
Learning and Inference for
Graphical and Hierarchical
Models: A Personal Journey

Alan S. Willsky
willsky@mit.edu

http://lids.mit.edu
http://ssg.mit.edu

May 2013

Undirected graphical models

n  G = (V, E) (V=vertices; E ⊂ V×V = edges)
n  Markovianity on G

n  Hammersley-Clifford (NASC for positive dist.)
n  C = Set of all cliques in G

	

	

n  ϕc = Clique potential Z = partition function

n  Pairwise graphical models

1

2

3

4
5

8
9

7

6

Directing/undirecting the graphs?

n  Undirected models: Factors are not typically probabilities
n  Although they can be for cycle-free graphs (see BP), i.e., trees

n  Directed models: Specify in terms of transition
probabilities (parents to children)

n  Directed to undirected: Easy (after moralization)

n  Undirected to directed: Hard (and often a mistake) unless
the graph is a tree (see BP)

Gaussian models 1

2

3

4
5

8
9

7

6

n  X ~ N(µ, P) or N-1(h, J), with J = P-1 and h = Jµ
n  The sparsity structure of J determines graph structure

n  I.e., Jst = 0 if (s, t) is not an edge

n  Directed model (0-mean for simplicity):
 AX = w

n  W ~ N(0, I)
n  A – Lower triangular

n  A = J1/2 è In general we get lots of fill, unless the graph
structure is a tree

n  And it’s even more complicated for non-Gaussian models, as
higher-order cliques are introduced

Belief Propagation: Message passing
for pairwise models on trees

n  Fixed point equations for likelihoods from disjoint parts
of the graph:

BP on trees

n  Gives factored form for distribution in terms of probability
distributions

n  Great flexibility in message-scheduling

n  Leaves-root-leaves = Rauch-Tung-Striebel
n  Completely parallel messaging, convergence in number of steps =

diameter of the graph

Modeling of structure:
Four questions

n  What should the structure of the graph
be?

n  Which variables go where?
n  What about adding hidden (unobserved)

nodes (and variables)?
n  What should the dimensions of the various

variables be?

Our initial foray (with thanks to
Michèle Basseville and Albert
Benveniste): Multiresolution Models

n  What can be multiresolution?
n  The phenomenon being modeled
n  The data that are collected
n  The objectives of statistical inference
n  The algorithms that result

n  Some applications that motivated us (and others)
n  Oceanography
n  Groundwater hydrology
n  “Fractal priors” in regularization formulations in computer

vision, mathematical physics, …
n  Texture discrimination
n  Helioseismology (?) …

Specifying MR models on trees

n  MR synthesis, leads, as with Markov chains, to thinking
about directed trees:

n  E.g.: x (s) = A(s)x (sγ) + w (s)
n  E.g.: Midpoint deflection is such a model

n  Note that the dimension of the variables comes into play

n  But let’s assume we pre-specify the tree structure

A control theorist’s idea:
Internal models

n  Variables at coarser nodes are linear functionals of the
finest-scale variables
n  Some of these may be measured or important quantities to be

estimated
n  The rest are to be designed

n  To approximate the condition for tree-Markovianity
n  To yield a model that is “close” to the true fine-scale statistics

n  Scale-recursive algebraic design
n  Criterion used: Canonical correlations or predictive efficiency

n  Alternate using midpoint deflection or wavelets**

n  Confounding the control theorist
n  Internal models need not have minimal state dimension

So, what if we want a tree but
not necessarily a hierarchical one

n  One approach: Construct the maximum likelihood tree
given sample data (or the full second-order statistics)

n  NOTE: This is quite different from what system
theorists typically consider
n  There is no “state” to identify: All of the variables in the model

we desire are observed
n  It is the index set that we get to play with

n  Chow-Liu found a very efficient algorithm
n  Form graph with each observed variable at a different node
n  Edge weight between any two variables is their mutual

information
n  Compute max-weight spanning tree

n  What if we want hidden/latent “states”?

