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Abstract

Design and optimization of large-area meta-optics

Maksym Zhelyeznyakov

Chair of the Supervisory Committee:
Arka Majumdar

In recent years, quasi-periodic arrays of dielectric scatterers, also known as metasurfaces

have been shown to manipulate electromagnetic scattering with sub-wavelength spatial res-

olution. These devices have proven to be incredibly useful for reducing the form factor of

conventional optical devices, as well as creating novel optical devices that are not possible to

realize with conventional refractive optics. The design of these devices is however non-trivial.

Conventional forward design methods are useful for generating only a small subset of pos-

sible designs. More complicated designs as well as optimization of existing forward designs

requires solving the full-wave Maxwell’s equations many times in order to converge to an

optimal device design. This thesis outlines three main advancements in computational elec-

tromagnetics for the design of metasurfaces. Firstly, we extend the Generalized Multi-sphere

Mie Scattering (GMMT) method to ellipsoidal scatterers. This method solves Maxwell’s

equations and computes gradients with respect to geometric design parameters of metasur-

faces composed of ellipsoidal, dielectric scatterers analytically. We use this method to fully

inverse design a metasurface lens, a meta-grating that focuses light at different focal planes

for different polarizations, and improve the efficiency of a forward designed lens from 25.59%

to 32.00%. The second method is a data-driven method that predicts electromagnetic fields

from wavelength-scale cylindrical pillars, obtaining a low-dimensional representation of the

data via the singular value decomposition. This method fits a differentiable neural-network

model of the input geometries and configurations of the metasurface scatterers to the low-



dimensional representations of the output field. This framework was used to design a device

that produces an annular focal spot for the λ = 400nm wavelength, and a focal spot for the

λ = 633nm wavelength. Finally, we present a data-free machine learning framework for pre-

dicting electromagnetic field responses from metasurfaces by using physics informed neural

networks. This method predicts full-fields from 1D meta-gratings by a neural network that

is trained by minimizing the residual norm of the Maxwell operator. We use this technique

to design a set of large-area (1mm) meta-lenses exhibiting higher efficiency than the ones

designed under the local phase approximation. We validate our designs experimentally, and

see a maximum intensity improvement of up to 53%.
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Chapter 1

INTRODUCTION

Humans have been manipulating light since the dawn of civilization. Some of the earliest

examples of this date back 3000 years before the yang-sui bronze age, burning mirrors of

ancient China that were used to light cooking fires [79]. Since then, humanity has developed

other optical devices with a wide range of functionalities. Since Galileo Galilei’s pioneering

work, telescopes have allowed astronomers to observe the very largest objects in the universe.

Microscopes help biologists and life-scientists understand living things on the micrometer

scale. Corrective lenses fix peoples poor eyesight. Driving mirrors enable safer vehicles.

With the advent of smart-phones, cameras are now accessible to the average individual

everywhere wherever they go.

The operation of these devices can be understood by the principle of refraction - or Snell’s

law. given by:

n1 sin θ1 = n2 sin θ2. (1.1)

where n1 and n2 refractive indices media and θ1 and θ2 are the angle that a ray of light

makes with the surface normal of the boundary between two media. For spherical lenses, it

is possible to derive the lens-maker’s equation [78] from eq. (1.1):

1

F
= (n− 1)

(
1

R1

− 1

R2

+
(n− 1)d

nR1R2

)
(1.2)

where n is the refractive index of the lens, R1 and R2 are the radius of curvatures for the

lens surfaces, F is the focal length, and d is the lens thickness. If we consider only spherical,

plano-convex lenses and take limit as R2 → ∞, we get the relationship:

F = (n− 1)R (1.3)
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Figure 1.1: a. Refractive lens with a thickness function t(x) made from a material with

refractive index n. b. Fresnel lens. Due to the cyclic nature of phase, these devices achieve

the same focal length, but the Fresnel lens is significantly less bulky.

Now let us say we want to miniaturize an optical system. Generally, micro-lenses are assumed

to be spherical since they are manufactured exploiting the surface tension effect of a liquid

material state resulting in a smooth surface [116]. Thus, in the following analysis we assume

the lenses to be spherical. Given a lens aperture size D, the minimum possible focal length

is given by F = D
2(n−1)

, limited by the geometry of the sphere. We note that it is possible

to reduce the focal length further by using parabolic lenses, but manufacturing them at

the micro-scale is very challenging. Furthermore, refractive optical elements can generally

perform only one function. Optical systems typically have several optical elements such as

multiple lenses, mirrors, and prisms, making miniaturization challenging.

On the other hand, diffractive optics function in a fundamentally different way. Instead

of treating light as a ray, wave-optics treats light as an electromagnetic (EM) wave with

some amplitude A, phase ϕ, and wavelength λ. Consider a field propagating along a focal

axis z. As this field interacts with an optical device, it picks up a phase delay:

ϕd(x) =
2π

λ
nt(x) (1.4)

where n is the refractive index of the device, and t(x) is the thickness of the device at
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coordinate x. This way, by understanding the wave-like nature of light, we can describe

optical devices as functions that imprint a phase onto a field. In fact, this understanding led

to the creation of the Fresnel lens (show in Fig. 1.1) that significantly reduces the bulk of a

large aperture, short focal length lens.

1.1 Metamaterials

Electromagnetic metamaterials are quasi-periodic arrays of sub-wavelength scale scatters

(meta-atoms) [114]. Metamaterials are generally three-dimensional element, where the meta-

atoms are arranged in periodic structure in all three-dimensions. Unfortunately, the difficulty

in fabrication has precluded widespread of use of metamaterials. Their two-dimensional

counterpart metasurfaces have drawn significant interest in the last few years. There are

several main reasons for this wide-spread use of metasurfaces. Metasurfaces are extremely

thin. This is appealing because as mentioned in the previous section, conventional op-

tics are bulky. Metasurfaces are capable of controlling the amplitude, phase, and polar-

ization of light in two dimensions by varying the geometric parameters of individual meta-

atoms. They have also been shown to be compatible with the standard CMOS manufacturing

processes[123, 104, 57]. Lastly, metasurface features are sub-wavelength, which suppresses

all diffraction orders greater than the 0th order. For all these reasons, metasurfaces make a

compelling candidate for optical miniaturization. In recent years, metasurfaces have shown

great promise in shrinking existing optical elements such as lenses [23, 119, 10], vortex beam

generators [52, 119], and holograms [128]. They have also been used to create optical elements

with new functionalities such as polarization multiplexed devices [8, 127], wavelength multi-

plexed devices [112, 124], and polarimeters [12]. Furthermore, metasurfaces are an extremely

powerful platform for point-spread function engineering [27] as they allow for sub-wavelength

scale control of the electromagnetic field response in two dimensions.
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1.2 Designing a metamaterial

We can group metamaterial design into two broad categories - forward and inverse design.

Forward design idealizes metasurfaces as ultra-thin and passive phase-masks. Although is

possible to modulate both amplitude and phase responses of metamaterials, for most of

the devices, we desire to have near-unity transmision response from meta-atoms, thus only

modulating the phase a device. This means that for forward design, a phase function that

encapsulates the performance of a device is required. Once the phase function is chosen, a

material platform must be chosen to fabricate the device. The platform is generally selected

based on the desired wavelength of operation.

After selecting the phase function to be implemented and the material platform, we must

build a library of meta-atoms with desired phase and amplitude responses which requires the

using the local phase [44] or locally periodic [80] approximation (LPA). Both terms are used

interchangeably in the literature, and we will let the reader decide which one they prefer.

Fig.1.2 shows the simulation strategy behind the LPA. We simulate the full electromagnetic

field from a meta-atom given some current source with normalized amplitude. The boundary

conditions of the simulation are periodic. Then a complex field Emeasured is measured some

distance away from the scatterer. The complex transmission coefficients t are then given by

t = mean(Emeasured) (1.5)

and the amplitude A and phase ϕ responses are given by

A = |t| (1.6)

and

ϕ = ∠t. (1.7)

For forward design, we generally create a lookup table of scatterer geometries that span a

0−2π phase shift, with near-unity amplitude. Fig.1.2 shows an example of a unit cell with a

rectangular meta-atom. In this case the modifiable parameters are H, the height of the meta-

atom, P the periodicity of the unit cell andD, the side-length of the square meta-atom. There
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Figure 1.2: a. side view of rectangular scatterer being simulated under periodic boundary

conditions. b. top view. H is meta-atom height, D is the square side length (usually the

parameter modified during the design process), and P is the meta-device lattice constant.

are many different types of meta-atom geometries to chose from depending on the application.

When fabricating meta-surfaces, H and P generally remain fixed, and the planar geometry

gets modified to achieve a desired phase shift curve. Fig. 1.3 shows two example amplitude/

phase curves achieved by fixing the H and P of a metasurface, and modifying the diameters

of cylindrical pillars. After the scatterer library is computed, the chosen phase function

is discretized on a grid with resolution corresponding to the metamaterial periodicity, and

meta-atom geometries are matched to their corresponding phase on the grid.

The other way of designing a meta-material is through inverse design. The inverse design

method offers a pathway for designing meta-devices by specifying a figure of merit (FOM),

written in terms of the design parameters, which characterizes the device’s performance.

The FOM is then either minimized or maximized via some optimization algorithm such

as particle swarm, genetic algorithms, or gradient based methods. Genetic algorithms and

particle swarm methods have successfully been used in optimizing photonic systems [3, 99,

34]. These methods however converge very slowly, and are typically too expensive to use for

large-area metamaterial systems. Gradient based inverse design on the other hand uses the
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Figure 1.3: Example amplitude and phase curves for circular pillars. Duty cycle is the ratio

between the pillar diameter and periodicity. Both sweeps are done at λ = 0.633µm. Figure

credit Alan Zhan et. al.[118].

physics of the system, and converges much quicker. Fig. 1.4 shows a basic inverse design

scheme. We start with an initial condition - an a priori arrangement of meta-atoms. This

can be just a random set of geometries, a uniform set of geometries, or a forward designed

device to be optimized. A forward simulation is then computed by some electromagnetic

solver. The gradient of the FOM is computed with respect to the scatterer geometries, and

the configuration of the scatters is updated. This process is repeated iteratively until the

maximum or minimum value of the FOM is reached.

Inverse design requires running the forward simulation many times, and thus its speed

is ultimately limited by the computational efficiency of the forward simulation method. In

most existing inverse design works, Maxwell’s equations are solved on a meshed grid, and

the refractive indices of the device are allowed to change at each point of the grid space

[74, 83, 82, 80, 14, 61]. These methods are considered to be accurate, but expensive, and
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Figure 1.4: Metasurface inverse design. You start with some sort of initial condition on the

distribution of the scatterer geometries, perform a forward simulation to get the electromag-

netic field response, calculate the FOM from the electric fields, take the gradient with respect

to the design parameters, and iteratively update the initial condition.
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difficult to generalize to large area metasurfaces.

1.3 Thesis Outline

This thesis primarily focuses of addressing the computational bottlenecks of gradient based

inverse design. Specifically, we will focus on different forward simulation methods, and access

their performance by optimizing devices generated by forward design, and create new designs

that are not possible to generate with forward design. Chapter 2 primarily focuses of the

analytical Mie Scattering method. Chapters 3 and 4 focus of deep learning methods.

• Chapter 2: This chapter focuses on extending the Generalized Multi-sphere Mie

Theory (GMMT) to ellipsoidal scatterers. This work is an extension of the work that

was done by my predecessor - Alan Zhan, who used GMMT to design metamaterials

using dielectric spherical scatterers [120, 121]. By breaking the symmetry of the sphere,

we achieve higher control over the polarization of incident light. To compute the

gradient of our FOMs with respect to the meta-atom design parameters we used the

adjoint method. We inverse designed a polarization switched metalens. Furthermore,

we used this method to optimize the efficiency of a forward designed metalens.

• Chapter 3: This chapter focuses on using a data driven approach to model electro-

magnetic scattering from meta-atoms that doesn’t use the LPA. We present a forward

simulation framework that is 104 times faster and 15 times more memory efficient than

mesh-based solvers, and isn’t constrained to specific scatterer geometries. We explored

field patterns generated by plane wave scattering from dielectric, cylindrical pillars. We

used the singular value decomposition to obtain low-dimensional representation of the

scattering data, and generated a linear and neural network model fitting the scatterer

geometries to the low dimensional representation of our data. To validate this model,

we inverse designed two optical elements: a wavelength multiplexed device that focuses

light to a point for λ = 400nm and produces an annular beam for λ = 633nm and an

extended depth of focus lens.
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• Chapter 4: This chapter focuses on modeling electromagnetic scattering by 1 dimen-

sional meta-structures by the use of physics informed neural networks [85]. Unlike most

other deep-learning methods, this method does not rely on generating any scattering

data. Instead, we trained the neural network by minimizing the l1 norm residual of the

Maxwell partial differential equation operator

∇2 · +ω2ϵ · +iωJ

in order to fit a neural network model to a set of parameterized ϵ distributions. We

demonstrate the accuracy of our model by designing a 1mm aperture cylindrical meta-

lens exhibiting higher performance than a lens that was designed via the use of the

LPA. We also experimentally validated the maximum intensity improvement of the

inverse designed meta-lens.
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Chapter 2

ELLIPSOIDAL T-MATRIX SCATTERING

The contents of this chapter are adapted from [127], Maksym V. Zhelyeznyakov, Alan

Zhan, and Arka Majumdar. Design and optimization of ellipsoid scatterer-based metasurfaces

via the inverse t-matrix method. OSA Continuum, 3(1):89–103, Jan 2020, with permission

from the authors.

2.1 Introduction

The design of optical elements made of quasi-periodic arrays of sub-wavelength scatterers,

also known as metasurfaces, is a promising area of research. The miniatuarization of existing

optical elements such as lenses [115, 89, 23, 118, 10], freeform optics [117], and retroreflec-

tors [8] has already been shown using metasurfaces. Furthermore, multi-functional optical

elements[9, 51, 109, 110, 40, 108, 107] and new point spread function engineering methods

[27, 28] have been demonstrated using metasurfaces. Until recently, however, these meta-

surfaces have generally been designed intuitively, termed here as forward design. Libraries

of complex transfer coefficients of individual scatterers are pre-computed, and arranged in

a periodic lattice to approximate a desired phase profile. The properties of these scatterers

are computed with periodic boundary conditions and the metasurfaces are designed under

the ”local phase approximation”: the scattering in any small region is taken to be the same

as the scattering from a periodic surface [115, 89, 45]. This approximation neglects inter-

scatterer coupling which is significant for metasurfaces composed of scatterers with rapidly

varying geometries or with low refractive index [15]. Moreover, it is not always possible to

know the phase-profile a priori, and in these cases forward design methods cannot be used.

