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Abstract - We investigate experimentally, an adaptive imaging 
approach, namely that of a synthetic wideband, stepped C W  
transmitter and a multichannel, adaptive array for  receiving 
backscattered energy from short range objects in a full +/- 90 
degree field of view. The method is a hybrid one, using 
conventional Fourier processing for  range and is adaptive in 
angle. The 12 element linear a r ray  that  was constructed is able 
to form an image in range and angle without Doppler 
information, and was tested with targets embedded in natural 
background clutter. The results show how background clutter 
affects the angular resolution of the array due to the increase in 
rank of the signal plus clutter covariance matrix, whereas at the 
same time the rank of this matrix is reduced for closely spaced 
scatterers due to  signal coherence. In addition to investigating 
some known angular enhancement methods, we propose a 
method to enhance angular resolution in the presence of clutter 
by a projection, which seeks to  reduce the received signal to a 
lower rank approximation, without using eigendecomposition, 
thus having an implementation advantage. This method allows 
more control over the angular resolution and the background 
clutter level. Computer simulations as well as the experimental 
results a re  presented. 

I. INTRODUCTION 

Fig. 1 shows the scenario for microwave imaging. 
Although we are imaging simple objects in an anechoic 
chamber, anechoic is somewhat misleading since the 
integrated backscattered field from the chamber is high 
enough to exhibit structure and is not uniform spatially. 
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Fig. 1. Microwave Imaging Arrangement 
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Range resolution is achieved by synthetic-wideband, stepped 
CW signals. In our previous work [l], [2] we discussed a 
four- channel array operating at about 1 GHz. These results 
were encouraging enough to construct a new system with 12 
wideband elements operating at 2.5 GHz. Reference [3] 
recently reported results using a similar basic approach with 
an experimental adaptive array, employing FM c h q  in an 
outdoor environment. In our work we have emphasized the 
need for proper compensation for dispersion so that imaging 
over a wide angular sector will be near optimal. Our 
technique has some similarities to superresolution S A R  
imaging [4], [SI, [6], [7], however in our case the aperture 
consists of ody  the single set of elements on the array itself 
and covers a wide angular sector. In addition, the clutter 
statistics will be very different due to a non-uniform spatial 
clutter distribution. 

11. SIGNAL MODEL 

First we review the angular array geometry and the array 
outputs for wideband signals. Consider a superposition of 
fields backscattered from objects in the field of view of the 
transmitter. Assume objects are in the far field so the plane 
wave assumption is valid. The incident plane waves can be 
parameterized by their angle of arrival as shown in Fig. 2. 
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Fig. 2. Uniform Linear Array Geometry 

The baseband antenna output for frequency m and element n,  
for Ntargs scatterers at range and angle Qi is 
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Transmit frequency, f ,  = f, + (m -M/2)Af and f, is the 
center frequency of the antenna. The first exponential term 
describes the phase information for range, and the second and 
t h d  terms describe the inter-element phase due to the 
incidence angle. The second term describes the linear phase 
shft across the array for incidence angle di, whch is 
independent of frequency. However the third term shows an 
additional phase across the array which is dependent on 
frequency m A f .  The affect of the last term is to cause the 
angle of arrival to appear to change as the incident field 
wavelength changes (dispersion). The angular sweep is 
proportional to the true angle. For large angles of amval the 
angular broadening is greatest. We can remove the angular 
dispersion effect and not interfere with range phase 
information if we do not alter the antenna phase center. This 
requirement is met by using spatial resampling to map the 
incident fields to the narrowband plane wave model. For our 
hybrid approach we have chosen to perform the range 
compression using a zero-padded FFT on each focussed array 
element output. Then each range bin contains the 
superposition of target plane wave responses for all targets at 
the same range. Using a conventional approach for range 
compression allows for a minimum of target shape 
constraints in the range dimension. For example a target does 
not have to be point-ldce in the range dunension. This relaxes 
the model requirements somewhat. We use adaptive 
beamforming in the angle dimension to achieve timproved 
resolution from a small antenna. 

