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Undirected graphical models 

n  G = (V, E) (V=vertices; E ⊂ V×V = edges)  
n  Markovianity on G 

n  Hammersley-Clifford (NASC for positive dist.) 
n  C = Set of all cliques in G 

	


	



n  ϕc = Clique potential   Z = partition function 

n  Pairwise graphical models 
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Directing/undirecting the graphs? 

n  Undirected models: Factors are not typically probabilities 
n  Although they can be for cycle-free graphs (see BP), i.e., trees 
 

n  Directed models: Specify in terms of transition 
probabilities (parents to children) 

 

n  Directed to undirected: Easy (after moralization) 
 

n  Undirected to directed: Hard (and often a mistake) unless 
the graph is a tree (see BP) 
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n  X ~ N(µ, P) or N-1(h, J), with J = P-1 and h = Jµ 
n  The sparsity structure of J determines graph structure 

n  I.e., Jst = 0  if (s, t) is not an edge 

n  Directed model (0-mean for simplicity):   
    AX = w    

n  W ~ N(0, I) 
n  A – Lower triangular 

n  A = J1/2  è  In general we get lots of fill, unless the graph 
structure is a tree 

n  And it’s even more complicated for non-Gaussian models, as 
higher-order cliques are introduced 



Belief Propagation:  Message passing 
for pairwise models on trees 

n  Fixed point equations for likelihoods from disjoint parts 
of the graph: 

 
 



BP on trees 

n  Gives factored form for distribution in terms of probability 
distributions 

 

 
n  Great flexibility in message-scheduling 

n  Leaves-root-leaves = Rauch-Tung-Striebel 
n  Completely parallel messaging, convergence in number of steps = 

diameter of the graph 



Modeling of structure:  
Four questions 

n  What should the structure of the graph 
be? 

n  Which variables go where? 
n  What about adding hidden (unobserved) 

nodes (and variables)? 
n  What should the dimensions of the various 

variables be? 



Our initial foray (with thanks to 
Michèle Basseville and Albert 
Benveniste): Multiresolution Models 

n  What can be multiresolution? 
n  The phenomenon being modeled 
n  The data that are collected 
n  The objectives of statistical inference 
n  The algorithms that result 

n  Some applications that motivated us (and others) 
n  Oceanography 
n  Groundwater hydrology 
n  “Fractal priors” in regularization formulations in computer 

vision, mathematical physics, … 
n  Texture discrimination 
n  Helioseismology (?) … 



Specifying MR models on trees 

n  MR synthesis, leads, as with Markov chains, to thinking 
about directed trees: 

n  E.g.:  x (s) = A(s)x (sγ) + w (s) 
n  E.g.: Midpoint deflection is such a model 
 

n  Note that the dimension of the variables comes into play 

n  But let’s assume we pre-specify the tree structure 



A control theorist’s idea: 
Internal models 

n  Variables at coarser nodes are linear functionals of the 
finest-scale variables 
n  Some of these may be measured or important quantities to be 

estimated 
n  The rest are to be designed 

n  To approximate the condition for tree-Markovianity 
n  To yield a model that is “close” to the true fine-scale statistics 

n  Scale-recursive algebraic design 
n  Criterion used: Canonical correlations or predictive efficiency 

n  Alternate using midpoint deflection or wavelets** 

n  Confounding the control theorist 
n  Internal models need not have minimal state dimension 



So, what if we want a tree but 
not necessarily a hierarchical one 

n  One approach: Construct the maximum likelihood tree 
given sample data (or the full second-order statistics) 

n  NOTE:  This is quite different from what system 
theorists typically consider 
n  There is no “state” to identify: All of the variables in the model 

we desire are observed 
n  It is the index set that we get to play with 

n  Chow-Liu found a very efficient algorithm 
n  Form graph with each observed variable at a different node 
n  Edge weight between any two variables is their mutual 

information 
n  Compute max-weight spanning tree 

n  What if we want hidden/latent “states”? 