Inverse design methods use a figure of merit (FOM) written in terms of adjustable geomet-
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ric scatterer parameters to iteratively optimize the scatterers of a metasurface to implement

a desired functionality. The process starts with an arbitrary initial scatterer configuration.

Then the electric field scattered off the device, the FOM, and the gradient of the FOM with

respect to the scatterer design parameters are computed. The scatterer geometries are then

iteratively updated in the direction that optimizes the FOM. Thus, inverse design methods

offer a clear path to create optical elements with unintuitive phase functions. Different op-

timization methods such as particle swarm optimization [100], genetic algorithm [4, 35, 31],

and gradient based methods [120, 41, 83, 86, 82, 49, 80, 61, 36] have already been applied

to design both integrated photonic elements and free space metasurface optics. One specific

direction is to exploit Mie scattering of spherical scatterers to perform the inverse design

[120, 121]. This approach allows large-area metasurface design without relying on the local

phase approximation, and thus accurately models the inter-scatterer coupling. Currently,

this approach is restricted to spherical scatterers, for which the radii are the only free pa-

rameters available. We did not find a radius range over which these spherical scatterers

smoothly span a 0− 2π phase shift without suffering considerable optical losses, a common

requirement when designing metaphotonic structures.

In this chapter, we will outline an inverse-design and optimization method for (∼ 40λ in

diameter) metasurfaces using transition matrix scattering theory, an extension of Generalized

Multi-sphere Mie Theory (GMMT). Specifically, we extended a previously reported inverse

design method [120] to include ellipsoidal scatterers. We first show the feasibility of using this

method for inverse-designing single wavelength metasurfaces lenses. We then demonstrate

the effectiveness of this method for designing non-intuitive devices without a known phase

function by optimizing a polarization multiplexed lens that switches the location of the focal

spots based on the incident light polarization. Finally we demonstrate the efficacy of inverse

design techniques for optimization, by improving the efficiency of a high numerical aperture

lens starting with a forward designed metalens as the initial condition.
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2.2 The Adjoint Method

The simplest way of calculating the gradient of a function with respect to N number of

modifiable parameters is to independently vary a single parameter and monitor the sensitivity

of the function with respect to the change. This however becomes very costly as N increases.

The adjoint method provides a more efficient way of calculating the gradient. Let

A(P) x(P) = b(P) (2.1)

be a linear system we are trying to solve and g(x(p)) be the objective function of the system

being optimized. The gradient we’d like to compute is given by:

∂g

∂P
= { ∂g

∂P1

,
∂g

∂P2

, ...,
∂g

∂Pn

} (2.2)

By using the chain rule we can write the gradient as

∂g

∂P
=
∂g

∂x

∂x

∂P
(2.3)

Generally ∂g
∂x

is easy to calculate, because F is written in terms of x. Calculating second

term is more involved. To do this, we differentiate with respect to p and solve for ∂x
∂P

∂

∂P
[Ax] =

∂A

∂P
x+A

∂x

∂P
=
∂b

∂P
(2.4)

∂x

∂P
= A−1

[
∂b

∂P
− ∂A

∂P
x

]
(2.5)

thus the full derivative of g becomes

∂g

∂P
=
∂g

∂x
A−1

[
∂b

∂P
− ∂A

∂P
x

]
(2.6)

Now by parenthesiing the first term we can define the ”adjoint” term:

λT =
∂g

∂x
A−1 (2.7)

Multiplying by A on the right hand side and transposing we get

ATλ =

[
∂g

∂x

]T
(2.8)
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Grouping everything together, the total derivative of the objective becomes:

∂g

∂P
= λT

[
∂b

∂P
− ∂A

∂P
x

]
(2.9)

If A(P) and b(P) are generally given analytically, their derivatives are easy to compute.

This leaves us with needing to compute two linear problems, i.e. solving for x and λ, which

can be done using well understood methods for solving linear systems.

A rigorous treatment of Mie scattering theory is a subject for entire textbooks, and

can be found elsewhere [62, 70, 33], but we will briefly summarize it here. Mie scattering

analytically treats the scattering from spherical particles by decomposing the incident Ein

and the scattered field Eout as a weighted sum of spherical vector wave functions (SWVF)

ψ(1) and ψ(3) respectively. For the single sphere case, the electric fields can be written as

Ein(r⃗) =
∑
n

anψ
(1)(r⃗ − r⃗0) (2.10)

Eout(r⃗) =
∑
n

bnψ
(3)(r⃗ − r⃗0) (2.11)

With an and bn are the expansion coefficients related by T-matrices:

b = Ta

These T-matrices can be computed analytically. In order to generalize this theory to include

multiple-sphere scattering, we write the incident field onto each sphere as a sum of the

incident fields and the scattered fields from all the other spheres

Ei
in = Ein +

∑
i ̸=i′

Ei′

out (2.12)

where i is the i’th sphere. This leads to a coupled system of linear equations for b:

Mb = Ta (2.13)

with

M = I − TW (2.14)
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where W is the matrix that couples the interaction between spheres, and depends only on

the positions of the spheres with respect to each other [33]. Thankfully, a code base exists

that can handle multi-sphere scattering using Lorenz-Mie theory, called CELES. Using the

ideas from the previous section, we can calculate the gradient of a FOM defined in terms of

the scattered electric field [120]. Let g((b(p))) be our FOM. We can define the gradient by:

∂g

∂P
= 2Re

[
∂g

∂P

∂b

∂P

]
(2.15)

where since we’re taking derivatives of real numbers with respect to complex numbers, we

take the 2Re part of the derivative by Wirtinger’s definition [75]. By combining equations

2.13 and 2.14, taking the derivative, an solving for ∂b
∂P

we get:

∂b

∂P
=M−1

[
∂T

∂P
a+

∂T

∂P
Wb

]
(2.16)

Similarly to the process in the previous section, the adjoint term can be defined as

MTλ =

[
∂g

∂b

]T
(2.17)

and the full derivative becomes

∂g

∂P
= 2Re

[
λT

(
∂T

∂P
a+

∂T

∂P
Wb

)]
(2.18)

where ∂T
∂P

can be calculated analytically.

This approach for the optimization and design of large scale metasurfaces without the

use of LPA. In [120], this approach was used to design a singlet and a doublet lens, with one

and two layers of spherical scatterers respectively. However this approach is limited to only

spherical scatterers. Furthermore, we were not able to find a parameter range for spherical

scatterers spanned a 0 − 2π phase shift without considerable losses, which is a common

requirement when designing metaphotonic structures, so we extended this framework to

ellipsoidal scatterers.

In order to do this, we must first take a look at the structure of the T-matrices [103, 73, 30]:

T = RgQ(Q)−1 (2.19)
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Where Q is given by

Q =

P̄ R̄

S̄ Ū

 (2.20)

Where P̄, R̄, S̄ and Ū are square submatrices given by

P̄lml′m′ = −ikksJ (21)
lml′m′ − ik2J

(12)
lml′m′ , (2.21)

R̄lml′m′ = −ikksJ (11)
lml′m′ − ik2J

(22)
lml′m′ , (2.22)

S̄lml′m′ = −ikksJ (22)
lml′m′ − ik2J

(11)
lml′m′ , (2.23)

Ūlml′m′ = −ikksJ (12)
lml′m′ − ik2J

(21)
lml′m′ , (2.24)

with

J
(pq)
lml′m′ = (−1)m

∫
S

dSn̂(r) ·Ψ(1)
p,l′,m′(ksr, θ, ϕ)×Ψ

(3)
q,l,−m(kr, θ, ϕ) (2.25)

The terms Ψ
(1)
p,l′,m′ and Ψ

(3)
q,l,−m in equation 2.25 are given by

Ψ
(ν)
1lm(r) =

eimϕ√
2l(l + 1)

bl(kr)
[
imπlm(θ)θ̂ − τlm(θ)ϕ̂

]
, (2.26)

Ψ
(ν)
2lm(r) =

eimϕ√
2l(l + 1)

{
l(l + 1)

bl(kr)

kr
P

|m|
l (cosθ)r̂

+
1

kr

∂(krbl(kr))

∂(kr)

[
τlm(θ)θ̂ + imπlm(θ)ϕ̂

]}
,

(2.27)

where

πlm(θ) =
P

|m|
l (cosθ)

sinθ
, τlm(θ) =

∂P
|m|
l (cosθ)

∂θ
. (2.28)

Pm
l (x) is the associated Legendre polynomial. jl is the spherical Bessel function of order l,

and bl is either a spherical Bessel function (jl) for ν = 1 or spherical Hankel function of the

first kind (h
(1)
l ) of order l for ν = 3, depending on whether RgQ or Q is being computed.

In order to extend this method to ellipsoids, we must parameterize the ellipsoidal surface

term dS in equation 2.25 in spherical coordinates, and take the gradient of the T-matrices

of the ellipsoidal scatterers in terms of their free parameters - (a, b, c, ϕ), where a, b and c are
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Figure 2.1: A.Mie scattering schematic. Light is incident onto the set of ellipsoidal scat-

terers.Each scatterer has an associated T-matrix. The incident field onto each scatterer is

described by the incident field Ein and the scattered fields from all other scatterers. The

inter-particle coupling is represented by the matrix W which describes the coupling between

ellipsoids. B. Design parameters for ellipsoidal scatterers. The semi-major axes are taken to

always be aligned with the particle frame: semi-major axisais aligned with the xpart axis,b

with the ypart axis, and c with the zpart axis. The rotation ϕ is about the z-axis, with the

counterclockwise direction defined as a positive rotation.
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the semi-major axes of the ellipsoid, and ϕ is its rotation, as shown in Fig. 2.1. In spherical

coordinates, the product of the unit normal and the infinitesimal area is:

dSn̂(r) = r2sin(θ)σ(r)dθdϕ, (2.29)

and σ is given by:

σ(r) = r̂ − θ̂
1

r

∂r

∂θ
− ϕ̂

1

rsinθ

∂r

∂θ
. (2.30)

In this case, r is parameterizing the surface of a particle, and for an ellipsoid in spherical

coordinates, r is given by:

r(θ, ϕ) =

[
sin2θ

(
cos2ϕ

a2
+
sin2ϕ

b2

)
+
cos2θ

c2

]−1/2

(2.31)

To compute RgQ rather than Q, we simply need to replace Ψ(3) in the J integrals with Ψ(1).

The derivative of the T-Matrix of a particle with respect to some parameter p is given

by:

∂T

∂P
=

(
∂RgQ

∂P
− T

∂Q

∂P

)
Q−1, (2.32)

Hence we need to find the derivatives of the sub-matrices P̄ , R̄, S̄, and Ū with respect to

P . This requires us to take the derivatives of the surface integrals J with respect to the

parameter P .

The expressions for the derivatives with respect to a spatial variable (a, b, c) are as follows

where P represents any of the ellipsoid axes:

∂J
(11)
lml′m′

∂P
=− i

∫∫
αlml′m′ (m′πl′m′τlm +mπlmτl′m′)[

r

(
k
∂bl
∂P

jl′ + ksbl
∂jl′

∂P

)
+ 2bljl′

]
rsinθdθdϕ,

(2.33)

∂J
(12)
lml′m′

∂P
=

∫∫
αlml′m′

{[
∂R̄

(12)
lml′m′

∂r
+ (Θ

(12)
lml′m′Eθ + Φ

(12)
lml′m′Eϕ)

∂ρl,l′

∂r

]
∂r

∂P

+

(
Θ

(12)
lml′m′

∂Eθ

∂P
+ Φ

(12)
lml′m′

∂Eϕ

∂P

)
ρl,l′

}
dθdϕ,

(2.34)
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∂J
(21)
lml′m′

∂P
=

∫∫
αlml′m′

{[
∂R̄

(21)
lml′m′

∂r
+ (Θ

(21)
lml′m′Eθ + Φ

(21)
lml′m′Eϕ)

∂ρl,l′

∂r

]
∂r

∂P

+

(
Θ

(21)
lml′m′

∂Eθ

∂P
+ Φ

(21)
lml′m′

∂Eϕ

∂P

)
ρl,l′

}
dθdϕ,

(2.35)

∂J
(22)
lml′m′

∂P
=

∫∫
αlml′m′

{[
∂R̄

(22)
lml′m′

∂r
+
∂Θ

(22)
lml′m′

∂r
Eθ +

∂Φ
(22)
lml′m′

∂r
Eϕ

]
∂r

∂P

+Θ
(22)
lml′m′

∂Eθ

∂P
+ Φ

(22)
lml′m′

∂Eϕ

∂P

}
dθdϕ,

(2.36)

where we have defined:

αlml′m′ =
(−1)m(1 + (−1)m

′−m)(1 + (−1)l
′+l+1

2
√
l(l + 1)l′(l′ + 1)

ei(m
′−m)ϕ (2.37)

k and ks are the k vectors of light in the medium surrounding the particle, and in the particle

itself. Then we define:

Eθ =
cos2ϕ

a2
+
sin2ϕ

b2
− 1

c2
(2.38)

Eϕ =
1

b2
− 1

a2
, (2.39)

ρl,l′ = r3jl′bl, (2.40)

Now, we can define the specific terms used to construct each J surface integral. For J (12),

we define:
∂R̄

(12)
lml′m′

∂r
=
sinθ

k
(mm′πl′m′πlm + τl′m′τlm)

(
jl′
∂(krbl)

∂(kr)

+r

(
ks
∂jl′

∂r

∂(krbl)

∂(kr)
+ kjl′

∂

∂r

(
∂(krbl)

∂(kr)

)))
,

(2.41)

Θ
(12)
lml′m′ = −sinθ

k
l(l + 1)P

|m|
l τl′m′ , (2.42)

Φ
(12)
lml′m′ = −isinθ

k
l(l + 1)m′P

|m|
l πl′m′ . (2.43)

For J (21), we define:

∂R̄
(21)
lml′m′

∂r
= −sinθ

ks
(mm′πl′m′πlm + τl′m′τlm)

(
∂(ksrjl′)

∂(ksr)
bl

+r

(
ks
∂

∂r

(
∂(ksrjl′)

∂(ksr)

)
bl + k

∂bl
∂r

∂(ksrjl′)

∂(ksr)

))
,

(2.44)
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Θ
(21)
lml′m′ =

sinθ

ks
l′(l′ + 1)P

|m′|
l′ τlm, (2.45)

Φ
(21)
lml′m′ = −isinθ

ks
l′(l′ + 1)mP

|m′|
l′ πlm. (2.46)

Finally, for J (22) we define:

Θ
(22)
lml′m′ =i

r2sinθ

kks

(
m′l(l + 1)

∂(ksrjl′)

∂(ksr)
blP

|m|
l πl′m′

+ml′(l′ + 1)jl′
∂(krbl)

∂(kr)
P

|m′|
l′ πlm

) (2.47)

Φ
(22)
lml′m′ =

r2sinθ
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and the three derivative terms:

∂R̄
(22)
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(2.51)

Now with these J integrals, we can compute the quantity ∂T
∂P

for a given axis of an ellipsoid

in its own particle frame where a, b, and c are aligned along the xpart, ypart, and zpart axes.