111. SPATIAL RESAMPLING 

The array outputs must be properly focussed so that the 
angle of arrival of a single plane wave is constant for a given 
frequency m .  This is equivalent to saying that the signal 
model is low rank, i.e. parameterized by the angle of arrival 
only. One method for focussing involves resampling the array 
outputs to correct for the constant element spacing d .  See 
[8] for discussion of spatial resampling techniques applied to 
wideband angle of arrival estimation for uncorrelated signals. 
The resampling process creates a set of data at finely spaced 
intervals that allows samples at varying distances from the 
antenna phase center to be extracted. Due to dispersion, as the 
frequency m increases, the distance d appears to increase, 
as far as angle of arrival is concerned, so to offset h s  affect 
we extract samples closer to the center of the interpolated 
array. Conversely as the frequency decreases we must extract 
samples farther from the array center. The focussing 
procedure can be derived by combining the 2"d and 3rd 
exponential terms from (1) and then set Af = f , ,  /A4 . Then 
recall that f, is the center frequency of the array to yield the 
following expression for the array output 

i=I 

We then extract the frequency dependent part of the 2"d term 
and equate this to an array with constant frequency and 
variable spacing dr to yield 

where d is the physical spacing between elements. Solve for 
d and then note that the largest value of d occurs at the 
lowest array frequency f-. This result is given by 

where do is the true physical separation between elements. 
While it is possible to extrapolate beyond the ends of the 
array, a potentially large error must be accepted since the 
values are assumed to be zero outside the array. It is possible 
to use a model-based approach to help in the extrapolation, 
however this has not been found to improve the angular 
resolution or increase the number of resolvable targets. We 
set the inequality in (4) to an equality so that the array is as 
large as possible for maximum angular resolution. Next we 
combine the terms and derive the focussed array output. By 
setting 

in (6) ,  we see the focussed array yields the correctly 
transformed output to generate a superposition of narrowband 
plane waves at ranges 5 and angles Oi 

i=l 

This result has the desired properties to employ narrowband 
adaptive beamfonning techniques in an optimal way, namely 
a superposition of plane waves. We observe that since the 
effective array spacing has been modified by p = f,,  If, we 
will modify the steering vectors by the same amount when we 
do adaptive beamforming so that the angle of a target 
response is correct. Note that the transformation in (6) will 
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focus all targets at all ranges since the focussing procedure is 
independent of range. Next, we describe the procedure for 
interpolating the array, so samples at the desired spacing may 
be obtained. 

The resampling is accomplished by approximating a 
continuous array by interpolation of the given data and then 
extracting the required samples at the new sampling interval 
required for each temporal frequency m .  Interpolation is 
accomplished by inserting K-1 zeros between samples, where 
K is the interpolation factor, to produce a vector of length 
KN. A least-squares interpolation filter is applied to the data. 
Once the array output has been interpolated we extract N 
samples with the proper spacing. For an interpolated array of 
length KN we may rewrite (6)  to yield the index into the 
interpolated array for element n , and frequency TII , as 

Y(n,  m) = 

where X,,, (*) refers to the interpolated data matrix and Y is 
the focussed data matrix of size M by N , the same size as 
the unfocussed data. The offsets into the interpolated array 
are all relative to the array phase center at ( K N  + 1)/2 . The 
md(*) function serves to extract the closest integer index to 
the desired one. The md(*) function may be replaced by a 
linear interpolation of the data at the 2 nearest neighbors, 
however this has not been found to improve performance. As 
a demonstration of these results, refer to the upper plot of 
Fig.3 which uses a 128 point, 2D-FFT of synthetically 
generated FM-CW data for several point targets. The lower 
portion has been resampled before Fourier processing and has 
s i g ” t 1 y  improved resolution at high angles. 

Iv. ANGULAR SPECTRUM ESTIMATION 

This section outlines the minimum variance spectral 
estimation method used to derive the angular spectrum at 
each range bin. The data from all bins at the same range are 
grouped together to form a vector X, , of N elements. This 
vector contains the angular donnation about all targets at 
the same range. M i n i “  variance spectral estimation is well 
known, and straightforward to implement [9 ] .  Starting with 
the assumed steering vector 

where 4 = kd sin 8, and 8 is the angle of arrival of the 
incident plane wave. The received power at a particular 
steering angle is used to form the image and is given by 

Beamformina usina ZDFFT. narrowband assumdon 

Normalized Angle 

Fig. 3 The top image shows a wideband signal for 4 targets that has been 
converted to the spatial domain by a 2D-FFT, thus assuming a narrowband, 
plane wave case. In the lower portion we see the targets are now essentially 
delta functions in range-angle space after resampling and focussing, thus 

fitting the narrowband plane wave model. 

To estimate R from the available data requires independent 
and identically distributed (iid) samples of x, the observed 
data. For the case of image formation as discussed here there 
are no iid samples for 2 reasons. The stationary scene has no 
Doppler information, and all targets at the same range, 
independent of angle, are correlated. It is however possible to 
combine multiple closely spaced groups of frequencies to 
mitigate the effects of white noise, such as thermal noise in 
the receiver. After computing the Fourier transforms of the 
element signals we may have one single snapshot of data at 
each range bin from which to derive the angles of arrival of 
objects at that range. 

