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ABSTRACT 

 
This paper first discusses the optical scattering characteristics of clouds including water droplets and ice crystals.  
We then present the time-dependent vector radiative transfer theory making use of the Stokes vector, Mueller matrix 
and extinction matrix.  In particular, we discuss the advantages of circular polarization over linear polarization.  
Next, we present imaging formulations including PSF, MTF and contrast and their generalizations to include the 
time and polarization characteristics.  Examples are taken from optical imaging through clouds and include 
comparisons with imaging through turbulence.  Improved image resolution techniques such as the polarization 
differential techniques are presented focusing on the behavior of ballistic and minimally scattered waves. 
 

1. INTRODUCTION 
 
In recent years, there has been renewed interest in optical imaging through scattering media.  Optical imagery has 
several advantages: it has higher resolution than radar system, it can operate passively, it is noninvasive, and it is not 
as subject to jamming.  It’s disadvantages are that optical beams scatter and diffuse in media such as clouds, and it is 
necessary to identify and mitigate the effects of scattering on imaging.  This paper first discusses the optical 
scattering characteristics of clouds, including spherical water droplets such as those in fog and cumulus clouds, and 
non-spherical ice crystals such as those in cirrus clouds.  The propagation and scattering characteristics of optical 
beams are expressed in radiative transfer theory.  A simplest approximation is the scalar radiative transfer theory 
with scalar phase functions such as the Henyey-Greenstein formula and its small-angle approximation.  However, 
recent studies have identified the use of polarization and pulse characteristics for improved resolution.  We present 
an overview of the time-dependent vector radiative transfer theory that makes use of the Stokes vector formulations, 
including the Mueller matrix and extinction matrix.  In particular, we discuss the advantage of circular polarization 
(CP) over linear polarization (LP), as CP maintains its coherence for a much longer distance than LP, thus giving 
higher image resolution.  We present our recent numerical studies on CP and LP propagation.  It has been pointed 
out that the ballistic and minimally scattered waves can be used for improved resolution if we can separate them 
from the diffusive components.  We discuss several techniques, including the use of polarization, time, and angular 
scattering with numerical examples.  The quality of the imaging in terms of the transfer of the spatial spectrum 
through the medium can be expressed by Modulation Transfer Function (MTF).  Generalization of conventional 
MTF to include the time and polarization is presented with numerical examples to show the improvement of image 
resolution resulting from the polarization and pulse studies.  Imaging formulations are discussed in terms of MTF, 
Point Spread Function (PSF), contrast, Degree of Polarization (DOP), and Cross-Polarization Discrimination (XPD).  
Both CW and pulse scattering are discussed including Co-Polarization (Co-Pol), Cross-polarization (X-Pol), 
Coherent and incoherent components.  Polarization differential technique is discussed showing one of the methods 
to improve the image resolution. 
 

2. OPTICAL SCATTERING CHARACTERISTICS OF CLOUDS 
 
2.1  Refractive Index of Water and Ice 
Fog and cumulus clouds consist of spherical water droplets while cirrus clouds are mostly ice crystals of hexagonal 
shape.  Refractive indices )( nin cc�c  of water (at 10qc) and ice are shown in Fig. 1 and Table 1 [1],[2].  Note that the 

imaginary part n cc reaches minimum at mPO 48.0 , but increases substantially as O increases.  The refractive indices 

of water and ice for mPO 2.5  to25.0 are shown in Fig. 2 [3].  They are similar in this range of wavelengths. 

 
2.2 Optical properties of fog and clouds 



Fog and cumulus clouds consist of spherical water droplets.  Their median diameters are typically 0.5 to 10 Pm.  The 
number density may vary from 106 to 109 m-3 with typical value of 108 m-3.  Typical liquid content may vary from 
0.03 to 2 g/m3.  The mean free path, also called “optical visibility” may be typically a few km to 50 m.  Fig. 3 shows 
scattering pattern of fog particles at mPO 5.0 and mPO 51 .  Note that at mPO 5.0 , there is a sharp peak in the 

forward direction, indicating that minimally scattered wave (snake wave) is important when the particle sizes are 
much greater than a wavelength.  The scattering pattern of the size-distributed particles is often approximated by 
Henyey-Greenstein formula: 
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where Wo = albedo (ratio of scattering to total coefficient), g = anisotropy factor (mean cosine), P = cosT     
This can also be generalized to  
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where 
2

sin2
T s , so  is constant representing the beam width, and n = spectral index.  Note that n =3 represents 