In addition to computing the response of the T-Matrix of the ellipsoid to the contraction

or extension of one of its axes, we are also interested in its response to rotations about the

zpart axis. To do this we will first define the transformation of the T-Matrix or a derivative

matrix from the particle frame to some rotated lab frame that has new axes xlab and ylab,

but shares zlab = zpart. Given some rotation angle ϕrot, we can then define our new axes:

xlab =xpartcos(ϕrot) + ypartsin(ϕrot) (2.52a)

ylab =− xpartsin(ϕrot) + ypartcos(ϕrot) (2.52b)

zlab =zpart (2.52c)

The general form of this orthogonal transformation in three dimensions can be represented

by the Euler angles α, β, and γ. The general transformation of an element of an operator O

from the particle frame to the lab frame can be written as[73]:

Olab
plmp′l′m′(α, β, γ) =

l∑
m1=−l

l′∑
m2=−l′

Dl
mm1

(α, β, γ)Oparticle
plm1p′l′m2

Dl′

m2m′(−γ,−β,−α), (2.53)

where the D operator is a Wigner D-function. It can be represented as:

Dl
m′m(α, β, γ) = e−im′αdlm′m(β)e

−imγ, (2.54)

where dlm′m(β) is Wigner’s (small) d-matrix given by:

dlm′m(β) = ⟨l,m′| e−iβJy |l,m⟩ . (2.55)
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However, as we are only concerned with rotations about the z axis, we can simplify our

expressions knowing that α is our only nonzero angle, and equation (56) becomes:

Olab
plmp′l′m′(α, 0, 0) =

l∑
m1=−l

l′∑
m2=−l′

Dl
mm1

(α, 0, 0)Oparticle
plm1,p′l′m2

Dl′

m2m′(0, 0,−α). (2.56)

In this case, our D operator has a much simplified form:

Dl
m′m(α, 0, 0) =e

−im′αδm′m (2.57a)

Dl
m′m(0, 0, γ) =e

−imγδm′m. (2.57b)

Combining equations 2.56 and 2.57, we obtain a simple expression transforming O from the

particle frame to the lab frame:

Olab
plmp′l′m′(α) = ei(m

′−m)αOparticle
plmp′l′m′ . (2.58)

Equation 2.58 is applicable to for transforming both T-matrices and the derivative ma-

trices computed in the particle frame into the lab frame. It also gives us a prescription

for computing the derivative matrix with respect to the particle’s angular orientation. We

already have derivatives characterizing the response of the particle to contractions and ex-

tensions of its principal axes, and can now rotate these to a lab frame where the particle has

an arbitrary angular orientation relative to the z axis. We can now compute the derivative

with respect to the particle’s angular orientation α as:

∂T lab
plmp′l′m′(α)

∂α
= i(m′ −m)ei(m

′−m)αT particle
plmp′l′m′ . (2.59)

With equations 2.32 and 2.59, we have characterized the derivatives of the T-Matrix repre-

senting an ellipsoid with respect to its axes and orientation. These integrals are implemented

in MATLAB, and performed using Gaussian quadrature.

Its worth noting that under the T-matrix formalism, entire scattering particles are treated

as single multi-pole sources at the particle center [91]. Therefore electric fields outside of the

sphere circumscribing a non-spherical particle are not guaranteed to converge. This limits
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us to particle densities where the circumscribing spheres of the ellipsoids do not overlap with

surfaces of nearby ellipsoids.

This is the first time these derivatives were calculated as far as we know. So to validate

that these derivatives were in fact accurate, we created a set of 216 ellipsoids with geometries

corresponding to permutations of a, b, c between 50 − 300nm in steps of 50nm. Then we

computed the T-matrices and their derivatives for each individual ellipsoid analytically and

numerically. We denote the numerical derivative of the T-matrices with respect to some

parameter P ∈ {a, b, c, ϕ} as ∂TN

∂P

∂TN

∂P
=
T (P +∆P )− T (P )

∆P
+O(∆P 2) (2.60)

The analytical derivative is denoted as ∂TA

∂P
. We then compared the numerical and analytical

derivative of each T-matrix, and define the mean error as

error = mean

(∑
ij

∣∣∣∣∂TN
i,j

∂P
−
∂TA

i,j

∂P

∣∣∣∣) (2.61)

where the indices I, j are the individual elements of the T-matrix. We varied the step sizes

for ∆a,∆b,∆c from 10 to 10−4 nm and for ∆ϕ from 10−1 to 10−5 radians. Fig. 2.2 shows

that as the step size is reduced, the numerical derivative converges closer to the analytical

derivative as expected.

2.3 Inverse design and optimization of meta-optics

Using the aforementioned TMM formalism and adjoint optimization method, we inverse

designed a high numerical aperture (NA) lens, optimized a forward designed lens, and inverse

designed a polarization switched device.

2.3.1 High numerical aperture lens

The high numerical aperture metasurface lens was designed for a 915nm incident wavelength,

at refractive index 3.56. This design space was picked after an extensive parameter search.

The search was done by simulating libraries of ellipsoidal scatterers under periodic boundary
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Figure 2.2: Verification of the analytical T-matrix derivatives. A shows the error between the

analytical T-matrix derivative and the numerical derivative with respect to semi-major axis

a, B with respect to b, C with respect to c. D shows the T-matrix derivative with respect

to the azimuthal rotation of the ellipsoid ϕ. As the step size of the numerical approximation

to the derivative gets smaller, the mean error between numerical and analytical derivative

gets closer to 0, which implies that the analytical derivatives are valid
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Figure 2.3: Transmission of individual scatterers with periodic boundary conditions as a

function of the radius of the ellipsoids (semi-major axes a=b). Ellipsoid height is fixed to be

600nm. The lattice contant is 450nm.
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Figure 2.4: A Final distribution of scatterers with periodicity 450nm for the inverse designed

lens. semi-major axes a and b are allowed to range between 40 and 150nm. Semi-major axis

c is allowed to range between 40 and 300nm.B the field cross-section in the x-z plane at

y = 0µm, C the cross-section in the x-y plane at z = 10µm. D shows the Gaussian fit to the

field at the focal spot z = 10µm along x = 0µm. In order to calculate the lens efficiency, the

full-width at half-maximum (FWHM) was calculated for the fitted Gaussians. The integral

of the field intensity around the disk d = 3×FWHM about the center of the focal spot was

calculated, and then divided by the total incident field intensity. The units of all plots are

arbitrary light intensity units. The efficiency of the inverse designed lens was calculated to

be 3.38%
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conditions with rigorous coupled wave analysis (RCWA) [66]. In simulation, the heights,

pitch, and refractive index of the ellipsoids were fixed, while varying the a and b semi-major

axes of the ellipsoids concurrently. Fig. 2.3 shows the plot of the chosen parameter space.

The lens designed was 30µm in diameter with a focal length of 10µm. In order to design a

lens, we use the FOM:

g = (IT − IA(x, y, z = F ))2 (2.62)

where IT is some target intensity value at the focal spot of the lens, and IA was the actual

intensity calculated by T-matrix theory IA(x, y, z) = E†(x, y, z)E(x, y, z), where the † is

the complex conjugate operator. The initial conditions for this lens were chosen to be

a = b = 100nm and c = 300nm. The lattice periodicity was 450nm. The radii were allowed

to vary between 40nm and 150nm for a, b and 40− 300nm for axis c. The constraints were

chosen such that the circumscribing spheres of the ellipsoids would never overlap the surface

of the nearby ellipsoids. Fig. 2.4 summarizes the results. 2.4B shows theres a clear focal

spot at 10µm. The efficiency of this device was calculated by fitting a Gaussian to the field

profile at the focal spot z = 10µm and x = 0 as shown in 2.4D. Then we found the full-width

at half maximum of the Gaussian, and integrated the intensity of the field at that focal spot,

and divided it over the total intensity of the incident light. This quantity is defined as the

efficiency η of the lens:

η =

∫ ∫
Ω
E(x, y, z = F )†E(x, y, z = F )dxdy∫ ∫

x,y
E(x, y, z = 0)†E(x, y, z = 0)dxdy

(2.63)

Ω := x2 + y2 < (3× FWHM)2

Ω is the surface around the focal spot which we integrate over. The efficiency is calculated

to be 3.38% for this lens.

2.3.2 Inverse design of polarization switched focal length lens

We then designed a lens with a diameter of 40 µm, and focal lengths of 20 µm (NA ∼ 0.71)

and 30 µm (NA ∼ 0.55) for the x and y polarizations respectively. The lattice constant for
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Figure 2.5: Transmission plot for the ellipsoids used for the polarization switched device.

Ellipsoid height is fixed at 715nm and the lattice constant is 650nm.



28

this lens was taken to be 650nm. The transmission plots of the design space can be seen in

Fig. 2.5. Semi-major axis radii a and b were allowed to range between 40nm and 292.5nm.

Semi-major axis radius c was allowed to range between 40nm and 357.5nm. The azimuthal

rotation around the z axis of the scatterers, was allowed to range from −π/2 to π/2.

The optimization problem was framed as a min-max optimization problem [80]. For this

optimization, we write the total FOM as a sum of FOM’s for each polarization, given by

g = gx + gy (2.64)

with gx and gy being the figures of merit for the x and y polarizations respectively, and are

gx = (ITmax(0, 0, 20µm)− IA(0, 0, 20µm) + ITmin(0, 0, 30µm)− IA(0, 0, 30µm))2 (2.65)

gy = (ITmax(0, 0, 30µm)− IA(0, 0, 30µm) + ITmin(0, 0, 20µm)− IA(0, 0, 20µm))2 (2.66)

Here, ITmax is some arbitrary large value (we chose 200), denoting the fact that light intensity

at that spot should be maximized, while ITmin is a regularization term, denoting that the

field intensity at that point should be kept small. To design this device, we minimize the

maximum (worst) FOM iteratively until we converge to a local minimum:

min
P∈{a,b,c,ϕ}

max(gx, gy) (2.67)

The performance of the final device is shown in Fig. 2.6. There is a clear focal spot at

z = 20µm for x-polarized light, and no focal spot at z = 30µm (Fig. 2.6B) and for x-

polarized light, we see a focal spot at z = 20µm and no focal spot at z = 30µm (Fig.

2.6E).

We calculated the efficiency of this lens for each polarization using the method described

in the previous section, and found values of η = 2.31% for the x-polarization and η = 3.38%

for y polarization. Another relevant quantities we can define to characterize the performance

of this device are the contrast ratios of the focal spots. We define and report two different

contrast quantities. The first one is the ratio between the value of intensity at the focal spot,

where light should be maximized, to the ratio of light at the focal spot of the orthogonal
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polarization. We found the values for these ratios to be I(0,0,30µm)
I(0,0,20µm

= 8.75 for y polarized light

and I(0,0,20µm)
I(0,0,30µm

= 5.11 for x polarized light. The second ratio we define to be the intensity

at the focal spot for one polarization to the intensity at that same spot for the orthogonal

polarization. We found these values to be Ix(0,0,20µm
Iy(0,0,20)

= 5.58 and Iy(0,0,30µm

Ix(0,0,30)
= 5.92.

2.3.3 Metasurface lens optimization

Finally, we discuss the optimization of a forward designed metalens using our inverse design

method. We used the library of scatterers computed RCWA shown in 2.3. We discretized

the design space in the x-y plane, using a scatterer periodicity of 450 nm, and by using the

phase equation for a lens given by

ϕ(x, y) =
2π

λ
(
√

(x2 + y2) + F 2 − F ) (2.68)

we placed a scatterer at each discrete point (x, y), with a phase response closest to the phase

needed to focus light. The lens we designed has a diameter of 30µm and a focal length of

10µm. This devices performance is summarized in Fig. 2.7. By using the same approach

from the previous sections, we calculated the device’s efficiency to be 25.59%.

To optimize this device, we started off with the scatterer distribution given by the forward

design as the initial condition and maximize the light intensity at a the focal spot. The

performance of the optimized device is summarized in Fig 2.7. The efficiency of this device

was calculated to be 32.00%, which is a 6.41% improvement over the forward design lens.

On average, each individual scatterer was changed by approximately 3.03nm along the a

axis, 4.8nm along the b axis, and 0.17nm along the c axis. The standard deviations for each

axis are 3.53nm, 4.89nm, 0.42nm respectively. The maximum changes for each axis were

33.42nm, 33.43nm and 5.57nm respectively. Its worth noting that this improvement implies

that lenses designed by the conventional forward design methods are not necessarily locally

optimal in the metasurface design space, even for high contrast designs. We can also see

that the initial conditions are very important for the final design, as starting with identical

ellipsoids, the final design provides very low efficiency. In fact, based on our analysis, we
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Figure 2.6: A Scatterer distribution of the polarization multiplexed lens. Lattice periodicity

is 650 nm, radii were limited to range from 40 nm to 292.5 nm for the a and b axes, and 0

to 357.5nm for the c axis. For the initial condition, all of the semi-major axis radii were set

to 250nm, and the rotations were set to 0 radians. In the final parameter distribution, the

scatterers look very similar, and indeed, the minimum semi-major axis radius in the design

is ∼ 205nm and the maximum is ∼ 289nm. B-D Are field distributions correspond to x-

polarized light, and E-G correspond to y-polarized light. B,E are scattered field slices in

the x-z plane at y = 0µm. C,F are x-y profiles at each focal spot. C is a slice at z = 20µm,

and E is a slice at z = 30µm. D,G are Gaussian fits at each focal spot.
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Figure 2.7: Figs. A-D correspond to the forward designed lens, and Figs. E-H to the

optimzied lens. A,E are the scatterer distributions. E,F are the x-z slices of the resulting

field profile at y = 0µm. C,G correspond to the x-y field slice at z = 10µm. D,H are the

Gaussians fitted to the field profiles at their focal spot with y = 0µm. The forward design

lens efficiency was determined to be 25.59%, and the optimzied efficiency was calculted to

be 32.00%
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believe that our inverse design method will be more suitable for optimization type of problem,

where the initial conditions are developed based on intuition and prior knowledge.