Reconstruction of a Latent Tree 

  

•  Reconstruct a latent tree using exact statistics 
(first) or samples (to follow) of observed nodes 
only 

•  Exact/consistent recovery of minimal latent 
trees 
•  Each hidden node has at least 3 neighbors 
•  Observed variables are neither perfectly 

dependent nor independent 
•  Other objectives: 

•  Computational efficiency 
•  Low sample complexity 
 



Information Distance 

•  Gaussian distributions 

•  Discrete distributions 
 

  
 
 

Joint probability matrix Marginal probability matrix (diagonal) 

Additivity 



Testing Node Relationships 

Node j – a leaf node   Node i – parent of j 
        for all k ≠ i, j 
Can identify  (parent, leaf child) pair 

Node i and j – leaf nodes and share the same 
parent  (sibling nodes) 

         for all k ≠ i, j    
Can identify leaf-sibling pairs. 

dij



Recursive Grouping (exact statistics) 

Step 1. Compute                      for all observed nodes (i, j, k). 

Step 2. Identify (parent, leaf child) or (leaf siblings) pairs. 

Step 3. Introduce a hidden parent node for each sibling 
group without a parent.  
Step 4. Compute the information distance for new 
hidden nodes.  E.g.:  
 

Step 5. Remove the identified child nodes and repeat Steps 2-4. 



Recursive Grouping 

•  Identifies a group of family nodes at each step. 

•  Introduces hidden nodes recursively. 

•  Correctly recovers all minimal latent trees. 

•  Computational complexity O(diam(T) m3). 

•                                                    Worst case O(m4)   



Chow-Liu Tree  

Minimum spanning tree of V 

using D as edge weights 

V = set of observed nodes 

D = information distances 

 
•  Computational complexity O(m2 log m) 



Surrogate Nodes and the C-L Tree 

V = set of observed nodes 
Surrogate node of i 

If (i, j) is an edge in the latent tree, then 
(Sg(i), Sg(j)) is an edge in the Chow-Liu tree  



CLGrouping Algorithm 

Step 1. Using information distances of observed nodes, construct 
MST(V; D).  Identify the set of internal nodes. 

Step 2. Select an internal node and its neighbors, and apply the 
recursive-grouping (RG) algorithm. 

Step 3. Replace the output of RG with the 
sub-tree spanning the neighborhood. 

Repeat Steps 2-3 until all internal nodes are operated on. 
Computational complexity    
O(m2 log m + (#internal nodes) (maximum degree)3) 



Sample-based Algorithms 

•  Compute the ML estimates of information distances. 

•  Relaxed constraints for testing node relationships. 

•  Consistent (only in structure for discrete distributions) 

•  Regularized CLGrouping for learning latent tree 

approximations. 

 

























The dark side of trees = The 
bright side: No loops 

n  So, what do we do? 
n  Try #1:  Turn it into a junction tree 

n  Not usually a good idea, but … 

n  Try #2:  Pretend the problem isn’t there and use a tree 
n  If the real objectives are at coarse scales, then fine-scale 

artifacts may not matter 

n  Try #3: Pretend it’s a tree and use (Loopy) BP 
n  Try #4:  Think! 

n  What does LBP do? 
n  Better algorithms? 
n  Other graphs for which inference is scalable? 

 



Recursive Cavity Models: “Reduced-
order” modeling as part of estimation 

n  Cavity thinning 

 
 

n  Collision 

n  Reversing the process (bring your own blanket) 



RCM in action: We are the world 

•  This is the information-form of RTS, with a thinning  
 approximation at each stage 

•  How do the thinning errors propagate? 
A control-theoretic stability question 



Walk-sums and Gaussian models 

n  Assume J normalized to have unit diagonal 
 

n  R is the matrix of partial correlation coefficients 
n           =sum over weighted length-l walks from s  to t  in graph 

 

  

 

•  Inference algorithms may “collect” walks in different ways 
•   Walk-summability, corresponding to            , guarantees 

•  Collection in any order is OK 
•   LBP converges 
•  If LBP converges it collects all walks for µi but only some of the self-return 
walks required for Pii 
•  There are lots of interesting/important models that are non-WS (and for 
which BP goes haywire) 



A computation tree 

•  BP includes the back-tracking self-return walk (1,2,3,2,1) 
•  BP does not include the walk (1,2,3,1) 
•  BUT: For Non-WS models, the tree may be nonsensical 
•  There are ways to collect some or all of the missed walks 

•  Embedded subgraphs as preconditioners 
•  Convergence for WS models always 

• A method that works also for non-WS models, recognizing that not all 
nodes are created equal  



