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Abstract: We demonstrate the actuation of a double beam opto-
mechanical cavity with a sinusoidally varying optical input power. We
observe the driven mechanical motion with only 200 nW coupled to the
optical cavity mode. We also investigate the pump power dependence of the
radio-frequency response for both the driving power and the probe power.
Finally, we investigate the dependence of the amplitude of the mechanical
motion on mechanical cavity quality factor.
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Optomechanics, the study of the interaction between light and mechanical motion, has recently
captured the imagination of photonics researchers [1, 2]. For example, researchers have probed
radio frequency (RF) mechanical motion of nanometer sized objects [3–5]. In addition, propos-
als for using the optical gradient force to induce mechanical motion [6–8] with [4, 9–12] and
without [13–15] the use of an optical cavity have been experimentally demonstrated. In fact, at
very high optical and mechanical confinement [3, 4, 16], the amplitude of a mechanical mode
can be greatly increased. In addition, at high input powers, regenerative mechanical oscillations
occur, where the linewidth of the mechanical mode greatly decreases, while the amplitude of
the mechanical oscillation greatly increases.

The experiments above have been done with continuous-wave (CW) excitation of an optical
cavity or modulated excitation of a waveguide. However, the CW excitation mechanism re-
quires the mechanical motion to induce an out-of-phase modulation of the laser input, as only
those forces in quadrature with the mechanical motion perform mechanical work on the struc-
ture. Such effects are generally small, as the thermal motion of the structure only weakly per-
turbs the optical transmission properties of a waveguide or cavity. In the CW case, the amount
of work done on the mechanical cavity is proportional to κ−3, where κ is the optical field decay
rate in the cavity. However, an alternative to increase the transduction between optical power
and mechanical motion is to use modulated pumping [3,13,14]. Such a scheme can do work that
is proportional to κ−1, and greatly reduce the amount of power needed to excite the mechanical
mode (see Appendix). In this work, we demonstrate the use of optical pump modulation in con-
junction with an optical cavity to reduce the amount of power needed to actuate the mechanical
mode. Because of the optical confinement and recirculation of photons, we hope to obtain large
mechanical oscillations without regenerative feedback.

In particular, we choose to work with the double beam one-dimensional photonic crystal (PC)
cavity configuration in silicon. Due to its high optical quality factor (Q > 104), which enhances
the circulating optical power inside the cavity, and low mode volume [∼ (λ/n)3], which also
enhances the local field potential, the PC cavity can greatly enhance the optical gradient force.
The optomechanical coupling rate is defined as:

gOM =
dω
dx

, (1)

where ω is the optical cavity frequency and x is the mechanical displacement of the cavity.
By using cavities where the E-field is increased near material boundaries (such as in a slotted
design [5, 17]), the frequency perturbation with mechanical motion and the optomechanical
coupling can both be tailored.

We fabricate devices on a silicon-on-insulator (SOI) wafer with a 150 nm thick layer of Si
and a 1 μm thick oxide layer, such as the cavity shown in Fig. 1(a). The beam cavities have
lengths of approximately 13 μm, single beam widths of 550 nm, and a middle slot width of
100 nm. We use the design of Ref. [18], where the hole lattice constant is kept constant at
a = 400 nm, and the radii of circular holes are reduced as the distance from the center of the
cavity increases. The larger holes at the center of the cavity create an optical potential well
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that lies in the optical bandgap of the array of outer holes, and such a design allows robust
and high-efficiency coupling to the cavity region via a coupling waveguide. The hole at the
center of the cavity has radius r = 0.28a, and the total cavity length is 34 holes. The cavity is
fabricated with electron-beam lithography, and the pattern is transferred into the silicon layer
by a Cl2:HBr plasma dry etch. The oxide sacrificial layer is then etched away using a buffered
oxide etch (BOE) to obtain the free standing beams. In addition to the beam cavity, we also
attach coupling waveguides on both sides of the cavity, and one of the waveguides is bent 90◦
to configure the device to be probed in a cross-polarization geometry [Fig. 1(a)] [19, 20].