2.4 Discussion

We demonstrated a new optimization method for designing large area dielectric metasurfaces

made of ellipsoidal scatterers based on the adjoint method and a generalization of GMMT.

Starting from an array of identical ellipsoidal scatterers, we designed a high NA (∼0.83)

lens and a polarization multiplexed lens that focuses light at 30µm and 20µm based on the

polarization of incident light. Although polarization was the parameter that we chose to

optimize over, the same approach can be used to design angle or wavelength multiplexed

devices. Furthermore, by modifying the FOM to finely sample the wavelength or angle of

the incident light, broad-band and broad-angle devices can be designed at the expense of

simulation time. We have also shown that starting with a forward-designed lens as an initial

condition, a higher efficiency design can be obtained via optimization.

We note that all the reported devices were designed at refractive index n=3.56. As our

method requires the bounding spheres of ellipsoidal scatterers not to overlap other ellipsoidal

scatterers, we are limited by the aspect ratio and density of the ellipsoids, and only with

high index ellipsoids we can maintain low density of scatterers while spanning the whole

0 to 2π phase. Unfortunately, there is currently no straightforward way to fabricate these

structures with such a high index. One solution could be to use a high index resin in additive

manufacturing [59]. It is also possible to fabricate cylindrical scatterers at high refractive

indices by using traditional lithography. This would require a further generalization of the

T-Matrix method to expand the incident and scattered fields in terms of spheroidal wave-

functions instead of SVWF or by using the plane wave coupling method [92].
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Chapter 3

DATA-DRIVEN ACCELERATION OF MAXWELL’S
EQUATIONS FOR INVERSE DESIGN OF DIELECTRIC

METAMATERIALS

The contents of this chapter are adapted from [125], Maksym V. Zhelyeznyakov, Steven

Brunton, and Arka Majumdar. Deep Learning to Accelerate Scatterer-to-Field Mapping for

Inverse Design of Dielectric Metasurfaces Maksym V. Zhelyeznyakov, Steve Brunton, and

Arka Majumdar ACS Photonics 2021 8 (2), 481-488 DOI: 10.1021/acsphotonics.0c01468,

with permission from the authors.

3.1 Introduction

The objective of this chapter is to describe a forward simulation method for inverse design

that is faster than grid based methods [80, 14, 61, 42, 74, 83, 82, 72], is not restricted to

spheroidal particles like the method described in the previous chapter, and is more accu-

rate than methods relying on LPA [46, 66]. We leveraged several data-driven modeling and

machine learning techniques [17], which are being adopted in the field of optics and pho-

tonics [131, 105], with examples in fiber lasers [37, 18, 7, 6, 106, 13, 88] and metamaterial

antennas [50].

The electromagnetic (EM) response E⃗ to a incident current J⃗ is given by Maxwell’s

equation:

∇×∇× E⃗(x)− ω2ϵ(x)µ(x)E⃗(x) + iωµ(x)J⃗(x) = 0 (3.1)

where ω is the angular frequency of the current source, ϵ(x) is the dielectric permittivity

distribution, µ(x) is the magnetic permeability distribution (assumed to be unity here as we

will primarily work with dielectric non-magnetic materials) and the vector x is the position
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vector. This implies that the field response E⃗(x) only depends on the distribution of ϵ(x).

A forward simulation of Maxwell’s equation thus entails the prediction of the spatial EM

modes as a function of the scatterer geometry and position. Here, we first use high-fidelity

EM simulations to generate data, which are then used to find a simple mapping between ϵ(x)

and E⃗(x) exploiting the singular value decomposition (SVD) and neural networks [19]. We

note that, a number of previous works used neural networks to predict the spectral responses

from metallic [71, 58, 69] and dielectric [81, 54, 87, 64, 38, 61, 5] scatterers of various geome-

tries. In these problems, the unit cells are identical, and hence there is no need to invoke

LPA. However, for imaging applications, where the unit cells are spatially varying, invoking

LPA results in inaccuracy. Our work aims to mitigate this challenge by using a data-driven

framework to predict the spatial responses from dielectric circular cylinders, while including

the effects of their nearest neighbors. Another recent work has applied data driven tech-

niques to accelerate iterative finite difference frequency domain (FDFD) solvers [95]. While

accurate, this method is however still memory intensive. Our work provides an alternative,

interpolative method for simulating field responses from electromagnetic scatterers by fitting

a differentiable model that maps the geometry of the scatterer and its closest neighbors to its

EM field response. This model speeds up our forward simulation by estimating local patches

of the EM field from the radius of a cylindrical scatterer and its surrounding neighbors.

We found that this method can simulate a mesh with 1.2 million discrete points 104 times

faster than conventional grid-based solvers, and is memory inexpensive enough that it can

be run on a laptop. We use this framework to inverse design two devices, both of which are

unintuitive under the forward methodology: a multi-wavelength metasurface that produces

an annulus beam for one wavelength, and focuses light at a different wavelength, as well as

an extended depth of focus lens.

3.2 Methods

The goal of this work is to develop a fast and accurate proxy for the forward simulation

that is differential and may be used for inverse design. Fig. 3.1 shows the schematic of our
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a.1

a.2

b.1

b.2

b.3

b.4

c.

d.

Figure 3.1: Overview of method. a.1. Sample forward designed metasurface. a.2. Near-

field response of metasurface for λ = 633 nm b.1-4 Parsing the data. b.1. Iterate through

each pillar except the ones in the edges, and gather the surrounding pillar radii. b.2. Pillar

radii and recorded and stacked into matrix R. b.3. Field response in a square region

with dimension of the pitch p corresponding to the central pillar. b.4 Electric fields are

vectorized and stacked into a matrix E. c. We create a neural network that predicts a

vector w corresponding to the column of matrix d. W is constructed as the product ΣV∗,

where Σ and V are taken from the SVD of E.
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strategy to build a differentiable map G : R9 → C100 that predicts the electric field over a

square area with dimension p from the dielectric permittivity distribution ϵ(x), modeled as

9 cylinders. Here p is the periodicity of the metasurface, and each square area (unit cell)

has been discretized into a 10× 10 grid. The corresponding field being predicted is flattened

into a 100×1 vector. We will explore two models: a low-dimensional linear regression model

based on the singular value decomposition (SVD) and a deep neural network model to fit G.

3.2.1 Training data

To train these models, we first generated a data set consisting of forward simulations of

several physical devices, in our case meta-lenses. These lenses were designed via forward

design. The intuition is that the lens is arguably the simplest physical device, and will likely

provide a useful basis to interpolate future devices. We forward designed 10 lenses of diameter

∼ 50µm with focal lengths varying from 10 − 100µm [21]. The lens design parameters

are summarized in Table 3.1. All lenses are intended to function with a current source

wavelength λ = 0.633µm. The material refractive index was set to n = 2, corresponding to

silicon nitride, our material of choice for visible wavelength operation [26]. These dimensions

correspond to exactly 113 pillars on each axis of the metasurface. All the scatterers were

computed with RCWA package S4 [66]. A sample lens of focal length F = 50µm is shown

in Fig.3.1.a.1. We simulated the EM response of each lens using an x-polarized plane wave

(λ = 0.633µm) with the field monitor λ/2 away from the scatterers using Lumerical finite

difference time domain (FDTD) software. An example field is shown in Fig.3.1.a.2. Only the

Ex component was recorded due to minimal contributions to the total field power from other

vector components, which is a result of the circular symmetry of the scatterers. However,

the process could easily be generalized to predict the entire vector-field. The resolution of

the simulation was chosen to be 0.04431µm3/vox in order to balance computational time,

memory requirements, and accuracy. This results in (10×10) field points in each square

unit cell with dimension p = 443nm corresponding to each pillar. Once all of the field data

were gathered, we constructed two matrices: R ∈ R9×N for the radii, and E ∈ C100×N for
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Table 3.1: Parameters used to forward design the training data-set. F : focal length; h:

height of the pillars; n: material index; λ: current source wavelength. Lens diameter D is

chosen to be the closest integer multiple of the periodicity p.

Parameter F D p h n λ

Value 10− 100µm 50.0703µm 0.4431µm 0.633µm 2 0.633µm

the electric fields, with N being the number of scatterers. The matrix R was created by

iterating over pillar location xi, and storing the radii of the pillar and its 8 nearest neighbors

as a column vector, shown in Figs. 3.1 b.1 and 3.1.b.2. The pillars on the edges of the

metasurface do not have neighbors and were neglected. Similarly, the matrix E was created

by iterating over each pillar location, extracting the field in the unit cell with centroid xi,

and storing it as a flattened 100 × 1 column vector, shown in Figs 3.1.b.3 and 3.1.b.4. We

note that in this work, we consider a scalar field, whose polarization axis is the same as the

the incident polarization. This results in two matrices having N = (113− 2)2 × 10 = 123210

columns.

3.2.2 Linear regression model

We first explore the low-dimensional structure of the matrix E, which will facilitate learning

a map between the columns of R and E. Patterns in the rows and columns of E ∈ CM×N

are extracted via the singular value decomposition (SVD) [19]:

E = UΣV∗ (3.2)

where U ∈ CM×M and V ∈ CN×N are unitary matrices, and Σ ∈ RM×N is a diagonal matrix,

with non-negative entries on the diagonal and zeros off the diagonal. The columns of U can

be thought of as a set of orthonormal basis vectors with which to represent the columns
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a. b. c.

Figure 3.2: Singular value decomposition of simulated data. a. First 9 left hand singular

vectors U of E matrix. b. Singular value decay of the diagonal matrix Σ. Red circle

represents the cut off order we used to reconstruct the electric fields. The order 16 cutoff

was chosen because it captures 99% total energy of the electric field. Any further contribution

from modes with order q > 16, contributes to less than 1% to the total energy in the field.

c. Plot of the absolute values squared of a random vector (ΣV∗)i = wi that reconstructs

some random p× p field. wi represents the weights of the left hand singular vectors U.
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of E. These columns of U are arranged hierarchically in terms of how much variance they

capture in E, as quantified by the corresponding diagonal element of Σ. Fig.3.2 a. shows the

square of the absolute value of the first 9 column vectors uj, reshaped from C100×1 to C10×10.

Definite patterns are observed in these vectors, implying a low-dimensional representation

of our data. The rows of V∗ correspondingly provide a hierarchical basis for the rows of

E. Each column of the matrix ΣV∗ determines the exact combination of the columns of U

required to reproduce the corresponding column of E. Guided by the SVD, it is possible to

write an approximate matrix Ẽ as:

Ẽ = UqW (3.3)

where W = ΣqV
∗
q, and the subscript q < M is the truncation order of the matrix approx-

imation. The first q columns of U are arranged to form Uq, the first q × q sub-block of Σ

is extracted to form Σq and the first q rows of V∗ are taken to form V∗
q. It can be shown

that Ẽ is the best rank−q approximation to the matrix E, in the Frobenius norm [94]. We

choose a truncation value of q = 16, shown as the red circle in Fig.3.2.b., as the rank 16

approximation Ẽ captures 99% of the variance in the matrix E.

We will now construct a regression map to estimate columns of E from columns of R.

Specifically, we estimate the matrix W, which will be used to reconstruct Ẽ. Instead of using

the columns of R directly as features, we will create an augmented feature vector comprised

of monomials constructed from the radii. This feature matrix Θ is constructed by vertically

concatenating integer Hadamard powers of R:

Θ =



1

R

R◦2

...

R◦m


. (3.4)
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Where R◦m are the element-wise powers of R:

R◦m =


rm1,1 . . . rm1,N
...

. . .
...

rmM,1 . . . rmM,N

 (3.5)

Thus, we set up a linear system:

W = ΞΘ (3.6)

and solve for Ξ:

Ξ ≈ WΘ† (3.7)

where the superscript † denotes the Moore-Penrose pseudo-inverse [94]. The matrix Ẽ can

then be approximated by a generalized linear regression problem:

Ẽ ≈ Epred = ΞΘ (3.8)

We varied the number of features used to train this linear model by changing the number

of powers m used to construct Θ. To train this linear model, we used 80% of the data. After

creating W and Θ, we extracted a random set of 98568 columns from each matrix in order

to fit the matrix Ξ. We used the other 24642 columns for validation. Fig. 3.3a depicts the

qualitative performance of our linear model for m = 10. Column I represents a randomly

chosen vector Ei at some position xi, column II is the corresponding predicted vector epred ∈

Epred, and column III is the absolute difference squared |ϵ|2 = |Ei − epred|2. Note that

we are comparing complex numbers, while plotting their intensities. Thus, although the

intensities may not look extremely similar, their errors can be relatively small. All values

were normalized to have a maximum absolute value of 1 and the same colorbar across all

figures. Fig. 3.3b shows the probability density functions (PDFs) of the error distributions

|Epred − E|2 as we increase m from 1 to 10. As the number of features increases, the PDF

becomes tighter. Fig. 3.3c is a plot of the relative error defined as:

||Epred − Etest||2F
||Etest||2F

(3.9)
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a. b. c.|Ei|2 |Epred|2 |ϵ|2

I. II. III. m

Figure 3.3: a. Column I. represents the field simulated by FDTD, column II. is the electric

field predicted using the linear model, and Column III. is the difference between the two.

Each row represents the field corresponding to the same set of 9 radii. b. Probability density

functions of relative errors between the predicted matrix Epred and the true matrix E. The

blue plot corresponds to a feature matrix with only m = 1, and the red plot represents

the feature matrix constructed with powers up to 10. c. Plot of the relative errors in the

Frobenius norm between Epred and E. The x axis represents the power term in the radius

features.
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as a function of m. Both plots show the error between our model and the FDTD simulation

decreasing as the number of features in each matrix increases, so the model converges to

the actual physics of the system. The final relative error for the linear model converged to

≈ 0.395. As a side note, we have attempted using monomial expansions up to order 2 of

column vectors of R as input features for our model, by using powers of column vectors of

R and cross terms in between radii, but found no significant improvements in relative error

when fitting the model.