Henyey-Greenstein with ggso /)1( 22 � , and n = 4 represents exponential correlation function, and n = 11/3 is for 

spectral density of turbulence.  Table 2 shows and example of parameters for 1 km fog layers.  Cirrus clouds consist 
of ice crystals of hexagonal complex structure with long sizes ranging from 15 to 700 Pm.  The concentration is 
approximately 3x106 m-3 and optical visibility is 12 m to 1 km [4]. 
 

3.  TIME-DEPENDENT VECTOR RADIATIVE TRANSFER 
 
The vector radiative transfer equation for CW case was obtained previously [5],[6].  This is generalized to the time-
dependent radiative transfer [7] for spherical particles.  Consider narrow-band, time-dependent vector radiative 
transfer equations in a plane-parallel medium over the optical distance domain W defined by ztUVW  where U is the 

number density, Vt is the total cross section of a single particle, and z is the actual distance as shown in Fig. 4.  Note 
that Wo is the optical depth defined by Lto UVW  where L is length of the slab of the random medium.  Consider that 

the input is a delta function in time.  The frequency-dependent vector raditive transfer equation for diffused 
component in frequency domain is given by the following 
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The boundary conditions of 4 by 1 vector Id are  
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meaning that there is no diffuse intensity coming into the slab of random medium.  P =cosT  is the cosine of the 
polar angle, 4 by 1 vector Fo is the source term corresponding to the incident flux magnitude and 4 by 4 matrix S is 
the Muller matrix.  t is the normalized time ( actual time / (L/c) ) where c is the light speed in the medium.  The 
time-dependent diffuse intensity can be calculated by applying a Fourier transform to the solution of the Eq. (3) 
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where Id(t,W) is the diffused component modified Stokes vector in time-domain. > @Td )V(tU(t)(tI(tIt WWWWW ,),,),),( 21 I                                                                                                                 (6) 

The total specific intensity consists of coherent (reduced) intensity and incoherent (diffuse) intensity.  The coherent 
intensity is expressed as 
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where Io is the incident modified Stokes’ parameter.  We consider two cases of incident waves.  For linear 
polarization in x direction,  > @  0001 T
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and for left-handed circular polarization, > @  102/12/1 T
o  I                                                                                                                 (9) 

For incoherent intensity, we solve Eq. (1) with the boundary conditions stated in Eq. (2) using the discrete ordinates 
method with Gauss quadrature formulas.  The discrete random medium is assumed to be dielectric spheres 
suspended in a homogeneous background.  For the purpose of this paper, we apply the fog particles with size 
distribution tabulated in Table 1 in the air background.  As a result, the Muller matrix can be calculated using the 
Mie solution9.  For linear polarization, the co-polarized component in the forward direction is in the x-direction and 
the cross-polarized component is in the y-direction.  On the other hand, for circular polarization, the co-polarized 
component in the forward direction is left-handed and the cross-polarized component is right- handed. 
 
It is important to note that Eq. (3) is not the Fourier Transform of the conventional vector radiative transfer 
operation, but is modified by removing the fast varying factor  )/(iexp oWZW which makes it stable to obtain 

numerical solutions.  It should also be noted that Eq. (3) is applicable only to spherical scatterers.  For non-spherical 
particles such as ice crystals, the extinction coefficient is not scalar, and depends on the polarization.  Therefore, we 
need to replace the extinction coefficient by 4x4 extinction matrix [5],[6].  Another limitation of Eq. (3) is that it is 
the narrow band approximation.  For ultra wide band applications, it needs to be modified to the two-frequency 
radiative transfer equation [1]. 
 