We first simulate the beam cavities in the optical regime using the three dimensional finite-
difference time-domain (3D-FDTD) method, programmed in-house on a graphics card plat-
form. Double beam cavities support bonded (+) and anti-bonded (−) optical super-modes,
formed from the the transverse-electric (TE) modes of the individual beam cavities. In particu-
lar, the Ey field is symmetric or anti-symmetric about the xz-plane going through the slot for the
bonded and anti-bonded modes, respectively. We find that the first (TE1,+) and second (TE2,+)
order bonded modes [see Fig. 1(b) and 1(c)] have theoretical radiation-limited Qs of 30,000 and
1,500, respectively. We observe an enhanced electric field in the air slot region for the bonded
modes because of the continuity conditions for the dominant Ey field at the slot boundaries (i.e.
continuity of the displacement vector ε�E). Thus, we expect that the bonded optical modes have
the highest optomechanical coupling to the in-plane mechanical modes, as the high electric field
concentration in the middle of the cavity enhances the change in the optical cavity frequency
with mechanical deformations. For this reason, we work with the first and second order bonded
optical modes in our experiments.

We experimentally analyze the optical properties of the cavity using the setup in Fig. 2(a).
We pump the cavities with a broadband LED bank, which is coupled into a waveguide using a
dielectric grating coupler. We align the cavity such that the input polarization (|H〉) is aligned to
the input grating polarization while the output polarization (|V 〉) is aligned to the output grating
polarization, obtaining the maximum signal to noise ratio [inset of Fig. 1(a)]. The transmission
characteristics of the cavity are shown in Fig. 2(b), where we are able to observe the first two
orders of the bonded and the anti-bonded modes. We are able to differentiate the bonded modes
from the anti-bonded modes by moving the input beam on the grating coupler to change the
input parity. The first order modes have high Q-factors, and we use a tunable laser to fully char-
acterize the cavity. The laser scan at low input powers (1 nW) shows a Lorentzian spectrum
with Q ≈ 15,000 for the bonded first order mode (TE1,+) (inset Fig. 2(b)). In addition, we ob-
serve that the higher order bonded mode (TE2,+) has Q ≈ 2,000. Both Q values are comparable
to the FDTD simulated values.

We next use the COMSOL finite element solver to find the frequencies of the mechanical
modes, using library parameters for silicon: Young’s modulus of 131 GPa, Poisson’s ratio of
0.27, and a density of 2.33 g/cm3. As described above and in previous work [5], mechanical
modes with in-plane (in this case, referring to the xy plane) motion will have significant op-
tomechanical coupling to the bonded modes. In particular, we find the first order common and
differential modes for in-plane motion [5]. The common and differential modes have the beams
moving in phase and out of phase, primarily in the y-direction, and have displacement profiles
shown in Fig. 1(d) and 1(e), respectively. By simulating the structure observed in the SEM im-
age, we find that these two mechanical modes have mechanical frequencies of 25.72 MHz and
26.74 MHz. We find the optomechanical coupling strength similarly to previous work [4], with
the optomechanical coupling length defined as:

1
LOM

=
1
2

∫
dA

(
dq
dα · n̂

)(
Δε|E|||2 −Δ(ε−1)|D⊥|2

)

∫
dVε|E|2 . (2)
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Fig. 1. (a) Scanning electron microscope (SEM) image of the fabricated cavity. The inset
shows the entire structure with input and output grating couplers. The input polarization
(|H〉) and output polarization (|V 〉) are also shown. The Ey field of the (b) TE1,+ and (c)
TE2,+ optical modes. (d) The first order common in-plane mechanical mode, and (e) the
first order differential in-plane mechanical modes are plotted with the color map assigned
to the in-plane (y) motion.

Here, q is the mechanical displacement, α is the parameterized displacement of the mechanical
mode, n̂ is the surface normal vector, E|| is the electric field parallel to the surface, D⊥ is
displacement field normal to the surface, Δε = ε1 − ε2, and Δ(ε)−1 = ε−1

1 − ε−1
2 , with ε1 being
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Fig. 2. (a) The optical setup used to probe the optomechanical cavity. (b) Spectrum of the
cavity observed in transmission using a broadband LED. The first and second order bonded
(+) and anti-bonded (−) modes are labeled. The inset shows a laser scan of the TE1,+
cavity mode for excitation, with a fit to a Lorentzian lineshape having Q ≈ 15,000.