3.2.3 Neural network model

To improve on the generalized linear model, we construct a deep neural network (DNN),

shown in Fig. 3.4. We hypothesize that the DNN would learn a non-linear transforma-

tion of the input features that better capture the physics of the system. The model was

trained by using 80% of the data set, while keeping 20% for validation. The architecture

was implemented in TensorFlow [2] and optimized using the Adam optimizer [55]. The DNN

architecture consists of 11 fully connected layers, each followed by a ReLU activation func-

tion. The first layer of the network is the input layer with 9 neurons corresponding to each

radius. The second layer has 100 neurons, which was doubled with each subsequent layer

until 1600, and then cut in half until the second to last layer again had 100 neurons. The

final layer had 32 neurons, with the first 16 elements corresponding to the real components

of the vector w and the last 16 components corresponding to the imaginary components

of wi. The outputs were arranged in this manner due to TensorFlow’s limitations when

designing complex-valued neural networks. The objective function used was a mean squared

error between the output vector, and the corresponding vector from W, shown in detail in

Figs. 3.1c. and 3.1d. The network was trained until the mean squared error of the verifi-

cation data set stopped being minimized in order to avoid over-fitting. Once the network

was trained, we computed the electric field response of the training data by feeding the test

data set into the neural network to compute Wpred, and Eq. (3.3) to compute Epred. The

quality of our prediction can again be summarized by the relative error between Epred and
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a. b.

I. II. III.

Figure 3.4: a. The input into the DNN is 9 radii. The DNN architecture consists of 9

fully connected layers. The first layer starts off with 100 neurons, and each subsequent layer

doubles the number of neurons until 1600, then number of neurons per layer is halved until

the final layer has 100 neurons. All layers are followed by a ReLU activation function. The

output has 32 elements. b. The performance of the DNN model. Column I is the field

simulated by FDTD. II. is the field reconstructed by Eq. (3.3) from the predicted vector wi.

III. Difference between fields.
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Etest in the Frobenius norm, given in Eq. (3.9), which was computed to be ≈ 0.26. The

same metric calculated by using a predicted field from the local phase approximation gives a

relative error of ≈ 1.35. We use the DNN model to inverse design our devices. As a side note,

appendix B.2 includes a convergence study between number of nearest neighbors included

in the neural network model, and the accuracy of the predicted nearfield. The relative error

of our test data sets turned out to be lowest when using only nearest neighbors.

3.3 Results

To test the utility of our model, we inverse designed two meta-optical devices. Motivated by

stimulated emission depletion (STED) microscopy [98], the first device we inverse designed

was a wavelength multiplexed lens that focuses light with λ = 633 nm, and creates a annulus

beam at the focal plan for λ = 400 nm. The second is an extended depth of focus (EDOF)

lens that focuses light over 100 − 350µm along the optical axis. The optimization process

was implemented in TensorFlow [2]. We used the DNN model and Eq. (3.3) to predict the

nearfields of the designed devices. The farfields were then calculated by using the angular

propagation method [39]. The gradients with respect to radii were calculated by using

TensorFlow’s auto-differentiation, and updated by the adam optimizer. To design the

multi-wavelength lens, we had to predict nearfields for two wavelength. Hence, we repeated

the procedure outlined in section 2 to create one more data driven model to predict the

field response for a λ = 400 nm current source. This model was trained on the same

dataset of metasurface lenses designed to focus light for the 633 nm wavelength, however the

electric field responses were gathered from FDTD simulations at 400 nm. Once trained, the

relative error defined by Eq. (3.9) computed on the test dataset for λ = 400 nm was ≈ 0.37.

The difference between the two wavelengths can be explained by the relatively non-smooth

transmission of λ = 400 nm E-fields over this range of radii when compared to the λ = 633
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Device λ = 400 nm λ = 633 nm

a. b. c.

Figure 3.5: a. Optimized multi-functional device. Scale bar is 5µm b. FDTD result for

λ = 0.4µm. c. FDTD result for λ = 0.633µm. Scale bars are 2µm. Units are normalized

so the maximum intensity is equal to 1.
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nm case. To optimize the lens, we defined two figures of merit for each wavelength as:

FOM400 = −
19∑

m=0

I

(
c cos

(
m
2π

20

)
, c sin

(
m
2π

20

)
, 50µm

)
(3.10)

FOM633 = −20× I(0, 0, 50µm), (3.11)

Where the function I(x, y, z) is the intensity of the electric field at (x, y, z) coordinate given

by I(x, y, z) = E∗(x, y, z)E(x, y, z). The constant c = 1.5µm corresponding to the radius of

the annular beam at the focal spot. The tuple (c cos
(
i2π
20

)
, c sin

(
i2π
20

)
) is the parametrization

of a circle in the x− y plane, that we discretized over 20 points on the circle. The factor of

20 on FOM633 is chosen as a normalization factor to ensure the integral of the intensity over

the annulus is the same as the intensity at focal spot. The quantity optimized was then:

max(FOM400,FOM633) (3.12)

with respect to the radii distribution. We set our initial radius distribution to be the same

as the forward designed lens for λ = 633 nm and f = 50µm. The designed device is

shown in Fig. 3.5a. To verify the design, we computed the nearfield response of the radii

distribution in Lumerical FDTD and propagated the nearfield to the focal plane using angular

spectrum method. Figs. 3.5b and 3.5c show the meta-optic’s response to 400 nm and 633 nm

wavelength at the focal plane respectively. The efficiency η of the metasurface was calculated

to be 26.82% for λ = 400nm. The formal definition is given in appendix B.1. We quantify

the annulusal functionality of the metasurface as the ratio between the power confined in the

annulus to the power confined in the center of the annulus. This ratio η◦ was calculated to

be 58.47 for λ = 633nm, formally defined in appendix B.1. The EDOF lens was designed

by using a lens with f = 100µm as a starting condition. Our intent was to design an EDOF

lens to focus from 50µm to 100µm. We defined the figure of merit for the EDOF as:

FOMEDOF = −
10∑

m=0

log(I(0, 0, 50 +m× dz)) (3.13)

where dz = 10µm. Thus we aim to maximize the intensity at the center of 10 equi-spaced

x− y planes. The resulting device is shown in Fig. 3.6a. The intent behind the logarithmic
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a. b.

c. d. e.

Figure 3.6: EDOF lens. a. Device. b. Simulated field. Simulation is a result of FDTD and

angular spectrum propagation. c-e Slices of field in b. along the dashed lines corresponding

to 200µm, 250µm and 300µm respectively. The red dots are the simulated data. The

blue lines are the Airy disk profiles corresponding to the diffraction limit. All intensities are

normalized by the corresponding maximum intensity.
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sum was to equalize the importance of each term along the z-axis. Without the logarithm

term, the optimization would prioritize a single focal spot, since such a device would minimize

the figure of merit. After optimization, this figure of merit converged to a lens focusing from

100µm to 350µm as shown in Fig. 3.6b, corresponding to a numerical aperture varying from

0.07-0.25. We attribute the longer depth of focus than what was intended to the physical

nature of wave propagation. Figs. 3.6c-3.6e show slices of the electric field at 200µm, 250µm

and 300µm along the optical axis. The red dots correspond the the simulated data, and the

blue line corresponds to the Airy disk corresponding to the diffraction limited focal spot.

We note that clearly, there are additional side-lobes in the EDOF design, and thus the total

energy in the main lobe suffers. However, a different figure of merit can be designed to reduce

the side-lobes, depending on the desired application.

3.4 Discussion

This chapter outlines a data driven methodology for forward simulation of Maxwell’s equa-

tions to design optical metasurfaces. Our model does not make the local phase approxima-

tion, and thus the inter-scatterer coupling is well accounted for. While, the model is not

as accurate as a complete full-wave simulation, it is significantly faster. A single forward

simulation of a square area of dimensions 50µm × 50µm at 44.31 nm resolution takes ap-

proximately 12 seconds with our method versus approximately 3.1 hours using Lumerical

FDTD software in the same computer. FDTD also requires a 58.95 GB initialization mesh

and 29.6GB of RAM for the same simulation, while our method only requires 3.75GB for

the same problem, and can be run on a mid-range laptop. It takes approximately 16 hours

to gather the data required for training our neural network model (10 FDTD simulations).

Depending on the design problem, and based on our results from optimization using our

DNN models as a forward simulator, it takes approximately 100 iterations for an inverse

design problem to converge. Under these assumptions, we can estimate that we need about

100 forward simulations to do naive gradient based design, which would take 310 hours to

complete by using a full FDTD simulation. Furthermore, adjoint optimization requires 2
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simulation passes per optimization step, which will make the whole optimization process to

take least 620 hours. Even when considering the time it takes to gather the data, and train

our model, the overall design process is sped up significantly. The angular propagation step

that transforms the nearfields to the farfields adds an additional 6GB of memory and 26

seconds of optimization time to the optimizaton per farfield plane used. For the EDOF lens,

this results in an additional 60GB of memory required during the optimization process. We

note using a different propagation method such as the Rayleigh-Sommerfield method that

does not require storing the full farfield, but only the field at the point where the FOM is

calculated would significantly reduce the memory requirements for the propagation.

It is worth noting that our method is inherently interpolative, and thus is only as accurate

as the data that we feed into it. Therefore the current model is limited to predicting fields

from lens-like devices, under a specific refractive index, constrained to a subspace of possible

geometries. If one wanted to design a metasurface using this method for a different refractive

index, or with different scatterer geometries, the model would need to be retrained. One way

we could improve this model is by using additional data to train it. In our future work, we

hope to improve the accuracy of this model by simulating random arrangements of scatterers

and using this as our training data set in addition to the data set from lenses. We also

emphasize that the reported efficiency of the designed lenses is low, which remains a challenge

for low index materials [16]. However, full wave simulations have reported efficiency increase

of the metasurface lenses especially when all the coupling between scatterers are exactly

accounted for [72, 25]. Our model could be improved by better accounting for the coupling

between scatterers using more data, especially EM field responses from scatterers with rapidly

varying geometries, since the scatterer geometries of lenses vary slowly in space. One specific

direction will be to capture the physics to predict the full vectorial field, in contrast to the

scalar field modeled here. Modelling the second nearest neighboring scatterers could also be

an interesting path forward. Utilizing techniques such as transfer learning [130] , we could

utilize the features learned from our previous models that include only information from

the nearest scatterers, and try to generalize the model for second and even third nearest
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neighbors. Furthermore, adding additional constraints such as assumptions about energy

conservation to the model training process, could further increase the accuracy of the model.
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Chapter 4

INVERSE DESIGN USING PHYSICS INFORMED NEURAL
NETWORKS

The contents of this chapter are adapted from [126], Maksym V. Zhelyeznyakov, Johannes

E. Fröch, Anna Wirth-Singh, Jaebum Noh,Junsuk Rho, Steven L. Brunton, and Arka Ma-

jumdar. Large area optimization of meta-lens via data-free machine learning, 2022, arxiv

preprint, with permission from the authors.

4.1 Introduction

To address the computational bottleneck of large-area inverse design, in this chapter we

will introduce a physics-informed neural network (PINN), which can replace a traditional

FDTD/FDFD solver to predict the electric field distribution for a given dielectric distribu-

tion. We note that a large number of works already used artifical neural networks to predict

spectral responses of meta-optics of varying scatterer geometries [71, 58, 81, 54, 87, 64, 38,

61, 5]. However, these works used largely periodic structures for which LPA is accurate. We

present a solution via PINNs[84, 67] for lenses and devices with spatially varying scatterer

geometries, where it is necessary to model the whole electric field from several scatterers

and their neighbors. PINNs solve partial differential equations (PDEs) by minimizing a loss

function constructed from the PDE itself. This loss function is generally some norm of the

residual [84] or an energy function derived from the PDE [53]. PINNs have already seen

wide usage in the field of fluid mechanics [85, 129, 90], biology [111], and solving stochastic

PDEs [122]. In electromagnetic inverse problems, PINNs have also been employed to design

meta-optics and nanophotonic devices [24, 68]. These works, however, did not demonstrate a

simulation speedup, and are limited to the inverse design of very small devices. We also note
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that pre-trained PINNs have been used to design small gratings[22]; however their method-

ology is limited to small gratings that deflect light fields to specific angles, and thus cannot

be readily used for the inverse design of general meta-optics.

In our work, we train PINNs to predict the electric fields from a parameterized set of

dielectric meta-atoms corresponding to rectangular pillars. We then use this as a surrogate

model to design cylindrical meta-lenses operating in the visible with a diameter of 1 mm

(∼ 1500λ). Large area meta-optics are simulated by partitioning the simulation region into

groups of 11 meta-atoms, with the outermost meta-atoms overlapping. After simulation, the

fields are stitched together. Our PINNs do not require a training data set. They are trained

by randomly generating distributions of dielectric meta-atoms ϵ, feeding them into a neural

network NN , and minimizing the residual of the linear Maxwell PDE operator

||AMaxwell(ϵ)NN(ϵ)− b||1 (4.1)

over the neural network training parameters. This means our PINNs are trained without ever

invoking a forward numerical simulation of Maxwell’s equations during the training process.

