Convex Optimization: from Real-Time Embedded to Large-Scale Distributed

Stephen Boyd

Neal Parikh, Eric Chu, Yang Wang, Jacob Mattingley

Electrical Engineering Department, Stanford University

Lytle Lecture, University of Washington, 10/29/2013

Outline

Convex Optimization

Real-Time Embedded Optimization

Large-Scale Distributed Optimization

Summary

Outline

Convex Optimization

Real-Time Embedded Optimization

Large-Scale Distributed Optimization

Summary

Convex optimization — Classical form

minimize
$$f_0(x)$$

subject to $f_i(x) \le 0$, $i = 1, ..., m$
 $Ax = b$

- ▶ variable $x \in \mathbf{R}^n$
- f_0, \ldots, f_m are **convex**: for $\theta \in [0, 1]$,

$$f_i(\theta x + (1-\theta)y) \le \theta f_i(x) + (1-\theta)f_i(y)$$

i.e., f_i have nonnegative (upward) curvature

Convex optimization — Cone form

minimize
$$c^T x$$

subject to $x \in K$
 $Ax = b$

- ▶ variable $x \in \mathbf{R}^n$
- $ightharpoonup K \subset \mathbf{R}^n$ is a proper cone
 - ightharpoonup K nonnegative orthant \longrightarrow LP
 - ▶ K Lorentz cone → SOCP
 - ightharpoonup K positive semidefinite matrices \longrightarrow SDP
- ▶ the 'modern' canonical form

- ▶ beautiful, nearly complete theory
 - duality, optimality conditions, . . .

- beautiful, nearly complete theory
 - duality, optimality conditions, . . .
- effective algorithms, methods (in theory and practice)
 - get global solution (and optimality certificate)
 - polynomial complexity

- beautiful, nearly complete theory
 - duality, optimality conditions, . . .
- effective algorithms, methods (in theory and practice)
 - get global solution (and optimality certificate)
 - polynomial complexity
- conceptual unification of many methods

- beautiful, nearly complete theory
 - duality, optimality conditions, . . .
- effective algorithms, methods (in theory and practice)
 - ▶ get **global solution** (and optimality certificate)
 - polynomial complexity
- conceptual unification of many methods

▶ lots of applications (many more than previously thought)

Application areas

- machine learning, statistics
- finance
- supply chain, revenue management, advertising
- ► control
- signal and image processing, vision
- networking
- circuit design
- combinatorial optimization
- quantum mechanics

Applications — Machine learning

- parameter estimation for regression and classification
 - least squares, lasso regression
 - logistic, SVM classifiers
 - ML and MAP estimation for exponential families
- ightharpoonup modern ℓ_1 and other sparsifying regularizers
 - compressed sensing, total variation reconstruction
- ▶ *k*-means, EM, auto-encoders (bi-convex)

Example — **Support vector machine**

- ▶ data (a_i, b_i) , i = 1, ..., m
 - ▶ $a_i \in \mathbf{R}^n$ feature vectors; $b_i \in \{-1,1\}$ Boolean outcomes
- ▶ prediction: $\hat{b} = \text{sign}(w^T a v)$
 - $w \in \mathbf{R}^n$ is weight vector; $v \in \mathbf{R}$ is offset

Example — **Support vector machine**

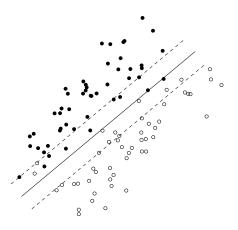
- ▶ data $(a_i, b_i), i = 1, ..., m$
 - ▶ $a_i \in \mathbb{R}^n$ feature vectors; $b_i \in \{-1, 1\}$ Boolean outcomes
- ▶ prediction: $\hat{b} = \text{sign}(w^T a v)$
 - $w \in \mathbb{R}^n$ is weight vector; $v \in \mathbb{R}$ is offset
- ▶ SVM: choose w, v via (convex) optimization problem

minimize
$$L + (\lambda/2) ||w||_2^2$$

$$L = (1/m) \sum_{i=1}^{m} (1 - b_i(w^T a_i - v))_+$$
 is avg. loss

SVM

$$w^Tz - v = 0$$
 (solid); $|w^Tz - v| = 1$ (dashed)



