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ABSTRACT

Using radiative transfer, we investigate linear and circular polarized light normally impinging a plane-parallel medium
containing a random distribution of identically sized latex spheres in water. The focus of this study is to understand
fundamental properties of polarized light scattering. In particular, we analyze backscattered and transmitted flux
responses computed from direct numerical simulations. From these numerical computations, we observe that circular
polarized light depolarizes at a slower rate than linear polarized light. In addition, circular polarized light shows a
more noticeable dependence on the size of the scatterers than linear polarized light. Furthermore, the helicity flip
observed in circular polarized backscattered light is a fundamental phenomenon manifested by low order scattering.
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1. INTRODUCTION

To describe the effects of scattering on the polarization state of electromagnetic waves, the theory of radiative transfer
generalizes to model the evolution of the Stokes vector of the specific intensity.1,2 Because the inclusion of polar-
ization presents significantly more complex mathematics, less theoretical work has been done on these problems.
Recently, however, there has been a number of experimental and theoretical studies regarding polarized light propa-
gation and scattering in random media for applications in tissue imaging.3–7 Various experiments have demonstrated
that depolarization requires longer length scales than those needed for diffusion. In that case, polarization character-
istics of scattered waves provide another, and potentially more effective, way to discriminate between different kinds
of optically thick media.

Since changes in polarization only occur from scattering, early transmitted responses co-polarized with the incident
light have suffered very little scattering. Therefore, examining the polarization state of transmitted responses by
scattering media provides a simple and effective way to discriminate between ballistic and snake photons from
diffuse ones in optically thick media. This intuition has lead to a number of imaging and detection methods and
techniques.4–8 Many have also examined differences between linear and circular polarized incident light.9–12 Except
for very small scatterers, experimental evidence clearly suggests that circular polarized light transmitted through a
scattering medium made up of spherical scatterers requires significantly more scattering to depolarize than linear
polarized light. While this phenomenon is present in a variety of settings, this difference is most pronounced for
spherical scatterers that are much larger than the wavelength of the incident light.9,13,14 In contrast, experiments
show that linear polarized light depolarizes more slowly than circular polarized light for actual tissue samples.11,12

Backscattered responses by polarized light also exhibit interesting phenomena. Backscattered circular polarized
light maintains a significant degree of polarization.15 In addition, backscattered circular polarized light exhibits
a helicity flip.15 In other words, the helicity channel from which you would expect more backscattering (i.e. the
channel in which you would receive specular reflection from a perfectly conducting plate) in fact has less than the
other helicity channel. The extent of these phenomena strongly depends on the sphere size. There has been some
theoretical efforts to examine and predict the mechanisms of these phenomena,15,16 although these efforts are not
entirely exhaustive. Regardless, properties of circularly polarized backscattered light allow for an effective strategy
to detect targets in scattering media.17

In this paper, we investigate the fundamental characteristics of polarized wave scattering in random media. Since
there seems to be a broad variety of complicated phenomena present in these problems, our objective is to solve
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a problem from which we ascertain an understanding of the very basic polarization characteristics in scattering
media. To fulfill this objective, we solve the vector radiative transfer equation for a plane-parallel medium due to
polarized (linear and circular) incident plane waves using direct numerical simulations. This plane-parallel medium
has index-matched boundaries and contains a random distribution of identically sized latex spheres. We use Mie
theory to compute the exact representation of the scattering operations. Although we are considering an ideal case
where boundaries are index-matched and scatterers are identically sized spheres, we are most interested in examining
fundamental multiple scattering effects on polarized waves. Therefore, we examine this simple setting to evaluate
polarization without simplifying the scattering description.

We begin by reviewing the radiative transfer equations for plane-parallel problems with linearly and circularly
polarized incident plane waves. Next, we present results from direct numerical computations of these vector radiative
transfer equations. We compute these solutions using the Chebyshev Spectral Method.18 From this data, we analyze
transmitted and backscattered flux responses and the differences between linear and circular polarization. Finally,
we conclude with a summary of our results regarding multiple scattering effects on polarized light.

