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‘-L Undirected graphical models

s G =(V, E) (V=vertices; E C VxV = edges). 3
= Markovianity on G 6

=« Hammersley-Clifford (NASC for positive dist.)
=« C = Set of all cliques in G

p(e) = ;exp{ )3 soc<xc>}

CeC
= ¢, = Clique potential Z = partition function

= Pairwise graphical models

p(z) = %exm d ps(ms) + D sost(afs,aft)}

| sEV (s,t)eR

p(a:)—%r Us(ws) T st(wsze)
seV

(s,t)eFE



i Directing/undirecting the graphs?

= Undirected models: Factors are not typically probabilities
= Although they can be for cycle-free graphs (see BP), i.e., trees

= Directed models: Specify in terms of transition
probabilities (parents to children)

= Directed to undirected: Easy (after moralization)

= Undirected to directed: Hard (and often a mistake) unless
the graph is a tree (see BP)



i Gaussian models

= X~N(u P)or NI(h, J), withJ=Pland h = Ju
= The sparsity structure of J determines graph structure

« Le., J,=0 if (s, f) is not an edge
= Directed model (0-mean for simplicity):

AX =w

= W~ N, ]

= A - Lower triangular
= A=J/2 = In general we get lots of fill, unless the graph
structure is a tree

= And it's even more complicated for non-Gaussian models, as
higher-order cligues are introduced



Belief Propagation: Message passing
ifor pairwise models on trees

= Fixed point equations for likelihoods from disjoint parts
of the graph:

-
mis(es) = a [ Ylesadvi@d)  [] - muledde
Tt ueN (t)\s

Ps(xzs) = aps(zs) H Mus(Ts)
ueN (s)

Psi(zs, 1) = oapsi(xs, xe)ps(xs)e(axt)

H Mus(Ts) H Mt (Tt)
ueN (s)/t ueN (t)/s



i BP on trees

= Gives factored form for distribution in terms of probability
distributions

Pst(xsa xt)
P({zs|s e V}) = Ps(xs)
Sg/ (S,gIGE Ps(xs) Pr(xt)

= Great flexibility in message-scheduling
=« Leaves-root-leaves = Rauch-Tung-Striebel

=« Completely parallel messaging, convergence in number of steps =
diameter of the graph



Modeling of structure:

iFour guestions

= What should the structure of the graph
be?
= Which variables go where?

= What about adding hidden (unobserved)
nodes (and variables)?

= What should the dimensions of the various
variables be?




Our initial foray (with thanks to
Michele Basseville and Albert
Benveniste): Multiresolution Models

= What can be multiresolution?
= The phenomenon being modeled
= The data that are collected
= The objectives of statistical inference
=« The algorithms that result
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= Some applications that motivated us (and others)

= Oceanography
Groundwater hydrology

“Fractal priors” in regularization formulations in computer
vision, mathematical physics, ...

Texture discrimination
Helioseismology (?) ...



i Speafymg MR models on trees

MR synthesis, leads, as with Markov chains, to thlnking
about directed trees.

E.g.: x(s) = A(s)x(sy) + w(s)
=« E.g.: Midpoint deflection is such a model

Note that the dimension of the variables comes into play

But let’'s assume we pre-specify the tree structure



A control theorist’s idea:
ilnternal models

= Variables at coarser nodes are linear functionals of the
finest-scale variables

= Some of these may be measured or important quantities to be
estimated

= The rest are to be designed
= TO approximate the condition for tree-Markovianity
= To yield a model that is “close” to the true fine-scale statistics

= Scale-recursive algebraic design
= Criterion used: Canonical correlations or predictive efficiency
= Alternate using midpoint deflection or wavelets**

= Confounding the control theorist
= Internal models need not have minimal state dimension

z(s) = z(s7) + w(s)




So, what if we want a tree but
not necessarily a hierarchical one

= One approach: Construct the maximum likelihood tree
given sample data (or the full second-order statistics)

= NOTE: This is quite different from what system
theorists typically consider

= There is no “state” to identify: All of the variables in the model
we desire are observed

= Itis the index set that we get to play with

= Chow-Liu found a very efficient algorithm

=« Form graph with each observed variable at a different node

=« Edge weight between any two variables is their mutual
information

=« Compute max-weight spanning tree
= What if we want hidden/latent “states”?



‘-L Reconstruction of a Latent Tree

« Reconstruct a latent tree using exact statistics
(first) or samples (to follow) of observed nodes
only

« Exact/consistent recovery of minimal latent
trees

Each hidden node has at least 3 neighbors
« Observed variables are neither perfectly
dependent nor independent

« Other objectives:

Computational efficiency
* Low sample complexity




Information Distance

Gaussian distributions . Cov(X;. Xj)
dij := —log|pijl \/ Var(X;)Var(X;)
Discrete distributions | det Ji|
dij = — lO '
v det M det MUY
J7" Joint probability matrix M* Marginal probability matrix (diagonal)

i
Additivity ﬁ% di2 = dyp, + dpyny + dop,
/ /" \
dis — 3 d;.. / 9 G
(¢.5)€Path((k,0l);Ep)



i Testing Node Relationships

Node j — a leaf node Node i — parent of |
< forallk#i,j djx —dir =,
Can identify (parent, leaf child) pair

Node i and j — leaf nodes and share the same
parent (sibling nodes)

<> forallk#i,j djr — dir, = dhj — dpi
Can identify leaf-sibling pairs.