Sparsity via ℓ_1 regularization

▶ adding ℓ_1 -norm regularization

$$\lambda ||x||_1 = \lambda (|x_1| + |x_2| + \cdots + |x_n|)$$

to objective results in **sparse** x

- $ightharpoonup \lambda > 0$ controls trade-off of sparsity versus main objective
- preserves convexity, hence tractability
- used for many years, in many fields
 - sparse design
 - ▶ feature selection in machine learning (lasso, SVM, ...)
 - total variation reconstruction in signal processing
 - compressed sensing

▶ regression problem with ℓ_1 regularization:

minimize
$$(1/2)||Ax - b||_2^2 + \lambda ||x||_1$$

with $A \in \mathbf{R}^{m \times n}$

▶ useful even when $n \gg m$ (!!); does **feature selection**

▶ regression problem with ℓ_1 regularization:

minimize
$$(1/2)||Ax - b||_2^2 + \lambda ||x||_1$$

with $A \in \mathbf{R}^{m \times n}$

- ▶ useful even when $n \gg m$ (!!); does **feature selection**
- cf. ℓ_2 regularization ('ridge regression'):

minimize
$$(1/2)||Ax - b||_2^2 + \lambda ||x||_2^2$$

▶ regression problem with ℓ_1 regularization:

minimize
$$(1/2)||Ax - b||_2^2 + \lambda ||x||_1$$

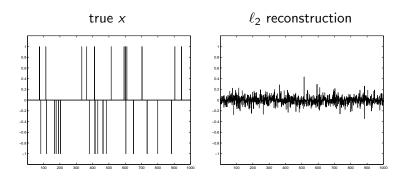
with $A \in \mathbf{R}^{m \times n}$

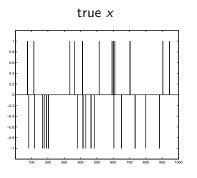
- ▶ useful even when $n \gg m$ (!!); does **feature selection**
- cf. ℓ_2 regularization ('ridge regression'):

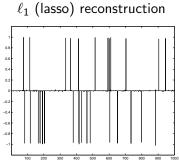
minimize
$$(1/2)||Ax - b||_2^2 + \lambda ||x||_2^2$$

▶ lasso, ridge regression have same computational cost

- ightharpoonup m = 200 examples, n = 1000 features
- examples are noisy linear measurements of true x
- ► true *x* is sparse (30 nonzeros)







State of the art — Medium scale solvers

- ► 1000s–10000s variables, constraints
- reliably solved by interior-point methods on single machine
- exploit problem sparsity
- not quite a technology, but getting there

State of the art — Modeling languages

- ▶ (new) high level language support for convex optimization
 - describe problem in high level language
 - description is automatically transformed to cone problem
 - solved by standard solver, transformed back to original form

State of the art — Modeling languages

- ▶ (new) high level language support for convex optimization
 - describe problem in high level language
 - description is automatically transformed to cone problem
 - solved by standard solver, transformed back to original form

- enables rapid prototyping (for small and medium problems)
- ideal for teaching (can do a lot with short scripts)

CVX

- parser/solver written in Matlab (M. Grant, 2005)
- ► SVM:

$$\begin{aligned} & \text{minimize} \quad L + (\lambda/2) \|w\|_2^2 \\ L &= (1/m) \sum_{i=1}^m \left(1 - b_i (w^T a_i - v)\right)_+ \text{ is avg. loss} \end{aligned}$$

CVX specification:

Outline

Convex Optimization

Real-Time Embedded Optimization

Large-Scale Distributed Optimization

Summary

Motivation

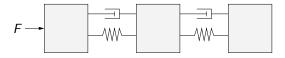
- in many applications, need to solve the same problem repeatedly with different data
 - ► control: update actions as sensor signals, goals change
 - ▶ finance: rebalance portfolio as prices, predictions change
- used now when solve times are measured in minutes, hours
 - supply chain, chemical process control, trading

Motivation

- in many applications, need to solve the same problem repeatedly with different data
 - control: update actions as sensor signals, goals change
 - ▶ finance: rebalance portfolio as prices, predictions change
- used now when solve times are measured in minutes, hours
 - supply chain, chemical process control, trading