2. VECTOR RADIATIVE TRANSFER

Consider a polarized plane wave normally impinging a plane-parallel medium containing a random distribution of
identically sized spheres. The vector radiative transfer equation governing the diffuse modified Stokes vector Ī for
this problem19,20 is

µ
∂

∂τ
Ī(τ, µ, φ) + Ī(τ, µ, φ) =

∫ 2π

0

∫ 1

−1

S(µ, φ, µ′, φ′) Ī(τ, µ′, φ′) dµ′ dφ′ + f̄(τ, µ, φ), (1)

over the domain, 0 ≤ τ < τo. Here µ = cos θ, τ = ρσtz, and τo = ρσtd where ρ is the number density of scatterers
and σt is the total scattering cross-section. Since we assume that all of the spherical scatterers have identical radii,
σt is a constant. Furthermore, we assume that this incident wave provides the only source of radiation in the medium
whose boundaries are index-matched so that

Ī(τ = 0, µ, φ) = 0 for 0 < µ ≤ 1 (2a)

Ī(τ = τo, µ, φ) = 0 for −1 ≤ µ < 0. (2b)

The kernel of the integral operator in (1) is the Mueller matrix which gives the scattered Stokes vector observed
in the (µ, φ) direction by an incident Stokes vector in the (µ′, φ′) direction from an individual scatterer.2,21 The
Mueller matrix is

S(µ, φ, µ′, φ′) = σ−1
t
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(3)

where {f11, f12, f21, f22} is the set of scattering amplitudes.2 Throughout this paper, we refer to the submatrices of
the Mueller matrix, {S1, S2, S3, S4}, where

S =

[

S1 S2

S3 S4

]

. (4)

For spherical scatterers, Mie theory provides the exact expressions for these scattering amplitudes.2,21–24 The results
of Mie theory are summarized by two complex amplitude functions:23 s1 and s2, from which one is able to compute
these scattering amplitudes and hence, the Mueller matrix.20

The source term f̄(τ, µ, φ) in (1) is the contribution from the reduced intensity corresponding to the incident
plane wave. We consider two cases below: linearly and circularly polarized incident plane waves. R. L.-T. Cheung
and A. Ishimaru give a full derivation for both cases,20 so we only summarize the main results here.



2.1. Linearly Polarized Incident Plane Wave

To treat the azimuthal dependence in (1), let us consider a Fourier expansion of the Stokes vector

Ī(τ, µ, φ) = Ī(0)(τ, µ) +

∞
∑

n=1

[

Ī(n)
c (τ, µ) cos(nφ) + Ī(n)

s (τ, µ) sin(nφ)
]

. (5)

For normally incident, linearly polarized plane waves, we find that the mode zero and mode two Fourier modes of
this series are the only ones that are non-zero.20 This simplification is a manifestation of the azimuthal symmetry
of the Mueller matrix constructed from Mie theory.

The equation for the Fourier mode zero term is

µ
∂

∂τ
Ψ̄0(τ, µ) + Ψ̄0(τ, µ) =

∫ 1

−1

L(0)(µ, µ′)Ψ̄0(τ, µ
′)dµ′ + F̄(0)(µ) exp[−τ ], (6)

where

Ψ̄0(τ, µ) =

[

I
(0)
1 (τ, µ)

I
(0)
2 (τ, µ)

]

, (7)

and

F̄(0)(µ) =
1

2σt

[

|All(µ)|
2

|Arr(µ)|
2

]

. (8)

The functions, All and Arr are proportional to the complex scattering amplitudes,20

All = is∗2/k, and Arr = is∗1/k. (9)

The kernel of the scattering operator, L
(0)
1 (µ, µ′), is mode zero term of the Fourier series expansion of the S1

submatrix,

L
(0)
1 (µ, µ′) =

∫ 2π

0

S1(µ, µ
′, φ′ − φ)d(φ′ − φ). (10)

The vector, Ψ̄0, satisfies

Ψ̄0(τ = 0, µ) = 0 for 0 < µ ≤ 1 (11a)

Ψ̄0(τ = τo, µ) = 0 for −1 ≤ µ < 0. (11b)