Recursive Grouping (exact statistics)

Step 1. Compute dj;, — d;j, for all observed nodes (i, j, k).

Step 2. Identify (parent, leaf child) or (leaf siblings) pairs.

Step 3. Introduce a hidden parent node for each sibling
group without a parent.

Step 4. Compute the informatlion distance for new
hidden nodes. E.g.: dsn, = 5 (dse + dss — des)

Step 5. Remove the identified child nodes and repeat Steps 2-4.




i Recursive Grouping

|dentifies a group of family nodes at each step.

Introduces hidden nodes recursively.

Correctly recovers all minimal latent trees.

Computational complexity O(diam(T) m3).
HO-OOC R 020.0:0.0.0
$100000 o SLeded

Worst case O(m*)



i Chow-Liu Tree

I\IST(V,, D) Minimum spanning tree of V

using D as edge weights
V = set of observed nodes

D = information distances

« Computational complexity O(m? log m)



ﬁ Surrogate Nodes and the C-L Tree

V = set of observed nodes
Surrogate node of i

Sg(i) := argmin d;;
jEV

If (i, j) is an edge in the latent tree, then
(Sg(/), Sg(j)) is an edge in the Chow-Liu tree




CLGrouping Algorithm

Step 1. Using information distances of observed nodes, construct
MST(V; D). Identify the set of internal nodes.

Step 2. Select an internal node and its neighbors, and apply the
recursive-grouping (RG) algorithm.

Step 3. Replace the output of RG with the
sub-tree spanning the neighborhood.

Repeat Steps 2-3 until all internal nodes are operated on.
Computational complexity

O(m? log m + (#internal nodes) (maximum degree)?3)




i Sample-based Algorithms

« Compute the ML estimates of information distances.
« Relaxed constraints for testing node relationships.

« Consistent (only in structure for discrete distributions)

* Regularized CLGrouping for learning latent tree

approximations.
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The dark side of trees = The
ibrlght side: No loops <=

= So, what do we do?

= [ry #1: Turn it into a junction tree
= Not usually a good idea, but ...

= Try #2: Pretend the problem isn't there and use a tree

« If the real objectives are at coarse scales, then fine-scale
artifacts may not matter

= Try #3: Pretend it's a tree and use (Loopy) BP

= Try #4: Think!
= What does LBP do?
= Better algorithms?
= Other graphs for which inference is scalable?




Recursive Cavity Models: "Reduced-
iorder” modeling as part of estimation

= Cavity thinning AT Lol

(a) (b) (© (d)



ﬁ RCM in action: We are the world

Estimated SSHA (cm above Mean-Sea-Level) SSHA Estimation Error (mm)
TH .
o '}GN N IR
: b » L g
gy, g
5 P T A ;
E “ o ‘
B B 2
5 0 5 0 5 10 15 35 14 145 15 155 16 165

* This is the information-form of RTS, with a thinning
approximation at each stage
« How do the thinning errors propagate?
A control-theoretic stability question



Walk-sums and Gaussian models

J =P~} h =Py
= Assume Jnormalized to have unit diagonal
Jl={U—-R)™'=IT+R+R>+...
= Ris the matrix of partial correlation coefficients
= (RY),; =sum over weighted length-¢ walks from s to t in graph

Por=¢(s —t), pe=Y hd(s—1)

seV

* Inference algorithms may “collect” walks in different ways

« Walk-summability, corresponding to o(R) < 1, guarantees
e Collection in any order is OK
« LBP converges
* If LBP converges it collects all walks for p. but only some of the self-return
walks required for P;
» There are lots of interesting/important models that are non-WS (and for
which BP goes haywire)



i A computation tree

1 2
Q O .
n=2
N
4(] \-) 3 n=3

BP includes the back-tracking self-return walk (1,2,3,2,1)
BP does not include the walk (1,2,3,1)
BUT: For Non-WS models, the tree may be nonsensical

» There are ways to collect some or all of the missed walks
« Embedded subgraphs as preconditioners
» Convergence for WS models always
A method that works also for non-WS models, recognizing that not all
nodes are created equal



An alternate approach: Using
(Pseudo-) Feedback Vertex Sets

1

ol le T el

Provide additional potentials to allow computation of quantities
needed in mean/variance/covariance computation in the FVS
Run BP with both original potentials and the additional set(s)
Feed back information to FVS to allow computation of exact
variance and mean within the FVS
Send modified information potentials to neighbors of FVS