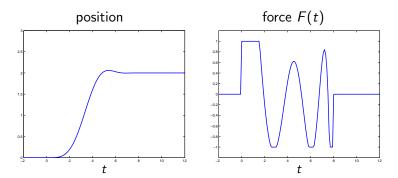
 (using new techniques) can be used for applications with solve times measured in milliseconds or microseconds

Example — Disk head positioning



- ▶ force F(t) moves disk head/arm modeled as 3 masses (2 vibration modes)
- ▶ goal: move head to commanded position as quickly as possible, with $|F(t)| \le 1$
- reduces to a (quasi-) convex problem

Optimal force profile



Embedded solvers — Requirements

- high speed
 - hard real-time execution limits
- extreme reliability and robustness
 - no floating point exceptions
 - must handle poor quality data
- small footprint
 - no complex libraries

Embedded solvers

▶ (if a general solver works, use it)

Embedded solvers

- ▶ (if a general solver works, use it)
- otherwise, develop custom code
 - by hand
 - automatically via code generation
- ► can exploit known sparsity pattern, data ranges, required tolerance at solver code development time

Embedded solvers

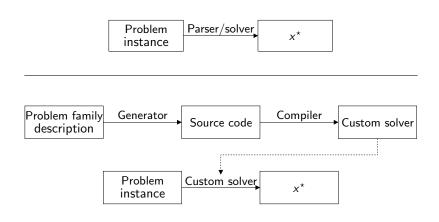
- ▶ (if a general solver works, use it)
- ▶ otherwise, develop custom code
 - by hand
 - automatically via code generation
- can exploit known sparsity pattern, data ranges, required tolerance at solver code development time

▶ typical speed-up over general solver: **100–10000**×

Parser/solver vs. code generator



Parser/solver vs. code generator



CVXGEN code generator

- handles small, medium size problems transformable to QP (J. Mattingley, 2010)
- uses primal-dual interior-point method
- generates flat library-free C source

CVXGEN example specification — SVM

```
dimensions
 m = 50 % training examples
 n = 10 % dimensions
end
parameters
  a[i] (n), i = 1..m % features
 b[i], i = 1..m  % outcomes
  lambda positive
end
variables
  w (n) % weights
  v % offset
end
minimize
  (1/m)*sum[i = 1..m](pos(1 - b[i]*(w'*a[i] - v))) +
    (lambda/2)*quad(w)
end
```

CVXGEN sample solve times

problem	SVM	Disk
variables	61	590
constraints	100	742
CVX, Intel i3	270 ms	2100 ms
CVXGEN, Intel i3	230 μ s	4.8 ms

Outline

Convex Optimization

Real-Time Embedded Optimization

Large-Scale Distributed Optimization

Motivation and goal

motivation:

- want to solve arbitrary-scale optimization problems
 - machine learning/statistics with huge datasets
 - dynamic optimization on large-scale networks

Motivation and goal

motivation:

- want to solve arbitrary-scale optimization problems
 - machine learning/statistics with huge datasets
 - dynamic optimization on large-scale networks

goal:

- ideally, a system that
 - has CVX-like interface
 - targets modern large-scale computing platforms
 - scales arbitrarily

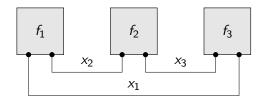
... not there yet, but there's promising progress

Distributed optimization

- devices/processors/agents coordinate to solve large problem, by passing relatively small messages
- can split variables, constraints, objective terms among processors
- variables that appear in more than one processor called 'complicating variables' (same for constraints, objective terms)

Example — Distributed optimization

minimize
$$f_1(x_1, x_2) + f_2(x_2, x_3) + f_3(x_1, x_3)$$



Distributed optimization methods

- dual decomposition (Dantzig-Wolfe, 1950s–)
- subgradient consensus (Tsitsiklis, Bertsekas, Nedić, Ozdaglar, Jadbabaie, 1980s–)

Distributed optimization methods

- dual decomposition (Dantzig-Wolfe, 1950s–)
- subgradient consensus (Tsitsiklis, Bertsekas, Nedić, Ozdaglar, Jadbabaie, 1980s–)