Numerical simulations are invoked only to test the neural network performance (see next

section and appendixC.5). Once trained, this method can calculate the full electromagnetic

field response from a 1 mm diameter cylindrical meta-lens at ∼ 630nm in approximately

3 seconds on a graphics processing unit (GPU). Furthermore, we demonstrate a theoretical

and experimental improvement of the maximum intensity of cylindrical metalenses over their

forward designed hyperboloid counterparts, signifying the improvement over using LPA. We

emphasize that the size of the meta-lens, on which we demonstrate the intensity enhancement

of over 50%, is at least one order of magnitude larger than any other inverse designed lens

that does not rely on the LPA. We note that the reported method is robust enough to handle

even larger meta-optics, with simulation time scaling only linearly with the aperture of the

cylindrical lens (see appendix).
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4.2 Deep neural network proxy to Maxwell’s equations

Our problem statement is summarized in Fig. 4.1. The monochromatic electromagnetic

scattering equation for an inhomogeneous, non-magnetic material is given by:

∇×∇× E(x)− ω2ϵ(x)E(x) = iωJ (x). (4.2)

In the 2D case, assuming out of plane polarization (0, 0, Ez), and the double curl vector

identity, ∇×∇× = ∇(∇·)−∇2 we can simplify Eq. (4.2) to:

∇2Ez(x) + ω2ϵ(x)Ez(x) = −iωJz (4.3)

where Ez and Jz are scalar fields. Equation (4.3) is defined over all space, with boundary

conditions at |x| → ∞. To simulate this equation, we discretize it on a Yee grid [113]

by replacing the ∇ operator with a matrix, and treating the field Ez(x) and current Jz as

vectors E and J at discrete values of x. Similarly, we treat the dielectric distribution ϵ(x) as

a diagonal matrix ε. To truncate the simulation to a finite domain, we use perfectly matched

boundary layers (PML), by making the transformation on the partial derivative operators

∂
∂x

→ 1

1+i
σ(x)
ω

∂
∂x
. Making these substitutions, Eq. (4.3) becomes:

[
Dh

xD
e
x +Dh

yD
e
y + ω2ε

]
E = −iωJ (4.4)

with matrices Dh
x, D

e
x, D

h
y , D

e
y being the matrix representations of corresponding derivative

operators on a Yee grid with incorporated PML boundaries. See appendix C.4 for a more

detailed description of the matrices. These matrices were extracted from a modified version

of the package angler [47] with constants c, ϵ, µ set to 1 and the length scale set to µm. To

build a neural network proxy to solve Eq. (4.4), we employ a PINN. PINNs generally use the

coordinates of the computational grid as the input to the neural network, and then minimize

the residual of the physical equations by approximating the target quantity being solved for

with a neural network. This approach is slow since it effectively functions as an iterative

solver re-parametrized over neural network weights and biases. It also required retraining
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the neural network for all different dielectric distributions. Our approach is to build a proxy

solver that predicts the field E from a dielectric distribution ε. We pre-train the PINN to

predict fields from inputs ε before optimizing our meta-lenses. The minimization problem

to train the PINN becomes:

min
θ
f(ε; θ) where f(ε; θ) =

∣∣∣∣∣∣∣∣[Dh
xD

e
x +Dh

yD
e
y + ω2ε

]
NN(ε; θ) + iωJ

∣∣∣∣∣∣∣∣
1

(4.5)

with NN(ε; θ) being the output field from the PINN, and || · ||1 is the vector l1 norm. Here

θ refers to the weights and biases of the neural network NN . A lower physics informed

loss indicates that the neural network is actually satisfying the PDE, and thus predicting

the field more accurately. We re-emphasize that there is no data term in f(ϵ; θ), which

simplifies the neural network training process. Furthermore, we believe that it mitigates the

accumulation of error in the gradients during the inverse design process observed by Chen

et. al. [22]. Fig. 4.1 outlines the general strategy for building the proxy model. During

each epoch, 10 (batch size) dielectric distributions consisting of rectangular pillars of height

h = 0.6µm with dielectric constant 4 (corresponding to SiN), are generated from 11 random

pillar half-widths per batch. The operation wavelength is λ = 0.633µm. The neural network

architecture chosen is a UNET, shown in Fig. 4.1 a and 4.1 b, due to its relatively good

performance with scattering problems[22]. The model is trained for 5× 105 epochs using the

ADAM optimizer [56] with a learning rate set to 5 × 10−4. The final residual of the fields

predicted by the neural network are of the order of ∼ 0.5, compared to the numerical residual

produced by FDFD which is on the order of 10−16. Although there is a large difference, in the

next section we show that this still produces a simulator which is capable of outperforming

the LPA when optimizing the efficiency of a metalens. Fig. 4.2 a shows an example of a

field predicted from a random set of pillars by the neural network, by a 2D FDFD code, and

their difference, showing good qualitative match. A more quantitative measure at the errors

is shown in Fig. 4.2 b, where we show the point-wise error probability density functions

for the relative error between the complex fields predicted by FDFD and that predicted by

neural network and field predicted under LPA, and the absolute error between pillar-wise
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Figure 4.1: a. Neural network schematic. ε distributions of 11 pillar meta-optics are meshed

by randomly generating sets of pillar half-widths of height h = 0.6µm with a dielectric

constant 4 corresponding to SiN. The background medium is air. The loss function is the

|| · ||1 norm of the residual of Eq. (4.2). b. Neural network architecture. Encoder layers are

down-sampled by a maxpool operation with a 2× 2 kernel. The decoder part of the network

is up-sampled by the Conv2DTranspose operation with a 2 × 2 kernel. c. Render of the

system under optimization. A current J is incident on a cylindrical metalens with dielectric

distribution ε, with output response E.
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average transmission coefficients. See supplement C.2 for a more detailed description of the

pillar wise transmission coefficient error. The relative error is expressed as:

mean

(
|Eapprox − EFDFD|2

max(|EFDFD|2)

)
. (4.6)

For the PINN, Eapprox is the field predicted from a set of 11 pillars. For the LPA, Eapprox is

fields predicted from the same set of pillars, and then stitched together over the same region.

See fig. C.2 for a visual explanation. This error can be interpreted as the % difference

between the FDFD predicted field and the approximate field, either predicted by neural

network without making any LPA or the field under LPA. The mean expected relative error

for the neural network is µ = 0.025 with a standard deviation of σ = 0.0073. When using

the LPA over the same region, we get a mean relative error of µ = 0.17 with a standard

deviation of 0.078. Thus, based on the relative field error, our method is 6.8× more accurate

than the LPA. For the pillar-wise transmission coefficient error, we get an expected error of

µ = 0.051 for the neural network with a standard deviation of σ = 0.033 and for the LPA

method we get an expected error of µ = 0.38 with a standard deviation of 0.14. Thus, based

on the transmission coefficient error, our method is 7.2× more accurate than the LPA.

4.3 Device optimization

The optimization process based on automatic differentiation functionality of PyTorch for

large area meta-optics is outlined in Fig. 4.3. The forward problem is solved via a pre-

trained PINN. Since the input into the neural net is a meshed grid of pillars, a differentiable

map from pillar half-widths to meshed geometries must be generated. This is achieved by

generating Gaussian functions centered around pillar centers, with standard deviations of

pillar half-widths in the x dimension, and pillar height in the y dimension, and then using a

modified softmax function to transform the Gaussians into rectangles with slightly rounded

edges, making them differentiable via automatic differentiation (see appendix C.1). The

meshed structures are fed into two separate neural networks that have been pre-trained

to predict the complex electric field. The fields are then stitched together with regions of
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Figure 4.2: a. Real part of fields predicted by (left) neural network, (center) FDFD, and

(right) the difference between the true and predicted fields. b. Comparison between the

performance of the proposed neural network and LPAmethods. (left) Shows the relative error

between FDFD predicted fields and the fields predicted by LPA. (right) Error comparisons

between the transmission coefficients predicted by LPA and the neural net.
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Figure 4.3: Optimization strategy of 2D meta-optics with PINNs. a. We start with a

vector, which contains a list of all pillar half-widths, characterizing the meta-optic. These

half-widths are then batched into groups of 11 with an overlap of 1 pillar on each side. The

choice of 11 pillars was made based on the GPU memory required to train the PINN. b.

The half-widths are meshed into dielectric distributions which get fed into the c. The neural

network predicts patches of fields which are then stitched together, and d. propagated via

the angular spectrum method. e. The objective function is formed from the resulting field,

and backpropagated using PyTorch’s automatic differentiation functionality to update the

initial radius distribution.
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the outer half-widths overlapping. The total field is then propagated using the angular

spectrum method. The propagated field is used to calculate the FOM f from Eq. (4.5). We

use automatic differentiation to compute the gradients of the FOM with respect to the input

half-widths ∇r⃗f , and iteratively update them with the ADAM optimizer[56].

4.4 Results

We used PINN surrogate model to optimize 9 different lenses, all with 1 mm aperture, with

focal lengths ranging from 250-1500 µm in increments of 250 µm. The minimum feature

size is set to 75 nm, to ensure fabricability. To compare our optimization approach, we also

generated lenses according to the hyperboloid phase equation:

ϕ(x, y) =
2π

λ

(√
x2 + F 2 − F

)
(4.7)

The phase is implemented under LPA using SiN (refractive index 2), a wavelength of

0.633µm, and periodicity of p = 0.443µm. We then optimize the lens employing our PINN

to increase the intensity at the focal spot, i.e., the FOM is given by:

f =
∣∣E(x = 0, z = F )

∣∣2 (4.8)

Fig. 4.4a and Fig. 4.4b show the intensity profile of a forward designed and optimized

lens with F = 500µm focal length. Fig.4.4c shows the normalized intensity slice at the

focal spot of both lenses. As seen in Fig. 4.4 d the maximum intensities at the focal spots

improve in every case. Fig. 4.4 e shows that the efficiency all improves in all except for the

lens with highest NA. We validated our designs by fabricating and experimentally testing

the meta-lenses using a microscope (details of fabrication and characterization in Methods).

Fig. 4.5 shows an example of the inverse optimized device. Fig. 4.5a-c shows the scanning

electron micrographs (SEMs) of the fabricated optimized lens with focal length F = 500µm.

Fig.5d shows the distribution of the dielectric pillar half-widths of the same forward and

optimized lens. signifying the two designs are very different. Fig.4.5e shows the focal spot

intensities of the lenses integrated over a r = 3×FWHM region at the focal spot, which yields



60

Figure 4.4: Efficiency and intensity sweeps of forward designed lenses and optimized lenses.

a. Focal spot intensity profile of a forward designed lens with focal length F = 500µm. b.

Focal spot intensity profile of an optimized lens. c. Slices of intensity profiles for both lenses.

The intensity was normalized such that the maximum intensity of the forward designed lens

is 1. The theoretical performance improvement is ∼ 3%. d. Maximum intensity at the focal

spot vs lens numerical aperture (NA). Intensities are normalized such that the maximum of

the largest forward designed intensity is set to 1. e. Theoretically computed efficiencies of

the lenses vs NA. The solid lines are visual aids for the trend and do not correspond to a

theoretical prediction.
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Figure 4.5: a.-c. Scanning Electron Microscope (SEM) images of the fabricated SiN meta-

lens with focal length F = 500µm. The scale bars correspond to 1µm, 0.1µm, and 1µm,

respectively. d. Counts of pillar half-widths of the forward and inverse designed lens. e.

Measured intensity contained in the region given by 3× FWHM of the focal spot vs lens

numerical aperture. The units are normalized to the largest intensity integral of the forward

design. f. Maximum intensity at the focal spot. The inverse designed lenses outperform the

forward designed lenses for NA > 0.44. The lines are visual aids and not fits to a theoretical

model. Units are normalized to the largest intensity of the forward designed lens. In the NA

= 0.9 (F = 250µm) case an improvement of 53% is observed. g. Experimentally measured

field intensities of the forward designed lens and h. of the inverse designed lens. i. Intensity

slice at the focal spot. The intensities are normalized such that the maximum intensity of

the forward designed lens is 1. The intensity of the inverse designed lens focal spot is 1.25.
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a quantitative value to compare the lens efficiency [11] among different devices. Fig.4.5f plots

the maximum intensity plot as a function of the lens NA. For optimized lenses with NA >

0.44, we see improvements of more than 25%, with a maximum improvement of 53% for the

NA = 0.9 lens. The experimentally determined intensity integral, which is analogous to the

efficiency of a lens, on has improvements of more than 18% in all cases except for the NA=0.9

case. This is because the FWHM of the optimized lens at the NA=0.9 case is actually smaller

than the FWHM of the forward designed lens, leading to a smaller integration area when

computing the energy.

Fig. 4.5g shows experimentally measured field profiles of the forward designed F =

500µm meta-lens. Fig. 4.5h shows the same for an optimized lens. Fig.4.5i is the slice of

the focal spot intensity profile along the z = F plane. In all these figures, the intensity is

normalized such that the maximum intensity of the forward designed lens is 1.

4.5 Methods

4.5.1 Fabrication

All devices described and discussed in Figure 5 (forward and PINN designed) were fabricated

on the same substrate. First a ∼ 700 nm SiN film was deposited on a quartz wafer using

plasma enhanced chemical vapor deposition (SPTS Delta LPX PECVD). A thin film of a

polymer resist (ZEP 520-A) and a thin film of a discharging polymer layer (DisCharge H2O)

were subsequently spun onto the sample. We then used electron beam lithography (JEOL

JBX-6300FS, 100 keV, 2nA) to write the various structures. After development, a short

descum step (Glow Research, Autoglow, 12 s, 100 W) was used to remove remaining resist

residues and subsequently a layer of 60 nm AlOx was deposited using a home-built e-beam

evaporator. After overnight lift-off in warm NMP and a further plasma cleaning step in O2,

we used inductively coupled reactive ion etching (Oxford Instruments PlasmaLabSystem100)

with a fluorine gas chemistry to transfer the pattern from the AlOx hard mask into the

underlying SiN layer. The final thickness of the etched layer indicated a pillar height of
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∼650 nm.

4.5.2 Experiment set up

For intensity measurements, light from a HeNe laser was transmitted through the backside

of the chip and measured on the device side using a translatable microscope relay setup.

In detail, the sample was mounted at a fixed position on a kinematic holder, allowing the

fine adjustment for pitch and yaw, as well as the lateral position. Light was transmitted

through the substrate side and would propagate entirely in air. The resulting focusing

pattern was measured using a microscope setup consisting of a Nikon 100X LU Plan Fluor

objective with 0.9 NA (equal or higher to the NA of the meta-optic), a tube lens (Thorlabs),

and a camera (Allied Vision ProSilica GT1930), which were mounted on a programmable

automated translation stage (NewPort). Frames were acquired at specific intervals of the

movement, which allowed the reconstruction of the intensity vs focal distance.

4.6 Discussion

We have developed a PINN to use as a proxy surrogate model for simulating the full Maxwell’s

equations to design dielectric meta-optics. We used the PINN to optimize pillar half-widths

to maximize the intensity at the focal spot of 1 mm aperture cylindrical meta-lenses. We

demonstrated experimental improvements of the maximum intensity of the lenses up to 53%.

We also want to note that this method was useful for the inverse design of extended depth of

focus lenses[14] (see appendix C.6). This model did not use the LPA, but simulated meta-

atoms by splitting up the device into chunks with overlapping boundaries, and stitching the

chunks together to approximate the full field response. We emphasize that FDFD simulations

were never carried out to train the PINN, and we only minimized the residual of the PDE

itself to train the network. The PINN training took approximately 2 hours on our machine.