the dielectric constant of silicon, and ε2 the dielectric constant of the surrounding medium.
Because of the high E-field enhancement in the slot and the differential mechanical resonance
having opposite parity to the Ey field, we observe very strong optomechanical coupling lengths
of LOM = 1.3 μm and 1.8 μm for the coupling between the differential mechanical mode
and the TE1,+ and TE2,+ optical modes, respectively. On the other hand, the coupling between
the TE1,+ and TE2,+ optical modes and the common mechanical mode was calculated to be far
weaker (LOM > 40 μm), because this mechanical mode has the same parity as the optical field.

In order to first characterize the mechanical modes of the system, we pump the second order
bonded mode with a red detuned probe laser, at the cavity half-max, with low pump power (300
μW before the objective) to observe the mechanical modes in air. The transmission signal is
fiber-coupled and sent to a photodiode detector with a transimpedance gain of 2.5× 104 V/A
and a bandwidth of 125 MHz, and the electrical signal is then read by an RF spectrum analyzer.
We estimate coupling efficiencies of 2% to the TE2,+ mode and 0.5% to the TE1,+ mode,
assuming symmetric losses at the input and output gratings, and accounting for the transmission
losses of the coupling waveguides using FDTD simulations. We observe the two mechanical
modes in the RF spectrum, shown in Fig. 3(a), which correspond well to the simulated in-plane
mechanical mode frequencies, and slight discrepancies can be attributed to minor differences
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Fig. 3. The RF spectrum of the mechanical modes under study in (a) ambient atmosphere,
and in (b) vacuum. (c) The time averaged spectrum of the differential mechanical mode
from part (b) is shown (green points), observed as RF sidebands of the laser tuned to TE2,+.
The non-averaged RF spectrum showing the sharp RF response when a modulated laser on
TE1,+ is added is also plotted (blue line). The inset shows the same data zoomed in, to
observe the thermal driven mechanical mode in the background. (d) The integrated power
within the sharp RF response of the laser on TE2,+ [from (c)] with different RF modulation
frequencies of the laser on TE1,+. The two dotted curves correspond to two different aver-
age input powers on the first order mode and fixed input power on the second order mode.
A closer zoom of the mode shown in part (b) of the figure is shown as a reference at the
bottom (blue).

in the clamping conditions of the fabricated device. Because of the low optical Q of the TE2,+

mode and the low optical power buildup, we do not observe the giant optical spring effect seen
in previous works [5, 12], as the mechanical modes do not change frequency with increasing
pump power. We also do not observe significant changes in the optical cavity wavelength with
pump power, suggesting minimal heating. Because of the mechanical damping of the ambient
atmosphere, the mechanical Q-factors of these modes are limited to 50-100. When we test the
same cavity in vacuum, we observe the two modes more clearly, as shown in Fig. 3(b). In
vacuum, the mechanical Qs are as high as 2,500, and are limited by the clamping geometry of
our cavity. We choose to work with the higher frequency mode (the differential mode), as it is
the in-plane mechanical mode with higher optomechanical coupling to the second order optical
mode.

Next, we pump the TE1,+ mode with a second (pump) laser tuned to the optical cavity reso-
nance wavelength and sinusoidally modulated near the RF frequency of the mechanical mode,
while keeping the first CW laser tuned to the half-maximum of TE2,+. We observe the effect of
the second, modulated laser on the RF modulation of the first laser. We scan through the first-
order optical mode with various unmodulated powers, and observe that the first order cavity
resonance is not significantly changed, suggesting that the injected power on the first order op-
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tical mode does not change the temperature of the beam, and thus does not modulate the beam
transmission via the thermo-optic effect. Although both lasers pass through the cavity and are
extracted with the same output grating coupler, the laser on TE1,+ is blocked by a band-pass
filter centered at 1550 nm with a full-width at half-max of 12 nm. The power of the laser on
TE1,+ is modulated by a Mach-Zender interferometer modulator with a bandwidth of 2.5 GHz
and full modulation depth [Fig. 2(a)]. First, we fix the input power on the first-order optical
mode at under 2 μW, and scan the modulation frequency through the mechanical resonance.
When we tune the RF input frequency near the mechanical resonance frequency, we observe
a narrow response in the RF spectrum (of the laser on TE2,+) [Fig. 3(c)]. In addition, as the
RF input frequency is tuned around the mechanical resonance frequency, we observe that the
integrated power within the narrow bandwidth response matches exactly that of the mechanical
cavity resonance [Fig. 3(d)], suggesting that the optical power in the first order mode is modu-
lating the transmission properties of the second order mode through the mechanical resonance.
In addition, we observe the Lorentzian mechanical mode with far better signal to noise, and can
observe the tails of the mechanical mode even when detuned by more than three mechanical
cavity linewidths.