- alternating direction method of multipliers (1980s–)
 - equivalent to many other methods (e.g., Douglas-Rachford splitting)
 - well suited to modern systems and problems

Consensus optimization

want to solve problem with N objective terms

minimize
$$\sum_{i=1}^{N} f_i(x)$$

e.g., f_i is the loss function for ith block of training data

consensus form:

minimize
$$\sum_{i=1}^{N} f_i(x_i)$$

subject to $x_i - z = 0$

- \triangleright x_i are local variables
- z is the global variable
- $x_i z = 0$ are **consistency** or **consensus** constraints

Consensus optimization via ADMM

with
$$\overline{x}^k = (1/N) \sum_{i=1}^N x_i^k$$
 (average over local variables)
$$x_i^{k+1} := \underset{x_i}{\operatorname{argmin}} \left(f_i(x_i) + (\rho/2) \|x_i - \overline{x}^k + u_i^k\|_2^2 \right)$$
$$u_i^{k+1} := u_i^k + (x_i^{k+1} - \overline{x}^{k+1})$$

- ▶ get **global** minimum, under very general conditions
- \triangleright u^k is running sum of inconsistencies (PI control)
- minimizations carried out independently and in parallel
- \triangleright coordination is via averaging of local variables x_i

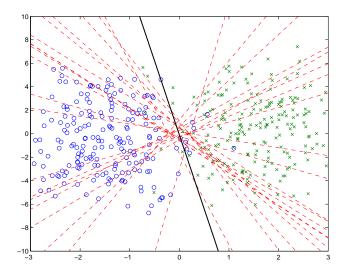
Statistical interpretation

- ► f_i is negative log-likelihood (loss) for parameter x given ith data block
- x_i^{k+1} is MAP estimate under prior $\mathcal{N}(\overline{x}^k u_i^k, \rho I)$
- processors only need to support a Gaussian MAP method
 - type or number of data in each block not relevant
 - consensus protocol yields global ML estimate
- privacy preserving: agents never reveal data to each other

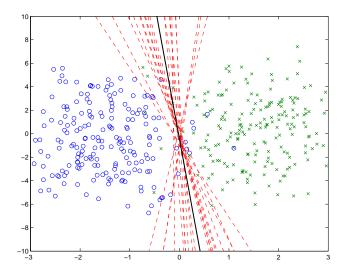
Example — Consensus SVM

- ▶ baby problem with n = 2, m = 400 to illustrate
- \triangleright examples split into N=20 groups, in worst possible way: each group contains only positive or negative examples

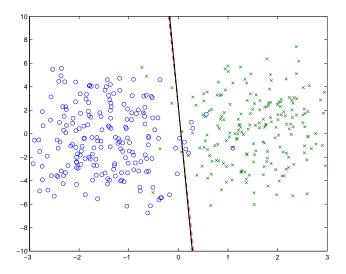
Iteration 1



Iteration 5



Iteration 40



Example — Distributed lasso

- ▶ example with **dense** $A \in \mathbb{R}^{400000 \times 8000}$ (~30 GB of data)
 - distributed solver written in C using MPI and GSL
 - no optimization or tuned libraries (like ATLAS, MKL)
 - split into 80 subsystems across 10 (8-core) machines on Amazon EC2

computation times

total time (about 15 ADMM iterations)	5–6m
subsequent ADMM iterations	0.5–2s
factorization (5000 \times 8000 matrices)	5m
loading data	30s

Outline

Convex Optimization

Real-Time Embedded Optimization

Large-Scale Distributed Optimization

Summary

Summary

convex optimization problems

- arise in many applications
- can be solved effectively
 - ▶ small problems at microsecond/millisecond time scales
 - ▶ medium-scale problems using general purpose methods
 - ▶ arbitrary-scale problems using distributed optimization

References

- Convex Optimization (Boyd & Vandenberghe)
- CVX: Matlab software for disciplined convex programming (Grant & Boyd)
- CVXGEN: A code generator for embedded convex optimization (Mattingley & Boyd)
- Distributed optimization and statistical learning via the alternating direction method of multipliers (Boyd, Parikh, Chu, Peleato, & Eckstein)

all available (with code) from stanford.edu/~boyd