Reconstruction of a Latent Tree

•  Reconstruct a latent tree using exact statistics
(first) or samples (to follow) of observed nodes
only

•  Exact/consistent recovery of minimal latent
trees
•  Each hidden node has at least 3 neighbors
•  Observed variables are neither perfectly

dependent nor independent
•  Other objectives:

•  Computational efficiency
•  Low sample complexity

Information Distance

•  Gaussian distributions

•  Discrete distributions

Joint probability matrix Marginal probability matrix (diagonal)

Additivity

Testing Node Relationships

Node j – a leaf node Node i – parent of j
 for all k ≠ i, j
Can identify (parent, leaf child) pair

Node i and j – leaf nodes and share the same
parent (sibling nodes)

 for all k ≠ i, j
Can identify leaf-sibling pairs.

dij

Recursive Grouping (exact statistics)

Step 1. Compute for all observed nodes (i, j, k).

Step 2. Identify (parent, leaf child) or (leaf siblings) pairs.

Step 3. Introduce a hidden parent node for each sibling
group without a parent.
Step 4. Compute the information distance for new
hidden nodes. E.g.:

Step 5. Remove the identified child nodes and repeat Steps 2-4.

Recursive Grouping

•  Identifies a group of family nodes at each step.

•  Introduces hidden nodes recursively.

•  Correctly recovers all minimal latent trees.

•  Computational complexity O(diam(T) m3).

•  Worst case O(m4)

Chow-Liu Tree

Minimum spanning tree of V

using D as edge weights

V = set of observed nodes

D = information distances

•  Computational complexity O(m2 log m)

Surrogate Nodes and the C-L Tree

V = set of observed nodes
Surrogate node of i

If (i, j) is an edge in the latent tree, then
(Sg(i), Sg(j)) is an edge in the Chow-Liu tree

CLGrouping Algorithm

Step 1. Using information distances of observed nodes, construct
MST(V; D). Identify the set of internal nodes.

Step 2. Select an internal node and its neighbors, and apply the
recursive-grouping (RG) algorithm.

Step 3. Replace the output of RG with the
sub-tree spanning the neighborhood.

Repeat Steps 2-3 until all internal nodes are operated on.
Computational complexity
O(m2 log m + (#internal nodes) (maximum degree)3)

Sample-based Algorithms

•  Compute the ML estimates of information distances.

•  Relaxed constraints for testing node relationships.

•  Consistent (only in structure for discrete distributions)

•  Regularized CLGrouping for learning latent tree

approximations.

The dark side of trees = The
bright side: No loops

n  So, what do we do?
n  Try #1: Turn it into a junction tree

n  Not usually a good idea, but …

n  Try #2: Pretend the problem isn’t there and use a tree
n  If the real objectives are at coarse scales, then fine-scale

artifacts may not matter

n  Try #3: Pretend it’s a tree and use (Loopy) BP
n  Try #4: Think!

n  What does LBP do?
n  Better algorithms?
n  Other graphs for which inference is scalable?

Recursive Cavity Models: “Reduced-
order” modeling as part of estimation

n  Cavity thinning

n  Collision

n  Reversing the process (bring your own blanket)

RCM in action: We are the world

•  This is the information-form of RTS, with a thinning
 approximation at each stage

•  How do the thinning errors propagate?
A control-theoretic stability question

Walk-sums and Gaussian models

n  Assume J normalized to have unit diagonal

n  R is the matrix of partial correlation coefficients
n  =sum over weighted length-l walks from s to t in graph

•  Inference algorithms may “collect” walks in different ways
•  Walk-summability, corresponding to , guarantees

•  Collection in any order is OK
•  LBP converges
•  If LBP converges it collects all walks for µi but only some of the self-return
walks required for Pii
•  There are lots of interesting/important models that are non-WS (and for
which BP goes haywire)

A computation tree

•  BP includes the back-tracking self-return walk (1,2,3,2,1)
•  BP does not include the walk (1,2,3,1)
•  BUT: For Non-WS models, the tree may be nonsensical
•  There are ways to collect some or all of the missed walks

•  Embedded subgraphs as preconditioners
•  Convergence for WS models always

• A method that works also for non-WS models, recognizing that not all
nodes are created equal

