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Abstract. We study the photon blockade phenomenon in a nanocavity
containing a single four-level quantum emitter. By numerically simulating the
second-order autocorrelation function of the intra-cavity field with realistic
parameters achievable in a state-of-the-art photonic-crystal nanocavity, we show
that significant photon blockade effects appear even outside the strong coupling
regime. We introduce an intuitive picture of the photon blockade that explains
the performance difference between the two-level and the four-level emitter
schemes reported in previous works, as well as why—in contrast to a cavity
containing a two-level atom—signatures of photon blockade appear and should
be experimentally observable outside the strong coupling regime when a four-
level emitter is used. Finally, we show that thanks to the emitter–cavity coupling
achievable in a nanocavity, photon blockade can be realized despite the large
frequency difference between the relevant optical transitions in realistic four-
level emitters, which has so far prevented the experimental realization of this
photon blockade scheme.
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1. Introduction

Photon blockade, in which the transmission of only one photon through a system is possible
while excess photons are absorbed or reflected, is a concept first proposed by Imamoğlu
et al [1] in analogy to the Coulomb blockade effect of electron transport through mesoscopic
devices [2]. In recent years, it has generated a lot of scientific interest as a promising tool
for controllably implementing repulsive interactions between photons, which can be used for
quantum simulations [3–5]. Additionally, photon blockade provides a mechanism for coherent
generation of non-classical light states [6, 7] and for photon routing [8] for applications such
as quantum information processing and quantum cryptography [9]. Numerous platforms have
been proposed for the experimental implementation of photon blockade, such as single quantum
emitters coupled to cavity quantum electrodynamic (cQED) systems [1, 10–14] or nanowire-
guided surface plasmons [15], atoms in Rydberg states [16–18] and atomic ensembles in
photonic waveguides [19]. Besides the recent experiments involving Rydberg atoms [17, 18],
experimental demonstrations of photon blockade have so far been achieved for the most part
with cQED platforms in the regime of strong coupling. These reports include atomic cQED
systems based on a Fabry–Perot cavity [11] and solid-state cQED systems based on single
quantum dots embedded in a photonic-crystal nanocavity [6, 20]. Additionally, cQED systems
achieving photon blockade in the weak coupling regime have been demonstrated with laser-
cooled atoms coupled to a toroidal microcavity [12] and predicted for quantum dots coupled
to either a bimodal nanocavity [13] or a photonic molecule [14, 21]. Unfortunately, platforms
implementing photon blockade have so far proved to be difficult to scale into more complex
systems. Photonic-crystal cavities containing strongly coupled self-assembled quantum dots
have shown a lot of promise in this area [22], but further scalability of this platform remains
challenging due to the non-deterministic spatial location and spectral properties of the self-
assembled quantum dots. On the other hand, cold atoms are by nature identical, which makes
them excellent candidates for quantum emitters in scalable architectures. However, building a
scalable architecture based on the atomic cavity QED systems demonstrated so far is non-trivial.
Coupling of laser-cooled atoms to planar photonic-crystal cavities was first suggested in [23]
and has been since explored in additional proposals, such as [3, 24]. While the experimental
realization of these proposals is challenging, recent developments in the design of planar
photonic-crystal cavities, such as those described in [25–27], have opened up the additional
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prospect of cold atoms interacting with the field maximum of a cavity with a mode volume that
is ordinarily associated exclusively with solid-state cQED.

In the experimental demonstrations reported so far, photon blockade was achieved with a
two-level quantum emitter (a neutral atom or a quantum dot) coupled to the cavity. However,
Imamoğlu et al [1] originally coined the term ‘photon blockade’ in a proposal envisioning a
four-level atom coupled to a Fabry–Perot cavity. In the strong coupling regime, this scheme was
predicted to result in a more robust photon blockade compared to the conventional approach of
a two-level emitter coupled to a single mode of a cavity, with quantum interference suggested
as a possible cause [28]. In the years following the initial proposal, photon blockade based on a
four-level quantum emitter coupled to a cavity has been analyzed extensively [28–33]. However,
these theoretical studies examined the blockade under the conditions observed in atomic cQED
experiments in the regime of strong coupling where the rate of atom–field coupling g far exceeds
the cavity field decay rate κ and, in most cases, only for idealized atoms with the transitions
|g〉 → |e〉 and |s〉 → | f 〉 (figure 1(a)) having the same or nearly the same frequency.