In our studies, this method provided approximately a 3-5x speedup over conventional FDFD

with overlapping boundary conditions, and was much simpler to use as a forward simulator

for optimization problems since it can be used as a simple map from ϵ to E-field with
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gradients computed by automatic differentiation.

We would also like to note that the theoretical intensity and efficiency improvements

are quite a bit smaller than their experimental counterparts. While we don’t have a clear

explanation for this discrepancy, the theoretical and experimental trends in lens improve-

ment are similar. We hypothesise that the inverse designed lenses may be more tolerant to

fabrication imperfections. The inverse design solution we introduced in this chapter can be

integrated into various computationally intensive tasks which require mate-optical inverse

design such as the end-to-end optimization of computational imaging systems and the de-

sign of optical neural networks[96, 60]. It is worth noting, however, that this method is

not a general numerical solver. It is limited to predicting electromagnetic field responses

from fixed source, material, and boundary parameters. Source type and k-vector, dielectric

constant, geometry type (rectangular pillar of fixed height), and boundary conditions must

all remain constant for this method to work. If any of these parameters are modified, the

PINN must be retrained. Furthermore, the method we presented was only implemented

under a 2D approximation. Extending this method to 3 dimensions would take significant

effort due to the fact that the electric field E could no longer be treated as a scalar field,

and the full vector nature would have to be modeled. On a n × n grid in 2D, the Maxwell

operator
[
∇2 + ω2ϵ

]
results in a n2 × n2 matrix, while for a n× n× n 3D grid the Maxwell

operator
[
∇×∇×−ω2ϵ] result in 9n3 × 9n3 square matrices due to the additional 2 vector

field components that must be modeled. However, these operators are sparse with number of

nonzero elements that scale as ∼ 38n3 in 3D, making small problems still manageable. The

other problem with generalizing this method to 3D is the large null-space of the ∇×∇× op-

erator which results in slow convergence of numerical methods[77, 76]. Its highly likely that

this could also affect the training of the PINN, and require regularization or preconditioning

which deflates the null space of this operator to properly converge onto a solution. On the

other hand, in this work we showed that machine-precision numerical accuracy of numerical

solvers may be not be needed for inverse design methods with FDFD. Solvers could be sped

up by relaxing the relative error tolerance, such that iterative solvers converge quicker for
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predicting the forward and adjoint problems.
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Chapter 5

CONCLUSION AND OUTLOOK

The inverse design and optimization of metamaterials is an academically interesting prob-

lem. They provide a way of controlling the response of electromagnetic fields in 2 dimensions,

by modifying scatterer geometries. In a way, one can think of each metasurface scatterer as

an individual knob you can twist, but in doing so, you modulate the electromagnetic response

of a metasurface in a non-trivial way. To engineer electromagnetic scattering from metasur-

faces, sophisticated simulation methods are and optimization techniques are required. In this

thesis we outlined three separate forward simulation methods that can be used for inverse

design. None of these methods rely on the LPA to model scattering from dielectric metasur-

face scatterers and provide a significant computational resource reduction for inverse design

and metasurface optimization problems. Furthermore, we used these techniques to design

new optical meta-devices, as well as optimized existing designs for higher performance.

In the first chapter, we gave a brief overview of existing optical devices. We described the

operation of conventional refractive optics via Snell’s law, and motivated the use of diffrac-

tive optical elements for miniaturization of optical systems via wave optics. We motivated

the use of metamaterials for optical miniaturization and realization of novel optical systems.

We described the common design strategies for metamaterials - forward and inverse design,

and argued that inverse design is of particular importance for designing metamaterials man-

ufactured on low refractive material platforms as well as cases where the geometric gradients

of individual scatterers are not negligible. The design of metamaterials still has a number

of outstanding challenges. The efficient design of high numerical aperture lenses [20, 126],

correcting for chromatic and geometric aberrations [101, 102, 8, 26], low index metasurface

design [118, 126], multi-functional metasurface design [65, 29], design of metasurfaces for
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feature-specific imaging [97], volumetric metasurface design [121], and optical neural net-

work design [63] are all examples of outstanding problems in this field that can benefit from

more advanced inverse design techniques.

In chapter 2, we introduced the inverse design of meta-materials based on GMMT, which

solves the forward scattering problem for arrays of spheroidal scatterers. Although the

method is promising, and was used to design new multifunctional metasurfaces, as well as

optimzie the efficiency of an existing metasurface, the method does not provide enough of

a computational resource relief to be an efficient method for inverse design of very large

area systems. This problem can be alleviated by splitting up the simulation region into

chunks, and neglecting the scattering from scatterers which are very far away from each other,

reducing the dimensionality of the problem. Furthermore, in its current state, this method

only works for geometries that can be smoothly parameterized in spherical coordinates, which

limits us to designing devices that are not easily manufacturable. It is possible to extend this

method to arbitrary geometries by using the boundary element method [43, 1]. This method

is also limited to sparsely packed particles, which offers another challenge. This challenge

can also be alleviated by using the plane-wave expansion method [93, 32].

In chapter 3, we outlined a data-driven approach to modeling scattering from metasurface

scatterers. We simulated scattering from a set of metamaterial lenses, pre-processed the data

using the SVD, and trained a neural network to predict the basis coefficients that reconstruct

the original field in terms of the singular vectors found the SVD from a single scatterer, and

its nearest neighbors. This method was used to design a multi-functional lens that focuses

light for one wavelength and creates a toroidal focal spot for a different wavelength, as well as

optimizing an extended depth of focus lens. Its extremely fast and memory efficient, making

it easy to run on a mid-range laptop. The drawback to this method however was the fact

that we were never able to see an efficiency improvement of a lens after optimization. One

interesting avenue to pursue from this project is the application of data-scientific methods

to understanding how complex systems like this behave. Methods like dynamic mode de-

composition, principle component analysis, proper orthogonal decomposition, as well as a
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multitude of other methods could be applied to understanding how statistical properties of

the distribution of scatterer geometries affects spatial and frequency domain modes of the

electromagnetic field scattering. This could lead to a novel understanding of metasurfaces

as well as other complex, highly coupled systems, and lead to better meta-device designs.

In chapter 4, we outlined the methodology for using a physics informed neural network

to replace a conventional numerical simulator for the inverse design of 1-dimensional meta-

surface structures. In this work we were able to achieve almost a 5x speedup in the forward

simulation of electromagnetic fields. We almost demonstrated an experimental improvement

in the maximum intensity value at the lens focal spot of at most 53%, which is at least

an order of magnitude larger than previous works. Its important to note that this method

does not rely on the local phase approximation, and instead incorporates the scattering from

near-neighbor particles to improve the design method. Furthermore, we want to highlight

the importance of experimentally verifying inverse design strategies, as it is very easy to

make simple mistakes that lead you to believe you have a good method, when in reality you

do not C.7. In its current state, this method can only predict 2D fields from a 1D metasur-

face, so the natural extension of this method would be to train a neural network to predict

full-vectorial 3D field scattering from 2D metasurface devices. This however increases the

complexity of the problem, and would require increased computational resources, as well as

new techniques for training the neural network in order to get the simulation method to

converge properly. Another avenue to pursue is perhaps to relax the convergence condition

of the simulation method for inverse design. As we have shown, the residual of the field

computed with the neural network, is on the order of ∼ 0.5, versus a numerical simulator

which has machine level precision. This precision, however, may be overkill for inverse design

problems.
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Thomas M. Babinec, and Jelena Vučković. Inverse design and demonstration of a com-
pact and broadband on-chip wavelength demultiplexer. Nature Photonics, 9(6):374–
377, Jun 2015.

[83] Alexander Y. Piggott, Jan Petykiewicz, Logan Su, and Jelena Vučković. Fabrication-
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Appendix A

THE ANGULAR SPECTRUM METHOD

For the sake of completeness and self-containment, in this section we will outline the

angular spectrum method for propagating electromagnetic fields in a linear, homogeneous,

isotropic, and non-dispersive medium. A more detailed derivation can be found in [39]. In a

linear, homogeneous, isotropic, and non-dispersive medium, electromagnetic waves obey the

wave equation [48]:

∇2u(x, y, z, t)− n2

c2
∂2u(x, y, z, t)

∂t2
= 0 (A.1)

where u(x, y, z, t) is an arbitrary scalar field corresponding to any of the vector components of

the electric or magnetic fields, (x, y, z) are spatial coordinates and t is the time coordinate,

n is the refractive index of the medium, and c is the speed of light. Using separation of

variables, we can obtain the time dependent solution T (t) = A(x, y, z) exp(−i2πνt), where ν

is the frequency of the wave. Isolating the spatial dependence we can obtain the Helmholtz

equation:

∇2U(x, y, z) + k2U(x, y, z) = 0 (A.2)

where

k =
2πν

c
. (A.3)

Eq. A.2 can be written as:

∇2
x,yU(x, y, z) +

d2

dz2
U(x, y, z) + k2U(x, y, z) = 0. (A.4)

Taking the Fourier transform of eq. A.4 along the x, y coordinates we get:

−k2x
˜
U(kx, ky, z)− k2y

˜
U(kx, ky, z) +

d2

dz2 ˜
U(kx, ky, z) + k2

˜
U(kx, ky, z) = 0 (A.5)
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where
˜
U is the Fourier transform in the x, y coordinates, and kx, ky are the corresponding

spatial frequencies. Since we want to obtain a transform from U(x, y, 0) to U(x, y, z), we

assume at z = 0 the initial condition is
˜
U(kx, ky, 0). We also know that in homogeneous,

isotropic, linear, non-dispersive materials:

∇ · E⃗ = 0. (A.6)

Combining everything, we obtain the general solution to eq. A.5:

˜
U(kx, ky, z) =

˜
U(kx, ky, 0) exp

(
i
√
k2 − k2x − k2yz

)
(A.7)

so in general for a field propagating in z,

U(x, y, z) = F−1

[
˜
U(kx, ky, 0) exp

(
i
√
k2 − k2x − k2yz

)
; (kx, ky)

]
x,y

(A.8)

where F−1 is the inverse Fourier transform from kx, ky to x, y. This can also be expressed as

a convolution

U(x, y, z) = U(x, y, 0)
⊗

exp
(
i
√
k2 − k2x − k2yz

)
. (A.9)

Its straightforward to implement either A.8 or A.9 using any standard programming lan-

guage. Furthermore, every operation is continuous and well defined, and can therefore be

used with automatic differentiation.
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Appendix B

APPENDIX FOR CHAPTER 3

B.1 Definition of efficiency metrics for the designed devices.

The standard definition of efficiency for a metasurface lens with a given focal length f is:

η =

∫ ∫
Ω
E∗(x, y, z = f)E∗(x, y, z = f)dxdy∫ ∫

x,y
E∗(x, y, z = 0)E∗(x, y, z = 0)dxdy

(B.1)

Ω := x2 + y2 < (3× FWHM)2 (B.2)

where Ω is the surface around the focal spot which we integrate over, and FWHM is the full

width half maximum of a Gaussian fitted to the focal spot.

We quantify the functionality of the annular metasurface as the ratio between the power

confined in the annulus to the power confined in the center of the annulus. More formally

we define η◦ as:

η◦ =

∫ ∫
Ω◦

E∗(x, y, z = F )E∗(x, y, z = F )dxdy∫ ∫
Ω.
E∗(x, y, z = F )E∗(x, y, z = F )dxdy

(B.3)

Ω◦ := (r◦ + δr)2 < x2 + y2 < (r◦ + δr)2 (B.4)

Ωt := x2 + y2 < δr2 (B.5)

Here, Ω◦ is the surface representing the annulus and Ωt is the surface representing the center

of the annulus. r◦ is the radius of the annulus, defined in the optimization procedure as

1.5µm. δr is the thickness over which we integrate, which we define as δr = 1
2
FWHM

calculated for the λ = 633 nm case. η◦ was found to be equal to 58.47. All integrals are

taken over the λ = 400 nm field. Another possible metric of interest would be the fraction of

power contained inside the surface Ωt, but in the λ = 633 nm case. We calculate this metric

by switching Ω for Ωt in Eq. B.1. This metric gives an efficiency of 10.55%.
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(a) Model accuracy vs number of input features (b) DNN loss

Figure B.1: a. Shows the model accuracy as number of features increases by including no

nearby neighbors (1x1 block), nearby neighbors only (3x3 block), second order (5x5 block)

and 3rd order (7x7) block nearest neighbors. b. Plot of the DNN objective function as a

function of training epoch.

B.2 Data Driven deep neural network model and training

Throughout this work, we assumed that the majority of the nearfield coupling is accounted

for by incorporating scattering from nearby pillars only. To test this, we created separate

DNN models with single scatterer radius (1x1 block), nearby neighbors (3x3 block), as

well as second order (5x5 block) and third order neighbors (7x7 block) as inputs. Fig.

B.1a summarizes our results. The relative error between the predicted fields and the test

field set is largest when only a single scatterer radius is included in the input. When the

nearest neighbors are incorporated, the relative error drops significantly. Perhaps somewhat

unexpectedly, including second and third order nearest neighbors increases the relative error

in our test data set. This can be interpreted as the models over-fitting the fields to a larger

number of inputs, and could be fixed by adding more data to the training.
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Fig. B.1b shows the objective loss of the DNN model with 3x3 pillar radii as inputs

vs the training epoch. Since around epoch 50, the test data set loss starts to diverge from

the train data set loss, we use this point as our training cut-off to avoid overfitting. Fig B.2

shows the histograms of the field errors predicted from a set of radii by the DNN and the

linear models. The error here is defined by:

||EFDTD(xi)− Epred(xi)||22 (B.6)

The histogram is tighter for the DNN model, thus showing it indeed performs better than

the linear model we used.
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Figure B.2: Error histograms of the DNN and Linear models. Y axis is normalized to the

probability of finding a certain error value

B.3 Inverse design with the DNN model

To inverse design both of the devices outlined in chapter 3, we use the DNN model as

our forward simulation method to compute the nearfield response of the device. Then the

nearfields are propagated to the focal plane of interest using the angular spectrum method

implemented in TensorFlow. The final fields were used to compute the figures of merit for

both of the devices.

In the case of the wavelength-multiplexed device, we used a forward designed lens that
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Figure B.3: Nearfields for the f = 50µm lens computed with Lumerical FDTD (left), the

DNN model (middle), and using RCWA under the local phase approximation (right).

focuses light at focal length f = 50µm as the initial condition. Fig. B.3 shows the nearfields

of the initial condition computed with three different methods: full FDTD simulation, our

DNN model, and RCWA stitching under the LPA. The fields predicted by our method are

much more similar to FDTD than those predicted with LPA.

