>) “2)
2r
where the elements in the integral are obtained from the derivatives of the coherent Green’s
function in (40),
1- R(K)cik,z

1 - R(K/) eik;Z,
2

A(I() = }——R(ﬂ_)_cikzlzn
43
) = _ LR g, )
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To simplify the integrals, we make a coordinate transformation. First, note that the exponential
may be written as:
. c gy . .
exp {—ucxl +iK xl} = exp {—ik.X1q — IKgxic}
where
K+« , , x) + X
K, = Kg =— K — K xld:xl-—xl X == ——

2
also exp{ika(x; — x7)} = exp{ixyx;4} and, finally,

exp {ik1x) — (x|} = exp {ikicx1a +ix1aX1c)
where
K+ K4
2

Using these transformations and noting that dx; dx; = dx;.dx14, we can simplify (41)
by integrating over dx;, and diy. This yields

7
Kic = Kig = Ky — K.

/dxld — 278 (—ke + K2 + K1c) fdxz — Ky = K, — Kie. 44)

This simplifies the integral for the first-order incoherent mutual coherence function to a
coupled fifth-order integral.

1 1-—-
I's= 2Jr/dxlc— /dx—-—ﬂx—) explik,z + ik (x — x1.)]
2 2

1 1~ KR’ * +x’ !
x (-— / dx'__ﬂ exp[ik;z'+ix'(x'—x,c)]) W(K -2 ;’"‘)

R . .
/d ( 1) ——— explik;120 + ix1 (X1c — X0)]

( / d’ — ')exp[ikglz{)ﬂx;(xlc—-x,;)]) ) 45)

This is the mutual coherence function of the first-order incoherent Green’s function
expressed in a quadruple spatial Fourier transform representation. These Fourier transforms
are evaluated approximately by the saddle-point technique discussed in the next section.

3.2. Asymptotic solution for the incoherent mutual coherence function I's

For the incoherent field the second moment is given by expression (45). It involves the
integration of five integrals which are coupled together. We approximate the coupled integrals
by a far-field, asymptotic approximation in which each of the integrals decouple.

In equation (45), the surface spectrum W is a function of «, «’, k1 and «; which, in
general, vary from —oo to +00. However, under the far-field approximation, only certain
values of «, k’, ) and 7 satisfy the geometric angular relationship shown in figure 6. Under
this condition, W is evaluated only at the angles

k =ksinf; «' =ksin6; k1 =ksin®, Ky =ksin6;.
First, we note that
1 — R(x) _ 1
2 T QW)+

(46)



Rough surface Green’s function 27

Figure 6. Incoherent mutual coherent function.

Then, following the asymptotic technique developed in section 2.3, each of the spatial transform
integrals may be evaluated as
1 1 — R(x)
F(r,6)=— | d¢ ——=
.6 2 f 2
1

1 27 . F
I~ Emkcose\/;exp {1kr — 12}

—2ik cos@
A e 7
Q(ksin@) + lgO(r) “7)

i 2 . T
go(r)=Z mexp{lkr—lz}

is the free-space Green'’s function.
Therefore, using the saddle-point evaluation of I't, we can express the incoherent mutual
coherence function I'(r, r5) in the approximate form

expiik,z +ikx}

where

Te(r, r's ro, 1) =27!fdxch(rz9z)F*(f§9£)W(9z,95,91,91')F(r1,91)F*(r{,91') (43)

where F(r, ¢) is given by expression (47) and
ksin6, +ksin6, ksin@ +ksin6;
2 - 2 )
The radial and angular variables for the mutual coherence function are shown in figure 6.

W=W( (49)

4. Cross section per unit length and conservation of power

Let us first consider the coherent field (G) which consists of the direct wave (G)gireet and
the reflected field (G)refeced. We now consider the incoherent field. We express the mutual
coherence function I's in (48) in the following form using the generalized cross section o per
unit length of the rough surface.

dx]c 1 H g 1 H By
’. N ikry—ikr} 0 ikry ~ikr
L@, r'rg,rp) = ———zn __—(rzr;)l/ze 2 ——(rlr{)l/ze 1 (614)]
where
2 4(k cos 01)(k cos 85)(k cos 8; )(k cos &
o= T (k cos 62) (k cos 85 )(k cos 1) (k cos 6)) W (ke — k1) 1)

& (1T+ 01+ Q6D+ Q6N+ Q@)
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For ry = rp, 6, = 6 and 6; = 6, the generalized cross section o reduces to the bistatic cross
section per unit length,

27 4k? cos? 6,k% cos? 8, W (k. — s1.)

oy = — (52)
BTk 1+ Q@RI+ Q6P
This may be compared with the Watson-Keller formula [7, 8]
27 4k? cos? 62k% cos? 0, W (k. —
‘TVOVK - 2 cos” Ghk” cos” 6y 2(/( Kie) 53
k 11+ Q6