Here, we take a closer look at a four-level quantum emitter coupled to a cavity as shown
in figure 1(a), in the regime of g ≈ κ with the cavity mode volume Vmod ∼ λ3, where λ is the
wavelength of the probe light. This regime is encountered for self-assembled quantum dots
embedded in photonic-crystal microcavities, e.g. [6, 34], and can also be expected for the
first generation of experiments coupling laser-cooled atoms to these cavities. Note that as an
alternative to being trapped at and interacting with the field maximum of an air-mode cavity,
such as those described in [25–27], the atom could also interact with the evanescent field of a
dielectric-mode photonic-crystal cavity while being trapped near the surface of such a cavity,
e.g. using techniques described in [19] or in [35, 36].

As a model system for our numerical simulation, we assume a single quantum emitter
based on a laser-cooled cesium atom interacting with the field of a solid-state nanocavity.
However, we emphasize that such four-level systems could, in principle, also be implemented
in the solid state. As the system is driven by two classical fields, we monitor the second-order
autocorrelation function of the field inside the cavity to study the strength of the photon blockade
achievable in a cavity with mode volume comparable with cubed wavelength of the probe light.

2. The basic model

The Hamiltonian describing the coherent dynamics of a system depicted in figure 1(a) consisting
of a four-level emitter and a cavity is given by [28, 29]

H = Ho + Hint + Hdrive, (1)

where, assuming the rotating wave approximation,

Ho = ωca
†a +ωsg|s〉〈s| +ωeg|e〉〈e| +ω f g| f 〉〈 f |,

Hint = geg(a
†
|g〉〈e| + a|e〉〈g|)+ g f s(a

†
|s〉〈 f | + a| f 〉〈s|)+�e−iωdt

|e〉〈s| +�∗eiωdt
|s〉〈e|,

Hdrive = Ee−iωpta† + E∗eiωpta.

In this description, a is the annihilation operator for the cavity mode, and the classical weak
probe field couples to the cavity at a rate E . Another classical field with polarization orthogonal
to the polarization of the cavity mode provides a coupling between levels |s〉 and |e〉 with Rabi
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Figure 1. (a) Schematic representations of the described photon blockade system
consisting of a four-level quantum emitter coupled to a cavity. The cavity is
driven by a weak classical probe with frequency ωp and driving rate E , while
the transitions from |g〉 to |e〉 and from |s〉 to | f 〉 are coupled to the cavity field.
Levels |s〉 and |e〉 are coupled by a classical field (drive) that does not couple
into the cavity and has a frequency ωd and driving rate �. (b) The bare states of
the overall system with a quantized cavity field and the coupling rates between
them. (c) The ground state, first and second manifold of the dressed states of
the overall system for the idealized atom with1c =1sg =1eg =1 f g = 0 (i.e. a
probe resonant with the cavity, a drive resonant with the |e〉 → |s〉 transition and
a cavity resonant with |g〉 → |e〉 and |s〉 → | f 〉 transitions).

frequency � without directly injecting photons into the cavity mode. The field of the cavity
mode couples levels |g〉 and |e〉 and levels |s〉 and | f 〉 with rates geg and g f s , respectively. In the
above equations, ωc is the frequency of the cavity mode and ωi j are the frequencies of the atomic
transition from level | j〉 to level |i〉 in figure 1(a) and h̄ is set to 1. This analysis is relevant for
any single-mode cavity and does not involve any of the typical characteristics of a nanocavity.
By transforming into a rotating frame, the original Hamiltonian will change into

H= U † HU + i
dU †

dt
U =Ho +Hint +Hdrive, (2)
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with

U = e−i[ωp(a†a+|e〉〈e|)+(ωp−ωd)|s〉〈s|+(2ωp−ωd)| f 〉〈 f |],

Ho = −1ca
†a −1sg|s〉〈s| −1eg|e〉〈e| −1 f g| f 〉〈 f |,

Hint = geg(a
†
|g〉〈e| + a|e〉〈g|)+ g f s(a

†
|s〉〈 f | + a| f 〉〈s|)+�|e〉〈s| +�∗

|s〉〈e|,

Hdrive = Ea† + E∗a,

where1c = ωp −ωc,1sg = ωp −ωsg −ωd,1eg = ωp −ωeg,1 f g = 2ωp −ωd −ω f g. In the limit
of a very weak probe field (E→ 0), the couplings between the bare states of the lowest
manifolds of the overall system are depicted in figure 1(b), where each bare state is described by
the state of the atom and the number of photons present in the cavity mode. The new eigenstates
of the system are sketched in figure 1(c) for the resonant case (1c =1sg =1eg =1 f g = 0). The
number of these dressed states in each manifold provides a basic explanation of the mechanism
behind the photon blockade in this system. Specifically, if the probe is resonant with the bare
cavity, the first photon will be resonant with the |g, 0〉 → |D1, 0〉 transition, while the second
photon will be out of resonance with any transition available out of state |D1, 0〉 to states
|D2, j〉 j∈{±2,±1} of the second manifold [28, 29]. If we take into account the dissipation of the
cavity field to the environment with a decay rate κ and the spontaneous decay rates between
the atomic levels γsg, γeg, γes , γ f g and γ f s , we can describe the dynamics of the system with a
master equation