Fig. B.4 summarizes the the design of the annular device. The left-most figure is

the initial condition of the device (a 50µm focal length lens), the second shows the resulting,

optimized device, and the third shows the difference between the two. On average, the

mean absolute difference between the initial device and the final device is 29.5 nm with a

standard deviation of 24.9 nm.

We terminate the optimization after 150 iterations, since the FOM improves only marginally

after this point. The final value of the FOM is −1.99 × 103. The final FOM calculated via

FDTD is −788.

Similarly, the EDOF device was designed by using a forward designed lens that fo-

cuses light at f = 100µm as the initial condition. Fig. B.5 shows the nearfields calculated

with the different methods. Fig. B.6 summarizes the optimization of the device.



89

Figure B.4: From left to right we show: the initial device, the final designed device, the

difference in radii between the initial device and the final device, and the figure of merit

during optimization. The scale bars correspond to 10µm.

Figure B.5: Nearfields for the f = 100µm lens computed with Lumerical FDTD (left), the

DNN model (middle), and using RCWA under the local phase approximation (right).

Figure B.6: From left to right we show: the initial device, the final designed device, the

difference in radii between the initial device and the final device, and the figure of merit

during optimization. The scale bars are 10µm
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(a) Wavelength switched device (b) EDOF device

Figure B.7: a. Farfields of wavelength switched device and b EDOF device. Top is the field

calculated via FDTD and bottom is the field calculated using our method

The final FOM value we calculate for the EDOF lens with our method is −48, vs the FDTD

method −24. It is clear from the differences in the FOM’s between FDTD and our method

that our method does not capture all of the physics of the system. However, as shown

from the farfields in Figs. B.7a and B.7b, this is still sufficient to perform inverse design

of metasurfaces with alternate functionalities that are impossible to generate with forward

design only.
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B.4 Data-driven model performance at different wavelengths

We tested the DNN model’s performance 10nm away from its operating wavelength λ =

643nm, and calculated the relative error on the test data set to be ∼ 0.5. Then we inverse

designed the same wavelength switched device as outlined in chapter 2, at λ = 390nm for

the annular beam and λ = 643nm for the focal spot. Fig. B.8 shows the performance of this

device. Note that even with a relative error that is twice than that of the original model, its

robust enough for inverse design.

Figure B.8: inverse designed wavelength switched device at λ = 643nm and λ = 390nm
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Appendix C

APPENDIX FOR CHAPTER 4

C.1 Problem set up

Figure C.1: Simulation problem setup

The neural networks are trained to predict electric field responses of distributions of

dielectric scattereres, here SiN pillars, from a plane wave current source of wavelength

λ = 633nm. The resolution is set to be 16 pixels per period, with each period being 0.443µm.

The boundary conditions along the x-direction are set to be periodic. The boundary condi-

tions along the y-direction are set to be 10 grid points of a perfectly matched layer (PML).

The simulation domain in the x direction is 12×period = 5.316µm, and 6× period = 2.658µm
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along the y direction. When simulating field responses of large area metasurfaces, the sim-

ulation region is split up into groups of 11 periods with the outermost periods overlapping.

Each region is simulated with a trained neural network as shown in C.1. The field responses

of the innermost 9 pillars are stitched together.
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Figure C.2: Calculating pillar-wise transmission coefficients for a. FDFD and neural network

simulations and b. LPA simulations.

C.2 Pillar-wise transmission coefficient error

Here, we summarize how we compute the average pillar-wise transmission error (i.e. main

text Figure 2 b right hand side). For every set of 11 pillars we compute the transmission

coefficients for each pillar using FDFD, PINNs, and LPA. Fig. C.2 (left) shows how trans-

mission coefficients for each batch are computed for FDFD and PINN. Fig. C.2 (right) shows

how transmission coefficients are computed under the LPA. For the FDFD and PINN case,

we simulate the full field over the simulation region defined in the previous section. Then we

measure field 6 pixels (0.13µm) away from the meta-atom. Then that field is averaged over a

single period corresponding to the location of the meta-atom. This gives us 11 transmission

coefficients. For the LPA, we simply simulate the 11 scatterers under periodic boundary

conditions, and extract the average field the same distance away from each pillar. The mean

transmission coefficient error is thus given by

1

11

11∑
i=1

|tFDFD
i − tapproxi |2 (C.1)

where tFDFD
i is the transmission coefficient computed with FDFD and tapproxi is computed by

either the neural network or LPA.
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Figure C.3: transforms carried out to make a differentiable map from r → ϵ

C.3 Mesh reparametrization

To mesh a set of pillars, we first generate a grid of coordinates x ∈ [−6p, 6p] and y ∈ [−3
2
p, 3

2
p],

p being the pitch of the meta-optics. Since we have a fixed set of pillars, their centroid

locations are given by xi =
np
2

where n is the pillar index running from −5 to 5. The first

transform we define is just a shifted gaussian function on this grid:

T1(ri, xi) = exp
(
− (x− xi)

2

2r2i

)
(C.2)

Similarly, the second one defines the height:

T2 = exp
(
− y2

2(h/2)2
)

(C.3)

The modified softmax is defined by:

T3(a, b, x) =
1

1 + exp(−a(x− b))
(C.4)

a denotes the aggressiveness of the softmax function, and b is the point above which the

function goes to 1, and below which the function goes to 0. Here, we chose a = 100 and
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b = loge(2). The aggressiveness was experimentally determined, with larger values causing

gradients to become too steep, and lower values causing things to not resemble pillars as

much. b = loge(2) is chosen because a gaussian function drops to loge(2) of its max values

after 1 standard deviation of its input variable, hence creating pillars of size r. Thus, 1

meshed batch of radii can be written as:

11∑
i=1

T3(T1(ri, xi), 100, loge(2))T3(T2, 100, loge(2)) (C.5)
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Figure C.4: Description of setup for scale matrices Sx and Sy. Left hand side is for the x

derivative and right hand side is for the y derivative. PML scaling is computing on a meshed

grid, then flattened and embedded in a diagonal matrix.

C.4 Form of FDFD linear system

In this section we give a brief summary of formulating the FDFD linear system on a Yee

grid for completeness. The full details of the method can be found elsewhere [1, 2, 3, 4, 5],

so we only give a brief description here. The boundary conditions of Maxwell’s equations

are defined at |x| → ∞, so perfectly matched layer (PML) boundary conditions must be

implemented to truncate the simulation region to a finite size. To do this, scale matrices Sx

and Sy need to be generated. They are constructed by creating scale factors

sw(l) =

1− iσw(l)
ωoϵ0

inside w normal pml

1 otherwise

(C.6)

Where w is the coordinate normal (x or y), l is the distance inside the PML from the PML

interface, ωo is the operating angular frequency, and ϵ0 is the permittivity of free space. σw(l)

is given by

σw(l) = σw,max

( l
d

)m
(C.7)
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and σw,max is

σw,max =
(m+ 1)lnR

2η0d
(C.8)

d is the thickness of the PML. η0 is the vacuum impedance η0 =
√
µ0/ϵ0. R is the target

reflection coefficient. A good reference for PML boundaries is Shin et. al.[4]. The package

we used, angler[3], uses the convention m = 4 and ln(R) = −12. Furthermore we modified

the constants inside the package such that µ0 = ϵ0 = η0 = 1. The matrices Sx and Sy are

created by computing sw on a meshed grid, flattening it, and embedding it into a diagonal

matrix:

Sw =



1

s1,1w
0 0 · · · 0

0 1

s2,2w
0 · · · 0

0 0 1

s3,3w
· · · 0

...
. . .

0 0 0 · · · 1

sN,N
w


(C.9)

The numerical derivative matrices on a yee grid, with periodic boundary conditions ∆x and

∆y are:

∆x =

− 1
dx

1
dx

− 1
dx

1
dx

. . . . . .
− 1

dx
1
dx

− 1
dx

1
dx

1
dx

− 1
dx

. . . . . .
1
dx

− 1
dx





(Nx − 1)Ny

Ny

(C.10)
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∆y =

− 1
dy

1
dy

− 1
dy

1
dy

. . . . . .
1
dy

− 1
dy 0

− 1
dy

1
dy

− 1
dy

1
dy

. . . . . .
1
dy

− 1
dy





Ny

Ny

(C.11)

here Nx and Ny are the grid sizes in the x and y directions and dx and dy are the grid

spacings. The derivative matrices De
x, D

e
y, D

h
x, and D

h
y can then be constructed as:

De
x = Sx∆x (C.12)

De
y = Sy∆y (C.13)

Dh
x = Sx(−∆†

x) (C.14)

Dh
y = Sy(−∆†

y) (C.15)

where the † operator is the Hermitian transpose.
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Figure C.5: Comparison of neural network performance for different values of α in the data

loss term. Left: epoch vs normalized error given by eq. C.19 and right: the residual. Both

both plots are the done on the test data set.

C.5 Neural network training

In this section we describe the effect of adding data to the PINN loss function. Given a

PINN loss:

f(ε; θ) =

∣∣∣∣∣∣∣∣[Dh
xD

e
x +Dh

yD
e
x + ω2

oε
]
NN(ε; θ) + iωoJ

∣∣∣∣∣∣∣∣
1

(C.16)

and a data loss

g(ε; θ) =

∣∣∣∣∣∣∣∣EFDFD − ENN(ε; θ)

∣∣∣∣∣∣∣∣
1

(C.17)

we can form a total loss function:

h(ε; θ) = f(ε; θ) + g(ε; θ) (C.18)

Where ε is the input dielectric distribution, θ are the trainable parameters of the neural

network, and α is the ”strength” of the data term. Fig. C.5 shows the test loss vs epoch of

neural networks trained with various α parameters. We generated a dataset of 10000 fields

by directly simulating our problem with random pillar arrangements using angler [3]. The
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training was done on 9900 fields, and the test was done on the remaining 100. The left hand

side of Fig. C.5 shows the accuracy of the neural network given by the 2 norm relative error

between the fields simulated by FDFD and the neural net:

||EFDFD −NN ||22
||EFDFD||22

(C.19)

on the test data set. The right hand side shows the same information except for the residual

given by C.16. We note that, while some data parameter α may marginally improve how

well the neural network predicts a field, for values of α where this improvement becomes

significant, the physics informed loss takes a penalty. We argue that having a lower physics

informed loss is a much better scenario for optimization problems because it means the fields

satisfy the PDE better, and thus more accurately represent the predicted physical quantity.

Furthermore, the improvement from including a data term is marginal, and increases the

complexity of neural network training, that it is not worth adding.
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C.6 Extended depth of focus (EDOF) Lens

We also designed an EDOF lens through a standard max-min objective approach, where we

computed the intensity of the field produced by our lens at discrete equidistantly spaced

points along a focal line, on an interval between two different focal lengths:

f = {f1, f2, ..., f10}

fi = E†(0, zi)E(0, zi)

max
r

min
fi

f

(C.20)

We then used forward design to generate a lens with focal length 2050µm and a diameter of

1000µm, and optimized an EDOF lens to extend its focus between 2000 and 2100 microns.

Fig. C.6 shows a summary of the results for the inverse designed EDOF lens. To characterize

the performance of the lens, we define the depth of focus as the point where the distance at

which the focal spot intensity reaches 1/2 of its original value, see Fig. C.6 c and f. The

EDOF device has a theoretically predicted depth of focus of 93µm and an experimentally

measured depth of focus of 97µm. The depth of focus of the forward designed lens is ∼20µm

measured both in experiment and theory.
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C.7 Failed designs and the lack of experimental results

We want to emphasize the importance of experimentally verifying inverse design methods.

Initially we designed our inverse design method by extracting derivative matrices from angler

[3], and comparing our results to the FDFD results from the same package in order to make

sure our results were consistent and accurate. Fig. C.7 summarizes our results. We note

there there is a large discrepancy between the theory and experiment here. This is due to the

fact that angler and our first iteration of our inverse design methodology was predicted the

complex conjugate of the electric field instead of the electric field, leading to angular spectrum

propagation to propagate the fields in the opposite direction. We would never have realized

this error if we did not conduct experimental testing of our devices. We encourage more

inverse design papers in the future to manufacture and test their inverse design methods in

order to produce reliable and accurate designs.
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Figure C.6: EDOF lens inverse design. a. - c. represent theoretical results, and d. - f. are

experimentally measured results. a., d. are forward designed lenses with focal length 2.05

mm. b.,e. are the optimized EDOF lenses. c., f. are slices along the z axis with x = 0µm.

The red lines are the EDOF and the blue lines are the lens. The black line is plotted at

the full width half maxima of the EDOF lens, which is how we define the depth of focus[5].

The theoretical and experiment depth of focus for the forward designed lens is 20µm. The

EDOF lens has a theoretical depth of focus of 93µm and an experimentally measured depth

of focus of 97µm

.
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I. II. III. IV.

a.

b.

c.

d.

Figure C.7: I Theoretically predicted intensities at the focal spot. II. Experimentally mea-

sured intensities at the focal spot. III. Theoretically predicted focal spot for forward design

IV and inverse design. a. 200 µm focal length. b. 500 µm c. 750 µm d. 1000µm.
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C.8 Simulation resource and speed comparisons

PINN FDFD

Batch Size 1 Batch Size 10 Batch Size 20 Batch size 40 Overlapping BCs Full Simulation

average time per chunk (s) 0.006 0.004 0.004 0.005 0.021

total sim time (s) 1.17 1.04 1.17 1.13 5.29 11.43

Ram Usage (GB) 5.29 5.29 5.29 5.29 1.77 36.7

GPU Memory (GB) 1.62 2.88 4.58 7.17

Table C.1: Resource and speed comparisons between the PINN approach and the FDFD

approach for the forward simulation of a 1mm lens. The PINN approach is about 5x faster

than the FDFD approach when overlapping boundary conditions are used and 10x faster

when we don’t use overlapping boundary conditions. Furthermore, the overlapping boundary

method is more memory efficient, and thus useful for running inverse design on machines

with low RAM.
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Figure C.8: Comparison of neural network simulation time vs lens diameter. Data is taken

for lens diameters of 100, 500, 1000, 2000, and 10000 µm lens diameters. Simulation time

increases linearly with lens diameter.
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C.9 LPA Data

Figure C.9: Phase and amplitude transmission for the pillars with height h = 0.6, refractive

index n = 2, and periodicity 0.443µm at operating wavelength λ = 0.633µm
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