The equation for the Fourier mode two term is

µ
∂

∂τ
Ψ̄2(τ, µ) + Ψ̄2(τ, µ) =

∫ 1

−1

L(2)(µ, µ′)Ψ̄2(τ, µ
′)dµ′ + F̄(2)(µ) exp[−τ ], (12)

where

Ψ̄2(τ, µ) =
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and
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The kernel of the scattering operator is made up of four submatrices,

L(2) =

[

L
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1 L
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2
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where

L
(2)
1 (µ, µ′) =

∫ 2π

0

S1(µ, µ
′, φ′ − φ) cos [2(φ− φ′)] d(φ′ − φ), (16a)

L
(2)
2 (µ, µ′) =

∫ 2π

0

S2(µ, µ
′, φ′ − φ) sin [2(φ− φ′)] d(φ′ − φ), (16b)

L
(2)
3 (µ, µ′) =

∫ 2π

0

S3(µ, µ
′, φ′ − φ) sin [2(φ− φ′)] d(φ′ − φ), (16c)

L
(2)
4 (µ, µ′) =

∫ 2π

0

S4(µ, µ
′, φ′ − φ) cos [2(φ− φ′)] d(φ′ − φ). (16d)

The vector, Ψ̄2, satisfies

Ψ̄2(τ = 0, µ) = 0 for 0 < µ ≤ 1 (17a)

Ψ̄2(τ = τo, µ) = 0 for −1 ≤ µ < 0. (17b)

After solving the mode zero and mode two boundary value problems, we construct the Stokes vector for the
diffuse intensity,

Ī(τ, µ, φ) =
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. (18)

To calculate the Stokes vector corresponding to the polarization parallel and perpendicular to the polarization of the
incident wave, we apply a rotation on (18),
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, (19)

where Ix is the intensity component polarized parallel to the incident polarization, or co-polarized intensity, and Iy
is the intensity component polarized perpendicular to the incident polarization or cross-polarized intensity.

2.2. Circularly Polarized Incident Plane Wave

Let us consider a left-handed circularly polarized incident plane wave. By performing the same Fourier series analysis
that we used for the linearly polarized incident wave, we find that only the mode zero Fourier mode is non-zero.
Furthermore, we find that (1) reduces to two decoupled equations,

µ
∂

∂τ
Ψ̄0(τ, µ) + Ψ̄0(τ, µ) =

∫ 1

−1

L
(0)
1 (µ, µ′)Ψ̄0(τ, µ

′)dµ′ + F̄(0)(µ) exp[−τ ], (20)

and

µ
∂

∂τ
Φ̄0(τ, µ) + Φ̄0(τ, µ) =

∫ 1

−1

L
(0)
4 (µ, µ′)Φ̄0(τ, µ

′)dµ′ + Ḡ(0)(µ) exp[−τ ]. (21)

Here (20) is identical to the mode zero equation for the linearly polarized incident wave. In (21), we define

Φ̄0(τ, µ) =

[

U (0)(τ, µ)
V (0)(τ, µ)

]

, (22)

Ḡ(0)(µ) =
1

σt

[

−Im(All(µ)A
∗
rr(µ))

Re(All(µ)A
∗
rr(µ))

]

, (23)

and

L
(0)
4 (µ, µ′) =

∫ 2π

0

S4(µ, µ
′, φ′ − φ)d(φ′ − φ). (24)
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Figure 1. The efficiency factor, Qext, (left plot) and anisotropy factor, µ̄, (right plot) as a function of the size
parameter, ka, for the polystyrene spheres used in the computational simulations calculated using the Mie scattering
solution.

The vector, Φ̄0, satisfies

Φ̄0(τ = 0, µ) = 0 for 0 < µ ≤ 1 (25a)

Φ̄0(τ = τo, µ) = 0 for −1 ≤ µ < 0. (25b)

After solving (20) and (21), we determine the left-handed and right-handed circularly polarized intensities,20

Ilhc = (I1 + I2 + V )/2 (26a)

Irhc = (I1 + I2 − V )/2 (26b)

Since we chose the incident wave to be left-handed circularly polarized, we define the transmitted co-polarized and
cross-polarized intensities to be

I
(trans)
co-pol = I

(trans)
lhc , and I

(trans)
x-pol = I

(trans)
rhc .