Fig. 4. (a) The integrated intensity in the RF response collected from TE2,+ as a function
of average input power on TE1,+ for different detunings of the RF modulation frequency
from the mechanical resonance at a fixed probe power (2 μW) on TE2,+. (b) The integrated
intensity in the RF response as a function of different probe powers on TE2,+, at two differ-
ent fixed average pump powers on TE1,+. (c) The RF response as a function of input power
on TE1,+ with different probe pump powers on TE2,+. (d) The integrated RF response as
a function of average pump power on TE1,+. The two curves correspond to the response at
ambient atmosphere and in vacuum, both with the same probe intensity on the TE2,+ mode
(2 μW).

We also measure the RF response of the probe laser on TE2,+ as we change the power of the
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modulated pump laser on TE1,+. We first do so with the probe power for TE2,+ fixed at 2 μW
coupled into the cavity, and observe the RF response with varying average power on TE1,+ for
different RF detunings from the mechanical resonance [plotted on a log-log scale in Fig. 4(a)].
Similar to the data in Fig. 3(d), we observe the RF response is decreased as the modulation
frequency is detuned from the mechanical resonance. We observe that the relationship between
the integrated power in the RF response and the input laser power on TE1,+ is quadratic for
all detunings. This is expected, as the RF spectrum analyzer measures the power of the volt-
age signal from the transimpedance amplifier of our detector, and that power has a quadratic
relationship with the amplifier output voltage and thus a quadratic relationship with the output
RF oscillation amplitude. This indicates a linear relationship between displacement and input
pump power on the first order mode.

We also measure the RF power spectrum from TE2,+ when we fix the average laser power
on TE1,+, and increase the power of the pump on the second order mode, as shown in Fig. 4(b).
Again, we observe that the integrated RF response of the driven mechanical mode is quadratic
with the input power, which is expected as the sideband amplitude is linearly related to the
probe power. We also obtain the RF response as a function of the input power on TE1,+ for
various probe powers on TE2,+, shown in Fig. 4(c). The RF response is reduced for lower input
powers, as the sideband powers are proportional to the input probe power. However, we are
able to observe an RF response with only 100 nW coupled to the TE1,+ mode to drive the
mechanical oscillations, and only 200 nW coupled to the TE2,+ mode to sense the mechanical
motion.

Finally, we compare the efficiency of exciting the mechanical mode in vacuum and in ambi-
ent atmosphere. We fix the input power for the probe laser on the TE2,+ mode in both air and
vacuum to 2 μW, and obtain the same output coupled power into our photodetector. We obtain
the power series from the same cavity under both conditions, which is shown in Fig. 4(d). As
expected, the amplitude of the mechanical oscillation is significantly higher in vacuum than
in ambient atmosphere, due to the higher mechanical Q. In fact, the experimentally measured
factor of 20 between the power needed to generate the same RF response in air and vacuum
matches well with the ratio of mechanical Qs for the two conditions (31).

In conclusion, we have demonstrated resonant actuation of a mechanical mode with optical
gradient forces. The input power needed to observe driven motion of the mechanical cavity
is greatly decreased in the presence of an optical cavity, and hundreds of nanowatts can drive
the mechanical motion via a modulated laser coupled to a second cavity mode. This type of
excitation can be used to probe various mechanical modes, as the RF response can be increased
relative to the thermal-driven oscillations. Furthermore, optomechanical cavities can be used
to mix RF signals, with the mechanical resonance enhancing the beat note of two RF signals.
Similarly, the actuation of mechanical motion can also be used for a variety of applications,
such as mechanical motors that do work on nanometer-sized objects.