Run BP with modified information potentials

 Yields exact means immediately

« Combining with results from Steps 2, 3 yields exact variances



i Approximate FVS

Complexity is O(k?n), where k = | F]
If kis too large
= Use a pseudo- (i.e., partial) FVS, breaking only some loops
= On the remaining graph, run LBP (or some other algorithm)
Assuming convergence (which does not require WS)

= Always get the correct means and variances on F, exact means on T,
and (for LBP) approximate varianceson T

= The approximate variances collect more walks than LBP on full graph

Local (fast) method for choosing nodes for the pseudo-FVS to:
=« Enhance convergence
= Collect the most important wants

Theoretical and empirical evidence show k = O(logn) works



Motivation from PDEs:
iMuItiPOLE Models

= Motivation from methods for efficient
preconditioners for PDEs

= Influence of variables at a distance are well-
approximated by coarser approximation

= We then only need to do LOCAL smoothing and
correction

= The idea for statistical models:
= Pyramidal structure in scale

= However, when conditioned on neighboring scales,

the remaining correlation structure at a given
scale is sparse and local




Models on graphs and on
icon jjugate graphs

Garden variety graphical model: sparse inverse covariance

Comuqate models: sparse covariance

11111
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Inspiration from Multipole Methods for PDEs:
Allow Sparse Residual Correlation Within
Each Scale

= Conditioned on scale
1 and scale 3, x, is
independent of x,.

Jo | duai O 0§ duat 0 Jio o Learning such models:
-----+ ..... !-_-__. _-_-_+ ..... !-__-_. -----+ ..... ! ______
J[2,1]§ Ji EJ[2,3] = J[2,1]§ 0 EJ[z,s] * 0 EJ[2] 1 0 . ”
------ oo onnns Dual” convex
0} Joaide 0 Jeai 0 0:0 B optimization problems
Jh J — (ZC)'I
Scale 1 O
Scale 2 T O O

Scale 3 Or==e== Or==eereoeee O



i Multipole Estimation

= Richardson Iteration to solve (J" + (2¢)1)x = h
= Global tree-based inference
= Sparse matrix multiplication for in-scale correction

Ix.. =h—(5)ix

Compute last term via sparse equation
ZCZ —_ XO/d

neW

O ==mnmmenne- O Xpew =25(h — - Jx Xoid)



Stock Returns Example

Market
Divisions /,\
B.Mining = = = D.Manufacturing= = =E.Trans.,,Comm., Elec.&Gas G.Retail Trade  H.Finance I.Services

Industries

N N

-

-~ -
- -
o e - = -

e e o e o mm mm omm mm o =

* Monthly returns of 84 companies in the S&P 100 index (1990-2007)
* Hierarchy based on the Standard Industrial Classification system
« Market, 6 divisions, 26 industries, and 84 individual companies
» Conjugate edges find strong residual correlations
* Qil service companies (Schlumberger,...) and oil companies

« Computer companies, Software companies, electrical equipment



i What If Some Phenomena Hidden?

United
American il
America JetBlue
JetBlu GM  Delta GM
Delta Ford Continental Ford
Continental = Hidden variables
e Many dependencies - Hedge fund investments,
among observed . Patent accepted/rejected,
variables - Geopolitical factors,

e Less concise model - Regulatory issues, ...



Sparse Modeling Meets PCA

* Graphical Models With Hidden Variables:

X = (X0, Xp) ~N(0,%)

X0 XO,H 1 [ Ko Kogpg ]
Z = ’ Z — K — ’
[ XHO XH ] Kpgo Kg
Marginal . B
concentration (X0) = Ko — KouKy; Ku,0
matrix v v
Sparse Low-rank




* Convex Optimization for Modeling

m— m + X
¥ N\
S L
= Samples of obs. vars.: D, = {X},..., X5}

A

(Sy, L) = argmin — Lloglik. (S-L; Dp) + An [7]|S]1 + trace(L)]

st. S—L»=0, L*>O0.
» Last two terms provide convex regularization for sparsity in S and

low-rank in L
« Weights allow tradeoff between sparsity and rank



i When does this work?

= Identifiability conditions
= The sparse part can’t be low rank and the low rank part
can't be sparse
= There are precise conditions (including conditions
on regularization weights) that guarantee
» Exact recovery if exact statistics are given

= Consistency results if samples are available (“with high
probability” scaling laws on problem dimension and
available sample size)



On the way: Construct richer classes
i of models for which inference is easy

= We have

= Methods to learn hidden trees with fixed structure but unknown
variable dimensions

= Method to learn hidden trees with unknown structure but fixed
(scalar) variable dimension

= Can we do both at the same time?

= We have method for recovering sparse plus low rank
=« How about tree plus low rank (i.e., small FVS)?

= Message-passing algorithms are distributed dynamic
systems. How about designing better ones than LBP?