Furthermore, since (26a) and (26b) are defined with respect to the direction of propagation, the backscattered
co-polarized and cross-polarized intensities are

I
(back)
co-pol = I

(back)
rhc , and I

(back)
x-pol = I

(back)
lhc .

We choose to define the co-polarized backscattered intensity to correspond to the polarization state of a wave
specularly reflected by a perfectly conducting plate. Recall that the incident plane wave that we consider is left-
handed circularly polarized.

3. NUMERICAL RESULTS

We solved the vector radiative transfer equations for linearly and circularly polarized incident plane waves using
the Chebyshev Spectral Method.18 We chose this method because it yields stable and accurate solutions over a
large range of optical depths, even for large anisotropy factors. The basis of this method is a Chebyshev spectral
approximation of the spatial part of the intensity which results in a coupled system of integral equations. For all of
these examples, we used 129 Chebyshev modes, and solved the system of integral equation using a Nyström method
employing a 60-point Gaussian quadrature rule that used Legendre polynomial abscissa and weights.



After computing the transmitted and backscattered intensities, we computed the co-polarized and cross-polarized
flux magnitudes,

Fco-pol =

∫ 2π

0

∫ 1

−1

Ico-pol(µ, φ)µdµ dφ (27a)

Fx-pol =

∫ 2π

0

∫ 1

−1

Ix-pol(µ, φ)µdµ dφ, (27b)

where Ico-pol and Ix-pol were evaluated at τ = 0 for backscattering and τ = τo for transmission. The azimuthal angle
integrals were analytically calculated since the φ-dependence is simple due to the Fourier series expansion. The polar
angle integrals were computed using the same Gaussian quadrature rule used to solve the integral equations.

For these numerical simulations, we considered latex spheres randomly distributed in water illuminated by an
optical wave generated by a He-Ne laser. The wavelength of light from the He-Ne laser in air is λ = 632.8 nm. When
light from this laser propagates in water whose refractive index is nwater = 1.33, its wave number is k ≈ 13.21µm−1.
The refractive index for these latex spheres in this problem is nspheres = 1.588 so that the relative refractive index of
these spheres in water is nrelative = 1.19.

In particular, we considered four different sphere radii: a = 0.05, 0.25, 1.00, and 1.75µm. Using the algorithm by
Bohren and Huffman,24 we calculated the efficiency and anisotropy factors for these spheres. A plot of these results
appear in Fig. 1 and their size parameters, efficiency factors, and anisotropy factors appear in Table 1. We chose
these four sphere sizes to sample the areas near and far from the Mie resonance regime.22–24 Notice that there is
no imaginary part in this relative refractive index so no absorption is present in the medium. Hence, a conservation
of power calculation indicates the accuracy of our computations. For these computations, the conservation of power
yielded maximum errors of ∼ 10−8% for the three smallest spheres and ∼ 10−4% for the largest sphere.

3.1. Transmission

In Fig. 2, we plot the transmitted flux responses as a function of optical depth for the four different scatterer sizes
(rows) and for linear (left column) and circular (right column) incident polarization.

Since the 0.05µm radius spheres are much smaller than the wavelength, we expect them to act like Rayleigh
scatterers. Therefore, we expect transmitted responses to depolarize for these spheres much more quickly than
responses from larger spheres. Our computations agree with this intuition. For both linear and circular incident
polarizations, we find that waves depolarize and the difference between the co-polarized and cross-polarized fluxes
are negligible for τo > 7. Although the circular case decays slightly slower than the linear case, this difference is not
significant.