Appendix: Theory of resonant excitation of mechanical mode with optical gradient force

We would like to solve for the mechanical amplitude as a function of the average input power
of a modulated laser. We follow the derivation given in Ref. [3] and start with the cavity field
equation:

ċ(t) =−
(κ

2
+ iω0

)
c(t)+

iα(t)ω0

LOM
c(t)+

√
κe

2
s(t)e−iωt (3)

where s(t) is the time-varying pump field, ω0 is the cavity frequency, κ is the cavity field decay
rate, κe is the external coupling rate, LOM is the optomechanical coupling, c(t) is the cavity
field, and α(t) is the mechanical mode amplitude. In this case, we are inputing a laser at ω
which is detuned from the optical cavity mode center frequency, and the input is modulated
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periodically with frequency Ω, which is detuned from the mechanical mode center frequency
Ω0.

We assume sinusoidal mechanical motion, such that the beam also moves with modulation
frequency Ω:

α(t) = α0 sin(Ωt) (4)

Note that Ω could be different from Ω0, but since we’re driving the motion, we can assume the
mechanical mode responds with the same frequency. Then the equation becomes:

ċ(t) =−
(κ

2
+ iω0

)
c(t)+

iω0α0 sin(Ωt)
LOM

c(t)+

√
κe

2
s(t)e−iωt (5)

The homogeneous solution is:

ch(t) =C0/u =C0 exp

(

−(
κ
2
+ iω0)t − iω0α0 cos(Ωt)

LOMΩ

)

=C0 exp
(
−(

κ
2
+ iω0)t

)
∑
n
(−i)nJn(β )einΩt (6)

with β = ω0α0/LOMΩ, and the inhomogeneous solution is:

cp(t) =
∫

u

√
κe

2
s(t)e−iωt =

∫
e(

κ
2 +iω0)t ∑

n
inJn(β )einΩt

√
κe

2
s(t)e−iωt (7)

Since our pump is modulated with frequency Ω, we express s(t) = ∑
k

akeikΩt as a Fourier

Series, and find the full inhomogeneous solution:

cp(t) =
∫

e(
κ
2 +iω0)t ∑

n
inJn(β )einΩt

√
κe

2 ∑
k

ake
ikΩt e−iωtdt

= ∑
n,k

inJn(β )ak
κ
2 − iΔ+ i(n+ k)Ω

e(−iΔ+i(n+k)Ω−iω0)t−iβ cos(Ωt) (8)

with Δ = ω −ω0, and neglecting the
√

κe/2 term as normalization:
Because the homogeneous solution levels out with rate κ and this is fast, the particular solu-

tion is the steady state solution. The optical force is:

|cp(t)|2
LOM

=
1

LOM
∑

n,k,m,l

in−mJn(β )Jm(β )aka∗l
(κ

2 − iΔ+ i(n+ k)Ω)(κ
2 + iΔ− i(m+ l)Ω)

ei[(n+k)−(m+l)]Ωt (9)

Taking only the zeroth order in J0(β ), as β � 1 and J1(β )≈ β :

|cp(t)|2
LOM

=
1

LOM
∑
k,l

J2
0 (β )aka∗l

(κ
2 − iΔ+ ikΩ)(κ

2 + iΔ− ilΩ)
ei(k−l)Ωt (10)

Example 1: Cosine input

Let’s input s(t) = s0(1+ cos(Ωt))/2:

s(t) = s0

(
1
2
+

1
4

eiΩt +
1
4

e−iΩt
)

(11)

Thus we have a0 = 1/2, a1 = a−1 = 1/4.
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The normalization for the time dependent portion of the input is A2 ∫ |s(t)|2 =
A2 ∫ (1 + cos(Ωt))2/4 = A2(3π)/(4Ω). We want to keep the average power the same, so
A2(3π)/(4Ω)/T = 1 = A2(3π)/(4Ω)/(2π/Ω), or A =

√
8/3.