4. IMAGING FORMULATIONS 
 
Imaging through discrete scattering media suffers from scattering effects of intensity leading to angular spreading. 
The coherent component, which gives the sharpness to the images, reduces exponentially as a function of the optical 
depth.  On the other hand, the incoherent component, which induces the blurring of the images, increases as the 
waves propagate deeper in scattering media.  The PSF captures this characteristic and it is a measure of the 
performance of an imaging system.  The MTF which is a spatial Fourier Transform of PSF, represents how the 
different spatial frequency components are transferred through the random medium [1],[8].  The contrast represents 
the difference between the coherent and incoherent intensities and is a measure of how the intensity is transferred 
from the coherent to the incoherent components.  The performance of an imaging system degrades as the optical 
waves encounter more scattering from the medium for the reasons given above. 
 
We also define the degree of polarization (DOP), which is a measure of the ratio of the polarized component of the 
intensity to the total intensity, 
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The cross-polarization discrimination (XPD) is a measure of the ratio of the co-polarized to the cross-polarlized 
components 
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Consider an imaging system shown in Fig. 5.  The circular lens has diameter of D with the focal distance of di.  The 
field at the imaging plane is given by 
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where the pupil aperture function )(xWp  is 1 for 2/Dx d and 0 for 2/Dx ! .  )(xuo is the incident field on the 

lens.  The intensity at the imaging plane is 
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With � � 2/21 xxxc � and 21 xxxd � , and the assumption that the Mutual Coherence Function (MCF) 
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where the MCF )( dx* is given by 
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ˆ sinsinˆ cossin ITIT �  .  The MCF consists of coherent and incoherent parts shown in the Eq. (16). 
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Substituting the Eq. (16) into Eq. (14), we have 
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where the Airy pattern � �ii skA  is the point spread function of the imaging system given by 
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From Eq. (17), we can conclude that the specific intensity at the imaging plane is the combination of coherent 
intensity and incoherent intensity.  The coherent component is the Airy pattern multiplied with a factor 
exponentially decreased by optical depth.  On the other hand, the incoherent component is the convolution of diffuse 
intensity incident into the lens with the Airy pattern.  The Optical Transfer Function (OTF) is the spatial Fourier 
Transform of Eq. (17) and its magnitude is the MTF.  OTF is given by 

)()()( fdHfdHfH ioim OO                          (19) 

where Hm is the normalized MCF through the random medium and Ho is the diffraction limited OTF of the lens. � �
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Alternatively, we can write Eq. (17) as follows: 
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where dxs ii /  

 
5.  IMAGING THROUGH FOG AND CLOUDS 

 
There have been extensive studies made on imaging through particles [9],[10].  The use of polarization and pulse 
has also been studied by many people [11],[12],[13].  We consider following examples.  Fog particles have size 
distribution centered near 1 Pm.  The medium thickness is 1 km, the wavelength mPO  1 , and the lens diameter is 

D = 1 m.  Fig. 6 shows DOP and XPD for CW case.  Note that the CP maintains its DOP for much larger optical 
depth than the LP.  MTF, PSF, and contrast are also shown in Fig.7, 8, and 9.  The cross-polarized component is 
mostly diffuse and the co-polarized component consists of the ballistic, minimally scattered wave, and diffuse wave.  



Therefore, the difference between the Co-pol and X-pol may be mostly ballistic and minimally scattered waves, and 
thus the polarization differential technique may give improved image resolution.  This is shown in Fig. 9. 
 

6.  PULSE IMAGING  
 
Fig. 10 shows the pulse shape of PSF at different angles close to the optical axis.  It is expected that the minimally 
scattered pulses do not contribute much to the improvement of the images if the particle sizes are comparable or 
small compared with the wavelength.  The situation may be quite different if the particle sizes are much greater than 
the wavelength, which is usually the case for cirrus clouds.  For large non-spherical ice crystal particles, the above 
radiative transfer solutions are not applicable.  We can, however, use the equivalent circular particles and obtain the 
solution using the second order multiple scattering theory [14]. 
 