For the larger spheres, we see that the transmitted flux responses do not fully depolarize at τo = 20. Furthermore,
we observe that the circularly polarized incident waves maintain a greater difference between its co-polarized and
cross-polarized fluxes than linearly polarized incident waves. In Table 2, we summarize the differences between the
co-polarized and cross-polarized fluxes. We observe that the largest flux differences occur for the near-resonant
scatterers whose radii are 1.00µm. For that case, we observe that responses from linearly polarized waves exhibit a
2 dB difference while those from circularly polarized waves exhibit a 7 dB difference. For the non-resonant scatterers,
we observe that the flux differences are small for linear polarized incident waves compared with those for circularly
polarized ones. However, all of these flux differences exhibit a strong dependence on the sphere radius. Most

Table 1. Size parameters, efficiency factors, and anisotropy factors of the four different sphere radii used in our
computations.

radius (µm) ka Qext µ̄

0.05 0.66 0.00558 0.0752
0.25 3.31 0.590 0.823
1.00 13.23 3.526 0.938
1.75 22.15 1.705 0.850



0 5 10 15 20

optical depth

−40
−30
−20
−10

0
0 5 10 15 20

−40
−30
−20
−10

0

tr
an

sm
itt

ed
 fl

ux
 (

dB
)

0 5 10 15 20
−20
−15
−10

−5
0

0 5 10 15 20
−30

−20

−10

0
linear

0 5 10 15 20
−40
−30
−20
−10

0
0 5 10 15 20

−40
−30
−20
−10

0
0 5 10 15 20

−40
−30
−20
−10

0
0 5 10 15 20

−30

−20

−10

0
circular

a =  0.05 µm

a = 0.25 µm

a = 1.00 µm

a = 1.75 µm

Figure 2. The diffuse transmitted flux responses for the linearly polarized waves (left column) and circularly
polarized waves (right column). The plots on the first row from the top correspond to 0.05µm radius spheres; the
second row corresponds to 0.25µm radius spheres; the third row corresponds to 1.00µm radius spheres; and the fourth
row corresponds to 1.75µm radius spheres. The solid lines correspond to the co-polarized flux and the dashed lines
correspond to the cross-polarized flux.

likely, this dependence is due to the large anisotropy factors of these scatterers. Transmitted flux quantities are
weighted more heavily in forward directions. In addition, scattering in forward directions maintains a large degree
of polarization compared with other directions. Hence, highly anisotropy scattering in which the angular spectrum
is strongly peaked in the forward direction also exhibits a sizable degree of polarization.

3.2. Backscattering

In Fig. 3, we plot the backscattered flux responses as a function of optical depth for the four different scatterer sizes
(rows) and for linear (left column) and circular (right column) incident polarization.

For 0.05µm radius spheres, we observe that the backscattered flux responses exhibit ∼ 1.5 dB differences between
the co-polarized and cross-polarized flux for both linear and circular cases. The differences between the linear
and circular cases are small and qualitatively similar. These fluxes saturate to a constant as the optical depth
approaches infinity. For larger spheres, we observe that the flux responses due to linearly polarized incident waves
are all qualitatively similar. While these flux responses do not completely depolarize, the differences between the
co-polarized and cross-polarized flux are small. From Table 2, we observe that flux differences at τo = 20 occur
within fractions of a dB. This behavior persists for optical depths τo > 7. Therefore, the backscattered flux responses
by linearly polarized incident waves do not exhibit a strong dependence on different scatterer sizes. In contrast
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Figure 3. The diffuse backscattered flux responses for the linearly polarized waves (left column) and circularly
polarized waves (right column). The plots on the first row from the top correspond to 0.05µm radius spheres; the
second row corresponds to 0.25µm radius spheres; the third row corresponds to 1.00µm radius spheres; and the fourth
row corresponds to 1.75µm radius spheres. The solid lines correspond to the co-polarized flux and the dashed lines
correspond to the cross-polarized flux.

Table 2. Co-polarized and cross-polarized transmitted and backscattered flux differences at τo = 20 for linearly and
circularly polarized incident waves.

transmitted backscattered
radius (µm) linear (dB) circular (dB) linear (dB) circular (dB)

0.05 6.5E-5 1.3E-5 1.2734 1.7711
0.25 0.2827 2.0571 0.1838 2.7555
1.00 1.9315 7.4400 0.1495 5.4003
1.75 0.9142 4.1145 0.1062 4.4135

to the linearly polarized incident wave results, the flux responses by circularly polarized incident wave show larger
flux differences as well as a stronger dependence on the size of the scatterers. This flux difference is largest for
near-resonant scatterers in which there is a ∼ 5 dB difference between the co-polarized and cross-polarized flux.