An alternate approach: Using
(Pseudo-) Feedback Vertex Sets

•  Provide additional potentials to allow computation of quantities
needed in mean/variance/covariance computation in the FVS

•  Run BP with both original potentials and the additional set(s)
•  Feed back information to FVS to allow computation of exact

variance and mean within the FVS
•  Send modified information potentials to neighbors of FVS
•  Run BP with modified information potentials

•  Yields exact means immediately
•  Combining with results from Steps 2, 3 yields exact variances

Approximate FVS

n  Complexity is O(k2n), where k = |F|
n  If k is too large

n  Use a pseudo- (i.e., partial) FVS, breaking only some loops
n  On the remaining graph, run LBP (or some other algorithm)

n  Assuming convergence (which does not require WS)
n  Always get the correct means and variances on F, exact means on T,

and (for LBP) approximate variances on T
n  The approximate variances collect more walks than LBP on full graph

n  Local (fast) method for choosing nodes for the pseudo-FVS to:
n  Enhance convergence
n  Collect the most important wants

n  Theoretical and empirical evidence show k ≈ O(logn) works

Motivation from PDEs:
MultiPOLE Models

n  Motivation from methods for efficient
preconditioners for PDEs
n  Influence of variables at a distance are well-

approximated by coarser approximation
n  We then only need to do LOCAL smoothing and

correction

n  The idea for statistical models:
n  Pyramidal structure in scale
n  However, when conditioned on neighboring scales,

the remaining correlation structure at a given
scale is sparse and local

Models on graphs and on
conjugate graphs

Garden variety graphical model: sparse inverse covariance

Conjugate models: sparse covariance

Inspiration from Multipole Methods for PDEs:
Allow Sparse Residual Correlation Within
Each Scale

n  Conditioned on scale
1 and scale 3, x2 is
independent of x4.

Learning such models:

“Dual” convex
optimization problems

Multipole Estimation

n  Richardson Iteration to solve (Jh + (Σc)-1)x = h
n  Global tree-based inference
n  Sparse matrix multiplication for in-scale correction

Jhxnew = h – (Σc)-1xold

Compute last term via sparse equation
Σcz = xold

xnew =Σc(h – Jhxold)

Stock Returns Example

•  Monthly returns of 84 companies in the S&P 100 index (1990-2007)
•  Hierarchy based on the Standard Industrial Classification system
•  Market, 6 divisions, 26 industries, and 84 individual companies
•  Conjugate edges find strong residual correlations

•  Oil service companies (Schlumberger,…) and oil companies
•  Computer companies, Software companies, electrical equipment
•  …

What If Some Phenomena Hidden?

n  Hidden variables
o  Hedge fund investments,
o  Patent accepted/rejected,
o  Geopolitical factors,
o  Regulatory issues, …

•  Many dependencies
among observed
variables

•  Less concise model

Ford

GM

Chrysler

JetBlue

United

Delta

American

Continental

Ford

Chrysler
JetBlue

United

Delta

American

Continental

GM

Oil

Graphical Models With Hidden Variables:
Sparse Modeling Meets PCA

Sparse Low-rank

= +

Marginal
concentration

matrix

Convex Optimization for Modeling

n  Samples of obs. vars.:

+

S L

given sparse low-rank

•  Last two terms provide convex regularization for sparsity in S and
 low-rank in L
•  Weights allow tradeoff between sparsity and rank

When does this work?

n  Identifiability conditions
n  The sparse part can’t be low rank and the low rank part

can’t be sparse

n  There are precise conditions (including conditions
on regularization weights) that guarantee
n  Exact recovery if exact statistics are given
n  Consistency results if samples are available (“with high

probability” scaling laws on problem dimension and
available sample size)

On the way: Construct richer classes
of models for which inference is easy

n  We have
n  Methods to learn hidden trees with fixed structure but unknown

variable dimensions
n  Method to learn hidden trees with unknown structure but fixed

(scalar) variable dimension

n  Can we do both at the same time?

n  We have method for recovering sparse plus low rank
n  How about tree plus low rank (i.e., small FVS)?

n  Message-passing algorithms are distributed dynamic
systems. How about designing better ones than LBP?

