Wave Analysis, Characterization, and Applications of Metamaterials

Akira Ishimaru Yasuo Kuga Vikram Jandhyala Sermsak Jaruwatanadilok John Rhodes Thomas Seung-Woo Lee

Department of Electrical Engineering University of Washington Seattle, Washington (email: ishimaru@ee.washington.edu)

Presented at International Symposium on Antennas and Propagation (ISAP'04) August 17-21, 2004, Sendai, Japan

Overview

- 1. What are Metamaterials?
 - History, refractive index, and $\mu \mathcal{E}$ diagram
- 2. What is NIM?
 - NIM, LHM, NIR, DNG
 - Plane wave, phase and group velocities, Poynting vectors, Stored energy, dispersion
- 3. Subwavelength focusing and evanescent waves
 - Perfect lens, line source, $\varepsilon = -1 + \Delta_1$, $\mu = -1 + \Delta_2$
 - Drastic reduction of evanescent spectrum, spot size
- 4. New wave type on layers of Metamaterials and NIM
 - Poles, zeros, branch-cuts, Riemann surfaces
 - Forward and backward surface waves and lateral waves
 - Brewster's angle and Zenneck wave

Overview (cont.)

- 5. Dispersion and space-time wave packet in NIM
 - Phase velocity, group velocity, and wave front velocity
 - Incident angle < critical angle
 - Incident angle > critical angle
 - Backward lateral wave and Goos-Hanchen shift
 - Drude and Lorentz models of ε and μ
- 6. Surface plasmon on NIM
 - Surface plasmon resonance
 - Leaky wave and surface plasmon
- 7. Design and characterization of metamaterials
 - Generalized constitutive relation
 - Stacked Split Ring Resonator (SSRR), helices, tunable SSRR
- 8. Transmission line approach
 - Bulk medium (3-D)
 - Transmission lines (1-D, 2-D), low loss

Overview (cont.)

- 9. Realization of transmission line metamaterials and applications
 - Microwave application
 - Composite right-left handed (CRLH) TL
 - Leaky wave, scanned antennas
 - Guided waves
 - Mushroom structures
 - Focusing, and surface structure
- 10. Unusual characteristics and applications of NIM
 - Lens subwavelength focusing
 - AMC, PMC, backward Goos-Hanchen, lateral waves
 - Small antennas, broadbanding, scanning, leaking wave
 - Nano particles, plasmonic nano-particles
 - Increase or decrease of crosssection
 - Polarization separation
 - Resonance cone, surface impedance, mushroom EBG
 - Evanescent wave, Transmission through small hole