The optical force, normalized to the average input power is then:

F
|s0|2κeA2 =

J2
0 (β )
LOM

∑
k,l

aka∗l
(κ

2 − iΔ+ ikΩ)(κ
2 + iΔ− ilΩ)

ei(k−l)Ωt (12)

We will only consider the elements with frequency Ω, in quadrature with the beam motion,
as they will contribute to work getting done on the mechanical mode, so we isolate the cos(Ωt)
terms:

F
|s0|2κeA2 =

J2
0 (β )

4LOM
cos(Ωt)

[
1

κ2

4 +(Δ−Ω)2
+

1
κ2

4 +(Δ+Ω)2

− ΔΩ
(κ2

4 +Δ2)(κ2

4 +(Δ−Ω)2)
+

ΔΩ
(κ2

4 +Δ2)(κ2

4 +(Δ+Ω)2)

]

(13)

We note that in our experiment where Ω � κ , this force is maximized near Δ = 0 (as all
four terms are near Lorentzian functions in terms of Δ), and we consider the force amplitude
(dropping the harmonic variation):

F
|s0|2κeA2 =

J2
0 (β )

2LOM

[
1

κ2

4 +Ω2

]

≈ 1
2LOM

[
1

κ2

4 +Ω2

]

(14)

or with the normalization (such that input power is proportional to |s|2):

F
|s0|2κe

=
8
3

1
2LOM

1
κ2

4 +Ω2
(15)

The equivalent force in the case of pumping with a CW laser is [3, 4]:

F
|s0|2κe

=
β

2LOM

[
2κΔΩ2

(κ2

4 +Δ2)(κ2

4 +(Δ−Ω)2)(κ2

4 +(Δ+Ω)2)

]

(16)

Thus, comparing some sort of AC pump scheme (assuming Δ = 0, to maximize force) to the
DC pumping (assuming Δ= κ/2, where the force is approximately maximized), we see that the
transferred power should be approximately κ2/(βΩ2) more efficient. In addition, if we assume
that our in-coupling efficiency is sufficiently high, then we would have κe ∼ κ . Using the above
two equations, the optical force is ∝ Ω2κ−3 for the CW case, and ∝ κ−1 for the modulated laser
case. For our particular case, the modulated pumping case generates much more force.

Note that our thermal amplitude is
〈
x2
〉
= kbT/me f f Ω2, and |〈x〉| ≈ 10 pm in this case, which

places us in the high β regime (despite the sidebands being unresolved, we have β = 45). We
can calculate the force as a function of β as well, plotted in Fig. 5, using real parameters
of me f f = 2× 10−15 kg, Ω0 = 2π · 22× 106 Hz, Qm = 70, κe = κ/2, LOM =2 μm, optical
wavelength λ = 1500 nm, and optical Q = 2×104. We plot the kernel of the force term using
Eq. 9 for different β , but fixing all other parameters, and plot the results in Fig. 5. We notice that
for our parameters, the force on the beam is relatively unchanged even up to β ≈ 100. Thus, we
use sinusoidal pump to increase the force amplitude.
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Fig. 5. The theoretical average force on the mechanical mode for a fixed average input
power of the modulated input, as a function of β .

Fig. 6. The scaled force for fixed input energy, as a function of the duty cycle of the pump,
and the optical detuning from the cavity.

Example 2: Square wave input

We can also explore input powers that are periodic with frequency Ω, but not sinuisoidal. One
example is a square wave input that is that is zero for some amount of time, and a fixed ampli-

tude A =
√

T
2T1

(chosen to have fixed energy input) for time 2T1. The pulse train is input with

period T = 2π/Ω.

s(t) =

{
A if |t|< T1

0 otherwise
(17)
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The Fourier coefficients of this input are:

ak =

{
2AT1/T if k = 0

A
sin(k 2π

T T1)
kπ otherwise

(18)

By evaluating the sum numerically, we obtain the force as a function of the duty cycle
(2T1/T ) in Fig. 6 for Δ = 0 (other detunings only decreased the force). We observe that the
forcing term that does work is not drastically increased with pulsed (short duty cycle) pumping.

Note that this is assuming that only the zeroth order correction for Jn(β ) is necessary. It is
possible that higher order corrections, like that used in the derivation from [3], may be needed.
We observe that the maximum average force resulting from a square wave input is lower com-
pared with the sinusoidal input of the same average power, which is expected as the power of
the square input is spread into more Fourier components.
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