dρ

dt
= −

i

h̄
[H, ρ] + 2κL[a] + 2

∑
i j

γi jL[σi j ], (3)

where ρ is the system’s density matrix, i j ∈ {sg, eg, es, f g, f s} and σi j = | j〉〈i |. Note that
L[D] is the Lindblad superoperator on operator D used for modeling the incoherent decays and
is given by

L[D] = DρD†
−

1

2
D† Dρ−

1

2
ρD† D. (4)

For simplicity, we will ignore additional decay mechanisms and set γs = γsg, γe = γeg + γes and
γ f = γ f g + γ f s (figure 1(a)). We numerically simulate the dynamics of the system described by
equation (3) using the routines provided in the quantum optics toolbox [37] with up to six-
photon Fock states.

3. The fully resonant case

We begin by looking at the idealized case of a fully resonant system (1c =1sg =1eg =

1 f g = 0). This fully resonant case has been explored in detail in previous works [28, 29,
31–33] with parameters corresponding to atomic cQED experiments in Fabry–Perot cavities
(geg/2π = 120 MHz) [38] in the regime of strong coupling (geg > 5κ). Here, we revisit the
resonant case but perform our numerical simulations with parameters that can be expected for a
system based on a photonic-crystal microcavity, in particular geg/2π = 3 GHz. This is a fairly
conservative value for atom–photon coupling achievable in a photonic-crystal nanocavity, as
values of 2π × 17 GHz have been predicted by Lev et al [24] for closed transitions in cesium.
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We choose the lower value to budget for experimental imperfections, such as the possible use
of cavity designs with larger mode volume, the use of weaker transitions to implement the four-
level emitter in a realistic atom, and the atom not being localized in the cavity field maximum,
perhaps due to the atom’s thermal motion or because the atom is trapped above the surface of
the photonic crystal. For the cavity field decay, we focus on the interval of κ/2π ≈ 1–10 GHz,
corresponding to quality factors of Q ∼ 3 × 104–3 × 105. For the chosen value of geg, this range
includes the transition point geg ≈

κ

2 between the weak and strong atom–field couplings in the
cavity. Values from this range have been observed in solid-state cQED experiments in GaAs
cavities [6, 34], and values of Q even higher have been predicted for air-mode cavities fabricated
in other materials [26]. Particular materials of interest would include GaP [39], SiN, GaN and
SiO2 [40], as these—unlike GaAs—remain transparent for light at wavelengths corresponding
to the commonly used optical transitions of alkali metals.

The energy splittings of the dressed states in the first and second manifold are plotted as a
function of the cavity field decay κ in figure 2(a). These plots were obtained by numerically
evaluating and then plotting the real part of the eigenvalues of the Hamiltonian H from
equation (2) with complex detunings to include the decay mechanisms [31]. For the chosen
parameters, the first manifold is symmetrically split into three levels, with one of the levels
remaining at the energy of the original bare cavity. Qualitatively, the behavior of the first
manifold is relatively insensitive to the value of κ and�. On the other hand, the second manifold
splits into three and eventually into four distinct energy levels with a decreasing value of κ ,
while the value of κ at which these splits occur can be affected by changing the ratio between
geg and�. A detailed calculation of the exact energies of the dressed states can be found in [32].

The effects of this level structure on the photon statistics inside the cavity can be seen in
figure 2(b), where we plot the second-order correlation function g(2)(0) of the field inside the
cavity as a function of the g/κ ratio with the probe field resonant with the bare cavity (1c = 0,
green curve). We see that, in a fashion similar to schemes based on a two-level emitter coupled
to a bimodal cavity [12, 13], the photons are significantly anti-bunched (g(2)(0)≈ 0.6) already
for geg = κ/2, and the value of g(2)(0) for this system remains appreciably below what can be
achieved with a two-level emitter coupled to a single-mode cavity (blue dashed curve) even as
κ increases.