Another qualitative difference between the linear and circular cases is that for circularly polarized incident waves,
a polarization “flip” occurs in which the cross-polarized flux is larger than the co-polarized flux. To investigate
this phenomenon in more detail, we examine the first order scattering solution. In Fig. 4, we plot the degree of



polarization

mcircular =
Ico-pol − Ix-pol

Ico-pol + Ix-pol
(28)

computed from first-order scattering as a function of the cosine of the scattering angle. This figure shows the
complicated angular dependence of the backscattered light. Furthermore, the values of the degree of polarization
indicate changes in helicity from co-polarized (mc > 0) to cross-polarized (mc < 0). Since interpreting these angular
spectra is not immediately intuitive, we computed the corresponding fluxes which appear in Table 3. From these
flux computations, we observe that the three larger spheres show a helicity flip in which the cross-polarized flux is
larger than the co-polarized flux. Hence, this polarization flip is present in first-order scattering and by observing
the fluxes at larger optical depths, we see that this phenomenon becomes more pronounced.

4. CONCLUSIONS

In this paper, we numerically solved the vector radiative transfer equation to examine basic polarization phenomena
as well as the differences manifested from linearly and circularly polarized incident waves. Through our numerical
investigations of backscattering and transmission through a plane-parallel medium containing monodisperse spherical
scatterers, we found that circularly polarized incident waves maintain larger differences between co-polarized and
cross-polarized fluxes and stronger dependencies on the sphere size, even at large optical depths (except for nearly
Rayleigh scattering), than linearly polarized incident waves. These differences are most pronounced for scatterers
that lie within or near the Mie resonance regime.

Except for scatterers in the Rayleigh limit, we found that transmitted circularly polarized incident waves depo-
larize at a slower rate than linearly polarized ones. For larger spheres, we find that this difference is significant.
In particular, for near-resonance scatterers, circularly polarized waves exhibit co/cross-polarized flux differences of
approximately 7 dB while linearly polarized waves exhibit approximately 2 dB flux differences. In addition to depo-
larizing slower than linearly polarized waves, circularly polarized waves exhibit a stronger dependence on the size of
the scatterers. In experimental studies of tissue samples, differences between circular and linear polarized light are
not nearly as significant as those observed for spherical scatterers.11,12 Furthermore, linear polarized light main-
tains a larger degree of polarization than circular polarized light in tissues. Since tissues exhibit markedly different
polarization characteristics than phantoms made up of spherical scatterers, some more effort should be given to
understanding the polarization characteristics of tissues.

Table 3. Fluxes of backscattered circularly polarized light by an optically thin medium (τo = 0.01) of spherical
scatterers computed using the first-order scattering solution.

radius (µm) co-polarized flux (dB) cross-polarized flux (dB)

0.05 -24.2310 -32.4692
0.25 -38.9421 -38.8451
1.00 -43.9701 -37.9167
1.75 -41.1327 -33.9478

In addition, we found that backscattering from circularly polarized incident waves exhibited a large degree of
polarization for all of the scatterers that we have examined. For the 0.05µm and 0.25µm radii spherical scatterers,
the co-polarized and cross-polarized flux difference is approximately 2 − 3 dB at large optical depths. For the
1.00µm radius spherical scatterer, we find the largest difference between co-polarized and cross-polarized fluxes at
approximately 5.4 dB over all optical depths that we considered. The 1.25µm radius spherical scatterer case yields an
approximate flux difference of 4.4 dB at large optical depths. We observe that the helicity of circular polarized light
flips upon backscattering by the three larger spheres. While this characteristic is present in first-order scattering,
it becomes slightly more pronounced as the optical thickness increases. Theoretical descriptions of this helicity flip
usually include multiple scattering arguments,15,17 however, a detailed analysis of first-order scattering may reveal
a more basic mechanism for this helicity flip.
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containing spherical scatterers computed using the first-order scattering solution.
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