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ABSTRACT

If both the transmitter and the observation points are located
close to the rough conducting surface, the wave incident upon
a point on the surface is a mixture of the coherent and
incoherent waves and is no longer the incident plane or
spherical wave in free space. If the surface is flat, this is the
Sommerfeld problem which has been studied extensively.
This paper considers the Sommerfeld problem for rough
surfaces. First, we consider the coherent field over the one-

dimensional rough surface which satisfies the Dyson -

equation. Using the flat surface Greens’ function, the
coherent field is expressed in a spatial Fourier transform
which is equivalent to the Sommerfeld integral. From the
complex reflection coefficient in the Fourier domain, we
obtain the Sommerfeld pole and the final expressions are
given for the attenuation function. Numerical examples are
given for rough ocean and land surfaces showing the
additional attenuation due to the scattering. The results are
then compared with Monte-Carlo simulations showing good
agreement. Next, the incoherent field is formulated based on
the Bethe-Salpeter equation. The first-order solution
indicated that the coherent wave propagates to a point on the
surface where the incoherent wave is excited and is
propagated to the observation point. The total incoherent field
is a sum of contributions from all scattering points on the
surface.

INTRODUCTION

There have been extensive studies made on the rough
surface scattering problem. Most studies deal with plane
wave incidence and the scattering characteristics are
expressed in terms of the cross sections per unit area of the
rough surface [1] — [3]. While this is appropriate for
moderate angles of incidence (less then 75°), the assumption
of plane wave incidence is no longer appropriate when the
transmitter and target are near the ocean surface or for LGA
scattering. For larger angles of incidence, and scattering near
the surface, careful examination of the plane wave
assumption is required. For LGA scattering, it has already
been pointed out by Barrick [4], [5] that “propagation and
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scatter become inextricably connected” and "the free-space
plane wave description may not suffice”. The wave incident
at a point on a rough surface is not the direct plane or
spherical wave from the transmitter. The incident wave is
modified by the rough surface itself. The incident wave at a
point on the rough surface is a sum of the free-space plane
wave from the transmitter and the scattered wave from the
surface. In this paper, we consider the radiation from a point
source located at any point near the rough surface, and thus
the field on the surface is the total field.

In recent years, several numerical Monte-Carlo techniques
have been developed to obtain numerical solutions to the
rough surface scattering problem [5]. While this is an
excellent approach to the study of rough surface scattering,
when the grazing angle becomes small, extremely large
surface areas are required to properly take into account the
large footprint area. Thus fast high performance computers
are required for solutions. The rough surface Green’s
function is analytical, and the computer requirement is
reduced. Fast analysis of the rough surface effects is possible.
Therefore, it is important to consider problems in which the
rough surface correction of scattering from near-surface
objects must be included.

We present an analytical theory of rough surface Green’s
function for the one-dimensional rough surface. This
provides a mathematically simple formulation including the
effects of rough surfaces, but it does not include cross-
polarization effects. We begin with Green’s theorem, and
using an equivalent boundary condition, we obtain Dyson’s
equation for the coherent field which is obtained by using a
spatial Fourier transform. If the surface is Dirichlet, the
equivalent impedance is zero for the flat surface. However,
the impedance is not zero due to the presence of roughness.
Also, corresponding to this impedance, there are surface
wave poles which give rise to surface wave propagation
along the surface. The coherent field is shown to be
equivalent to Watson-Keller’s results.” Next we examine the
Bethe-Salpeter equation and obtain the first-order iteration
solution once again making use of the spatial Fourier
transform. The cross section per unit length is calculated and
is shown to be similar to Watson-Keller, but more



importantly it is reciprocal. Discussions are also included on
power conservation and the specific intensity. This paper
discusses the first-order modified perturbation theory of the
rough surface Green’s function and the far-field
approximations. We will discuss the surface wave
contributions applicable to the low grazing angle case and the
second-order modified perturbation techniques which extend
the range of validity of this theory.

We next consider the electric and magnetic line source
located above a finitely conducting rough surface. We spend
some time here to analyze the TE and TM wave propagation
over the surface. The Green’s function for the rough surface
is determined from

V2 +k®)G(r,r,)=-8(r-r,)

And satisfies the impedance boundary condition at the
surface.

G+ﬁo-iG=O for TE.
on

—a—G+a,,G =0 for TM.

on

where o, =ik, Z /Z ,and B, =—iZ I(k,Z,)). If
the line source is an electric current, the TE electric field is
given by

E (x,2)= iwu I,G(r,r,)

If the source is a magnetic line source, then the TM magnetic
field is given by

H (x,z)=iwe,1,G(r,r,)

The coherent TM wave propagation over the impedance
rough surface corresponds to the classic Sommerfeld
problem. The modification of the Sommerfeld pole and
Zenneck wave due to surface roughness can be obtained.
Numerical examples are obtained for the Sommerfeld pole,
the equivalent surface impedance and the propagation
constant. We note that the Sommerfeld attenuation function
shows increased attenuation due to surface roughness. The
Zenneck wave propagation constant have been obtained and
numerical examples are given for land and sea rough surfaces
and compared to Monte Carlo simulations. We have also
obtained the scattering cross-sections per unit length of the
rough surface for Dirichlet, Neumann, TE and TM impedance
surfaces showing the effects of roughness and surface
conductivity. Examples include HH and VV cross-sections
of finitely conducting rough surfaces. For moderate angles of
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incidence, the equivalent cross-sections are determined from
the far-field approximation of the Bethe-Salpeter’s equation.
For low grazing angles, the TM cross-section is modified and
the attenuation function for propagation along the surface is
used. Application of the attenuation function results in a
positioning of a source and receiver within the low grazing
angle cross-section. The following figure is for the TM cross
section, showing near grazing angle scattering with sources
near the surface, and sources away from the source in the far
field.

CONCLUSIONS

This paper presents an analytical theory of the coherent
and the incoherent rough surface Green’s function for one-
dimensional smooth rough surface. The theory is applicable
to surfaces with small rms height ko < 1.0, but the range
of validity is much greater than that of the conventional
perturbation method. The coherent Green’s function was
determined from Dyson’s equation, and its spatial Fourier
transform representation is given. A saddle-point technique
was used to evaluate this expression and is given. The
mutual incoherent function was calculated based on the
Bethe-Salpeter equation, and the general solution based on a
spatial Fourier transform is given. This is also evaluated
using a far-field asymptotic approximation and a surface
wave approximation. The mutual coherence function was
then used to calculate the specific intensity. Therefore, the
theory should be useful for RCS signature related problems
and for LGA scattering when both the transmitter and
observation point are close to the surface.
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