For correlated signals and linear arrays, sub-array 
averaging (spatial smoothing) [lo], [ l l ] ,  [12] is used to 
estimate a spatial correlation matrix from as little as one 
snapshot. After forward spatial smoothing, forward- 
backward averaging is used to significantly improve the 
estimate of R. The tradeoff for using spatial smoothing is a 
smaller effective aperture, which leads to fewer degrees of 
freedom for beamforming. Additionally, the angular 
resolution is not nearly as good as that obtained for 
uncorrelated signals. 

One approach for improving the resolution involves 
squaring the correlation matrix R, before spatial Smoothing. 
See [13] for a discussion of the method and the resolution 
properties of spatially smoothed correlation matrices. 
Squaring the correlation matrix increases the robustness of 
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the dominant eigenvectors, which results in better resolution 
for closely spaced arrivals. This approach has been found to 
improve resolution over the spatially smoothed but non- 
squared approach. It provides consistent AOA estimates, but 
the variance of target RCS has been found to increase 
significantly and has a long-tailed distribution. These spatial 
smoothing methods will be used as a starting point for the 
experimental work. 

P =(uAu~)"[(uAu~)" +a"I]-' 
= UA"U" [u(A" + a n l ) u H  I-' 

= UH,UH 

= UA" (A" + a21)-'UH 

H, = A"(A" +a"I)-' 

R = PR = TJJ3,UHLJAUH = UH,AUH 

V. APPROXIMATE SIGNAL SUBSPACE PROJECTION (ASSP) 

The radar background clutter will not in general, fit the 
low rank signal plus noise model that was outlined earlier. 
Clutter signals may easily span many degrees in angle. This 
has been observed in OUT anechoic chamber and it was found 

Since A" is diagonal, we may write down the expression for 
the diagonals of H,: 

H,(i,i) + 1 for A >> a 
(13) Hs(Z,i)-+O forA<<a 

that the signal amplitude returned from the chamber itself has 
a structure that is relatively strong and repeatable. This clutter 
is due to constructive interference at the receive array from 
the integrated field of the periodic structures and many 
oblique incidence angles to the cones in the chamber. 
Consequently, the imaging array is readily able to display 
some structure of the clutter. For targets such as dihedral 
reflectors about 2-3 wavelengths in size the background 

really homogeneous across all ranges and angles of interest. 
The idea of ASSP is to increase the signal to clutter plus 
noise ratio or scNR by a rank reducing linear operator. we 

A plot of (13) will show a family of smooth between 
zero and one, depending on choices of a and n. The higher 
that n is, the more rapid the transition. Values of n that have 
given good results are typically 2 to 4. The P matrix does not 
alter the eigenvectors of R, but acts as a nearly linear transfer 
function for the large eigenvalues of R, depending on their 
values relative to a. If the value of a is chosen properly then 

of R with the largest associated eigenvalues. Matrix P will 
attenuate the eigenvectors of R with eigenvalues smaller than 
a. For n=2, to square the condition number of matrix PR set 

clutter is about 15-20 dB below the target return, but is not act as an projector Onto the eigenvectors 

are concerned with the 'effective' rank' so the goal is to 
increase the robustness of the signal eigenvectors by 
attenuating the clutter and noise eigenvalues. In the case of 
correlated signals, if all other variables are held constant, then 
increasing the signal to noise ratio will improve the 
resolution. We start with the unitary decomposition of the 
signal covariance matrix. We assume the noise is white: 

The signal component will contain the signal and the clutter, 
with the clutter subspace associated with the smaller 
eigenvalues. We wish to estimate a lower effective-rank 
signal subspace to reduce the clutter contribution without 
doing an eigendecomposition and estimating the number of 
signals. While a full eigendecomposition and principal 
components estimation can be done in extremely hgh  clutter 
levels, a similar net result can be approximated for low to 
medium clutter levels using the following linear operator P: 

P = R" (R" + a"I)-' (1 1) 

yields If WO, using the unitary decomposition R = UAU 

This effect is somewhat similar to the case of squaring the 
covariance matrix, but now we have some control of the rank 
of signal subspace, which allows for discrimination between 
target signals and background clutter. In order to estimate a 
value of a we must do a preliminary spectral estimate in 
order to fmd the peak signal level and the clutter and noise 
background level. As an example, consider the angular 
spectrum, Fig. 4 and'  the corresponding eigenvalue 
distribution. The data contains 3 strong signals, 2 of which 
are relatively closely spaced, and 1 signal at -20 dB relative 
to the other 3. In this case we have a peak signal to noise 
level of about 30 dl3, with an associated peak eigenvalue to 
average noise eigenvalue level of about 30 dl3. An estimate 
of a, based on (14) that has worked well in practice is the 
peak of the spectrum signal power multiplied by the 
minimum of the spectrum signal power divided by 2*sub- 
array size. This corresponds to the mean value in dB between 
the signal peak and noise floor. It's easy to show that this 
value also has the correct units-for a. Once a is chosen we 
use PR to estimate the resolution enhanced angular spectrum. 
The improvement in angular resolution and weak signal 
detection is apparent. 
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Eigenvalue distrlbubon and Angular Spectrum 
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Fig. 4. Comparison of spatial smoothing only and spatial smoothing plus the 