An alternate approach: Using 
(Pseudo-) Feedback Vertex Sets 

•  Provide additional potentials to allow computation of quantities 
needed in mean/variance/covariance computation in the FVS 

•  Run BP with both original potentials and the additional set(s) 
•  Feed back information to FVS to allow computation of exact 

variance and mean within the FVS 
•  Send modified information potentials to neighbors of FVS 
•  Run BP with modified information potentials 

•  Yields exact means immediately 
•  Combining with results from Steps 2, 3 yields exact variances 



Approximate FVS 

n  Complexity is O(k2n), where k = |F| 
n  If k is too large 

n  Use a pseudo- (i.e., partial) FVS, breaking only some loops 
n  On the remaining graph, run LBP (or some other algorithm) 

n  Assuming convergence (which does not require WS) 
n  Always get the correct means and variances on F, exact means on T, 

and (for LBP) approximate variances on T 
n  The approximate variances collect more walks than LBP on full graph 

n  Local (fast) method for choosing nodes for the pseudo-FVS to: 
n  Enhance convergence 
n  Collect the most important wants 

n  Theoretical and empirical evidence show k ≈ O(logn) works 



Motivation from PDEs:  
MultiPOLE Models 

n  Motivation from methods for efficient 
preconditioners for PDEs 
n  Influence of variables at a distance are well-

approximated by coarser approximation 
n  We then only need to do LOCAL smoothing and 

correction 

n  The idea for statistical models: 
n  Pyramidal structure in scale 
n  However, when conditioned on neighboring scales, 

the remaining correlation structure at a given 
scale is sparse and local 



Models on graphs and on 
conjugate graphs 

Garden variety graphical model: sparse inverse covariance 

Conjugate models: sparse covariance 



Inspiration from Multipole Methods for PDEs:  
Allow Sparse Residual Correlation Within 
Each Scale 

n  Conditioned on scale 
1 and scale 3, x2 is 
independent of x4. 

Learning such models: 
 
“Dual” convex 
optimization problems 
 



Multipole Estimation 

n  Richardson Iteration to solve (Jh + (Σc)-1)x = h 
n  Global tree-based inference 
n  Sparse matrix multiplication for in-scale correction 

Jhxnew = h – (Σc)-1xold 
 

Compute last term via sparse equation                 
Σcz = xold 

  

xnew =Σc(h – Jhxold) 



Stock Returns Example 

•  Monthly returns of 84 companies in the S&P 100 index (1990-2007) 
•  Hierarchy based on the Standard Industrial Classification system 
•  Market, 6 divisions, 26 industries, and 84 individual companies 
•  Conjugate edges find strong residual correlations 

•  Oil service companies (Schlumberger,…) and oil companies 
•  Computer companies, Software companies, electrical equipment 
•  … 



What If Some Phenomena Hidden? 

n  Hidden variables 
o  Hedge fund investments, 
o  Patent accepted/rejected,  
o  Geopolitical factors, 
o  Regulatory issues, … 

•  Many dependencies 
among observed 
variables 

•  Less concise model 
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Graphical Models With Hidden Variables: 
Sparse Modeling Meets PCA 

Sparse Low-rank 

= + 

Marginal 
concentration 

matrix 



Convex Optimization for Modeling 

n  Samples of obs. vars.: 

+ 

S L 

given sparse low-rank 

•  Last two terms provide convex regularization for sparsity in S and  
  low-rank in L 
•  Weights allow tradeoff between sparsity and rank 



When does this work? 

n  Identifiability conditions 
n  The sparse part can’t be low rank and the low rank part 

can’t be sparse 

n  There are precise conditions (including conditions 
on regularization weights) that guarantee 
n  Exact recovery if exact statistics are given 
n  Consistency results if samples are available (“with high 

probability” scaling laws on problem dimension and 
available sample size) 



On the way: Construct richer classes 
of models for which inference is easy 

n  We have 
n  Methods to learn hidden trees with fixed structure but unknown 

variable dimensions 
n  Method to learn hidden trees with unknown structure but fixed 

(scalar) variable dimension 

n  Can we do both at the same time? 
 

n  We have method for recovering sparse plus low rank 
n  How about tree plus low rank (i.e., small FVS)? 
 

n  Message-passing algorithms are distributed dynamic 
systems.  How about designing better ones than LBP?   