Notice that our bistatic cross scction o0 is reciprocal, while the Watson—Keller formula
(53) is non-reciprocal. Physically, (52) means, as shown in figure 6, that a coherent wave
including the rough surface effect as given in the reflection coefficient (23) is incident at the
surface x1.. The scattered wave then propagates from x1. to the obscrvation point also as
a coherent wave including the rough surface effects. The Watson—Keller result (53), on the
other hand, propagates an incident field that is also coherent. However, the scattered wave
propagates in free space and does not include the rough surface effect. This is best seen in
the difference between theories for Dyson’s equation shown in figure 5. We also note that the
cross section for the conventional perturbation solution is given by

n
a;’ = —k—4k2 cos? Grk% cos? O, W (ke — kic). (54)

The bistatic cross sections o, o5, and orl? are calculated and shown in figure 7 along
with Monte Carlo numerical calculations of rough surface scattering. The numerical Monte
Carlo simulations were conducted under 500 realizations. Note that for small RMS height
ko < 0.25, all three cross sections are approximately equivalent. As ko increases the field
perturbation increases faster than the Watson—-Keller and the Ishimaru cross section. QOur first-
order solutions are below the exact numerical values, and it is expected that the higher-order
solutions will add power to the bistatic cross section. The cross section given in (53} is obtained
by Watson-Keller and is identical to Ito’s first-order solution. Ito obtained this based on an
assumption which corresponds to the diagram shown in figure 5(c), where the main point is the
conservation of power. The smoothed Bethe~Salpeter equation and our solutions are shown in
figures 5(a) and (b). Our solutions, however, do not conserve the power and higher-order terms
must be included in the perturbation expansion to conserve the power. We shall discuss the
second-order ladder and cyclic theory including higher-order terms and power conservation in
a future paper.

5. Specific intensity at the observation point

We now consider the incoherent specific intensity which gives the power flux density directed
in a given dircction § at a given point r. The specific intensity is determined from the Fourier
transform of the mutual coherence function [1] (see figure 8),

I(r,5) = / Te(r, re ke g, (55)
where k = k5. We consider a point source ro = r, (r; = r}), and the exponent in (50)
becomes (figure 8)

exp {ikrz - ikré} = exp {iko a1y~ iky - ré} =explik;-ry+iky-7.}  (56)

where kg = k0, k. = 3(ko + k) and kg = ko — k). We take r; = r} and thus kg L r..
‘I'herefore, we obtain

exp {ikry — ikr}} = exp likc - 74} . 7
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We can then substitute (50) into (55) and obtain the specific intensity

" d
10, s) = ] —2%;00(27r)28(k—

Noting that

dk
=dR = —
k

dxiccos 6
r

1

k
C) 8n'kr1

(58)

(539
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we finally obtain for the specific intensity at a point r,, in a given direction 6,

27 %6y, 6)

60
87tkr1 ( )

I(r,s) =

k cos,

Figures 9(a) and (b) show calculations of the specific intensity at an observation point in
the forward direction. The specific intensity angular distribution consists of three terms: the
direct intensity from the transmitter, the reflected coherent intensity reflected from the rough
surface and, finally, the incoherent intensity. Figure 9(a) shows the angular distribution for the
1° field-of-view (FOV) arrival into the observation point. The effects of the incoherent intensity
are minimal and for a rough surface and object interaction problem, one need only consider
the direct and coherent reflected intensity. However, figure 9(b) considers a larger FOV. The
incoherent intensity is diffused and spreads in angles and therefore the receiver with large FOV
has more incoherent intensity than for a smaller FOV receiver. The order of magnitude in the
incoherent intensity is comparable to the direct and coherent reflected intensity. Therefore,
the incoherent scattering from a rough surface must be carefully considered.
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6. Conclusion

This paper presents an analytical theory of the coherent and the incoherent rough surface
Green’s function for a Dirichlet one-dimensional smooth rough surtace. The theory is
applicable to surfaces with small RMS height ko < 1.0, but the range of validity is much
greater than that of the conventional perturbation method. The coherent Green’s function was
determined from Dyson’s equation, and its spatial Fourier transform representation is given
in (23). A saddle-point technique was used to evaluate this expression and is given in (24),
(25) and (26). The mutual incoherent function was calculated based on the Bethe—-Salpeter
equation, and the general solution based on a spatial Fourier transform is given in (45). This is
also evaluated using a far-field asymptotic approximation (50). The mutual coherence function
was then used to calculate the specific intensity (60). Therefore the theory should be useful
for RCS signature related problems and for LGA scattering when both the transmitter and the
observation point are close to the surface.
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