ASSP technique. ASSP shows a higher signal to noise ratio. 
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Fig. 6. Imaging array system in anechoic chamber. The linear discone array 
is seen across the top. The microwave receiver is at the bottom. 
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Fig. 5. Simulated 12-element array, using spatial smoothing and ASSP. Two 
targets at 3m have 5" spacing, with 6 targets at 5m range. 

VI. EXPERIMENTAL SYSTEM AND RESULTS 

The prototype imaging system uses a wide beamwidth 
hom antenna for the transmitter that steps from 2-3 GHz in 
40 steps at 5dBm. The center frequency is, F, = 2.5 GHz or 
12cm wavelength. The receiver consists of 12 vertically 
mounted discone antennas, spaced at /2,/2 intervals. 
Discones have worked well for radar imaging. Their 
properties include a dipole pattern, which is isotropic in 
azimuth, excellent bandwidth; the units constructed have a - 
20 dB return loss from 2-4 GHz. An important factor is their 
phase center, which remains constant over a wide frequency 
range. Element signals are multiplexed by microwave relays 
into a 70dB gain, receiver. The RF and transmit reference 
signals are mixed to 102.5 KHz. 

Sampling and S-parameter processing is done with a custom 
TMS320C25 DSP board. Signals are sampled at 10 KHz with 
12 bits of resolution to create a 2.5 KHz discrete time final IF 
due to undersampling and converted to complex baseband by 
mixing with digital quadrature oscillators. Low pass filtering 
is done by integration. The s,, estimates for each antenna 
element are obtained by dividing the complex receive 
component by the complex transmit component and passed to 
the PC in floating point format. Fig. 6 shows the chamber 
setup. 

The targets consist of metal cylinders and dihedral 
reflectors. Object interactions such as multiple scattering 
have been ignored in these experiments. We have collected 
many types of images of various configurations, for example 
some were placed in line extending over some range, and 
some were placed in front of each other. One particular case 
is 2 dihedrals placed 7 degrees apart at about 3.5 meters in 
range. The targets are sitting on a box near the back wall of 
the chamber. The dihedrals are approximately 75% of a 
beamwidth apart. Regarding the range, the wavelength is 
about 12 cm therefore, if we go 10 wavelengths out, that is 
about 1.2 m away, which just barely qualifies as the far field. 
Correcting the steering vectors for near-field wave fronts did 
not improve image quality for ranges greater than 1.5 m., so 
the far field approximation is reasonable. The useful range of 
targets in the chamber is about 2-6 meters in range. The 
background clutter from the chamber is about 15-20 dB 
below the target returns. In Fig. 7 it is not possible to discern 
that there are 2 dihedrals, however in the Fig. 8 they are 
clearly visible. Fig. 8 incorporates spatial smoothing and 
ASSP. The region at about 3.5m and -20 to +20 degrees 
contains a row of large, rough but relatively flat objects with 
intermediate backscattering amplitude. The bright spot at the 
bottom and about -45' is leakage signal from the transmit 
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antenna itself. Experimentally we have found that clutter may 
span large angles and does not fit the simple assumed model. 
When this occurs there is degradation in angular resolution. 
The ASSP method helps in this regard because the higher the 
threshold a, the more clutter is suppressed. This can be 
important when the number of elements is small, as in this 
case. Fig. 9 shows a case of imaging multiple targets, with 3 
cylinders at the same range and a nearby larger reflector. 
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Fig. 7. Image of 2 dihedral reflectors, spatial smoothing only 
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Fig. 8. The same 2 dihedral reflectors but includes spatial smoothing and 
ASSP enhancement. The improvement in angular resolution is apparent as 

well as de-cluttering the background. 

VII. CONCLUSION 

We have demonstrated a complete system for performing 
high-resolution microwave imaging to validate our approach 
and the results clearly support the ideas. We have 
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Fig. 9. Sample image of 3 cylinders at the same range and one large corner 
reflector, the image has been scan converted to meters in both dimension. 

demonstrated that after spatial resampling, adaptive 
beamforming can perform well for RCS imaging of close 
range objects over large angles, with small antennas. We 
developed and tested a method called ASSP for improving 
angular resolution in the presence of spatial clutter. 
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