7.  COMPARISON WITH TURBULENCE SCATTERING 
 
Optical imaging through turbulence has been studied extensively [1],[8].  We use the same formulation given in 
Section 4.  The mutual coherence function through turbulence is given by 
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where oU is the coherence length and is related to Fried parameter or  
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The coherence length oU is given by > @ 5/32246.1
� LCk noU                           (24) 

where nC is the structure constant.  For our calculation, we use AMOS night data [8] 
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It is also known that the cross-polarization is negligible in turbulence.  Fig. 11 shows PSF for particle and 
turbulence.  Note that for turbulence, the coherent component quickly dies down and the transmitted wave is almost 
all incoherent wave.   
 

8.  NON-SPHERICAL PARTICLES 
 
Vector radiative transfer equation in Eq. (3) is applicable only to spherical particles.  In order to study the imaging 
through non-spherical particles, it is necessary to calculate the 4 by 4 Mueller matrix, which can be obtained by 2 by 
2 Scattering amplitude matrix.  It is also necessary to calculate the 4 by 4 Extinction matrix [5],[6].  It is, however, 
numerically difficult to solve the radiative transfer equation.  It needs to be expanded in Fourier series in azimuthal 

)(I direction.  Unlike spherical particles, all Fourier components are coupled, creating prohibitively large matrix 

equations.  For non-spherical particles, a simpler approach is to use the first and second order scattering solutions.  
Since most of the important scattering characteristics in the near-forward direction are contained in the first order 
scattering, this technique gives a reasonable approximation to determine the imaging with the minimally scattered 
(snake) waves. 
 

9. ANGULAR AND TIME GATING 
 
If we have an array of detectors at the image plane, we can obtain the output with the angular ('S) and the time ('t)  
gating.  For example, for the same time gating, the resolution is improved if the FOV ('S) is narrower.  For the same 
FOV ('S), the smaller time gating reduces the incoherent intensity.  This is shown in Fig. 12.  
 

10. CONCLUSIONS 
 

In this paper, we first reviewed the optical scattering characteristics of clouds.  We then presented the time-
dependent vector radiative transfer theory and summarized the definitions of Degree of Polarization (DOP), Cross-



Polarization Discrimination (XPD), and contrast.  We also discussed Point Spread Function (PSF) and Modulation 
Transfer Function (MTF).  We then presented numerical examples of imaging through clouds at mPO  1 and lens 

diameter mD  1 .  Advantage of circular polarization over linear polarization is discussed in term of DOP.  It is 
also noted that polarization differential technique may give improved resolution. 
 
Ballistic and minimally scattered (snake) waves are discussed in terms of PSF and pulse characteristics, showing the 
improved image resolution for large particles.  Comparison with imaging through turbulence is also discussed 
showing high resolution for coherent intensity in particles, and high resolution for incoherent intensity in turbulence.  
Some additional comments are included on the imaging through non-spherical ice crystals, showing the need for 
further study on first and second order vector radiative transfer. 
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Table 1. Refractive and absorption indices of water at 25qc ninn cc�c  
 

Wavelength )( mP  nc  n cc  

0.5 1.335 0.1x10-8 
1 1.327 0.289x10-5 
5 1.325 0.0124 

10 1.218 0.0508 
15 1.27 0.402 

 
Table 2. Parameters of 1 km fog layer in the vicinity of Point-Loma 

 
Wavelength )( mP  Optical depth Albedo Mean cosine 

0.5 14.830 ~1.0 0.8411 
1 16.760 ~1.0 0.8299 

10 8.837 0.6537 0.8792 

Fig. 1. Refractive index of water (10qc) and ice  ninn cc�c  
 

 
 

Fig. 2. Refractive indices of water and ice 



 
 

Fig. 3.  Scattering pattern of fog particles 
 

 
Fig. 4. Plane parallel problem 

 

 
Fig. 5. Imaging system 

 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6. a) DOP and (b) XPD in the forward direction (in decibels) as a function of optical depth 
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Fig. 7. MTF of Co-Pol component for CP and LP in CW case ( Diff = diffraction limit, OD = Optical Depth ) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 8. PSF of Co-Pol component for CP and LP in CW case 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 9. Contrast ( in decibel ) for CW (A) LP (B) CP ( PDT = Polarization Differential Technique ) 
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Fig. 10. Contour plot of pulse PDF (dB) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 11. PSF for particles and turbulence 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

Fig. 12. Effects of FOV and time gating. Optical depth is 10  
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