This is particularly interesting when compared to the energy splittings of the dressed states
plotted in figure 2(a), since one would not expect a blockade until the energy degeneracy of
the bare states is lifted by strong enough emitter–field coupling. For comparison, we also plot
the g(2)(0) expected for a two-level atom coupled to a cavity with identical parameters and
probe detuning optimized for this system (blue curve, 1c ≈ 1.5 g). The anti-bunching resulting
from a four-level system is much stronger than that achievable in a two-level system, with the
difference exceeding two orders of magnitude for g/κ > 5 (figure 2(b), inset). This is similar to
predictions made based on parameters achievable in a Fabry–Perrot cavity [28].

In figure 3, we numerically simulate the effects of the system’s key parameters on the
photon statistics at the onset (κ = 2geg), within (κ = geg) and outside of (κ = 3geg) the strongly
coupled regime. Note that we take geg ≈ κ/2 as the onset of the strongly coupled regime, as this
is when the energies of the eigenstates of the first rung of the Jaynes–Cummings ladder for a
system consisting of a two-level emitter coupled to a cavity become non-degenerate [41]. For
a given value of κ , the resulting g(2)(0) is fairly robust against variations in the magnitude of
the coherent field � (figure 3(a)). Similarly, g(2)(0) remains nearly constant for g f s > geg/2
(figure 3(b)). Lastly, the light inside the cavity remains anti-bunched for a broad range of
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Figure 2. (a) Energy splitting of the levels in the first (left) and second (right)
manifold of the dressed states for an idealized, i.e. resonant, system with
geg = g f s = g. Here, �= geg/2 (solid lines) and �= geg (dashed lines). γe/g =

γ f /g = 3 × 10−3, γs/g = 3 × 10−4. (b) Numerical simulation of the second-
order correlation function g(2)(0) of the light transmitted through such ideal
system for geg/2π = 3 GHz and �= geg (solid green curve) compared to that
of a two-level system with the same parameters (dashed blue curve). The inset
plots g(2)(0) on a log scale. For both simulations, E/2π = 0.1 GHz and the decay
rates of the excited states are 2π × 10 MHz.

values of the probe field amplitude (figure 3(c)), before changing into the bunching regime
predicted in [33].

4. The intuitive picture

An intuitive picture of why a significantly better photon blockade is expected with a four-level
emitter and why this blockade also happens outside of the strong coupling regime—i.e. before
the energy degeneracy of the dressed states is lifted as shown in figure 2 (a)—can be provided by
comparing the transmission of the system for the first photon and for the second photon coupled
into the cavity. An estimate of these transmissions can be obtained by taking the non-Hermitian
Hamiltonians characterizing the system’s transition between its ground and first, as well as first
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Figure 3. (a) A numerical simulation of the second-order correlation function
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the amplitude of the classical field � with respect to geg for different values
of κ . Here, geg/2π = 3 GHz, E/2π = 0.1 GHz, g f s = geg (solid curves) and
g f s = geg/2 (dashed curves). (b) Numerically simulated g(2)(0) as a function of
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3 GHz,�= geg. The value of κ in this simulation is 3geg (solid blue curve), 2geg

(dashed green curve) and geg (dash-dot red curve). For comparison, the dotted
black curve plots g(2)(0) as a function of E for photon blockade with a two-
level quantum emitter in a cavity with κ = geg. In all three parts of the figure,
γeg = γes = γ f g = γ f s = 2π × 10 MHz and γsg = 2π × 1 MHz.
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and second manifolds, applying these Hamiltonians to wave functions describing the system
state in these manifolds, and then finding a steady-state solution under the condition of a weak
probe field.

The non-Hermitian Hamiltonian describing the system’s transition between the ground
state and the first manifold can be written as

H̃(1) = −(iκ +1c)a
†a − (iγsg +1sg)|s〉〈s| − (iγeg +1eg)|e〉〈e| + geg(a

†
|g〉〈e| + a|e〉〈g|)

+�|e〉〈s| +�∗
|s〉〈e| + Ea† + E∗a. (5)

If we assume that the system is in a state described by

|ψ (1)
〉 = c(1)0 |g, 0〉 + c(1)1 |g, 1〉 + c(1)2 |e, 0〉 + c(1)3 |s, 0〉, (6)

then the equation we are trying to solve is

i
d

dt
|ψ (1)

〉 = H̃(1)|ψ (1)
〉. (7)

In the limit of E→ 0, we set c(1)0 ≈ 1 and neglect the manifold-connecting effects of the probe,
such as the |g, 1〉 → |g, 2〉, |e, 0〉 → |e, 1〉, |s, 0〉 → |s, 1〉 coupling. We define the transmission
of the first photon though the system as

T (1)
=

〈a†a〉

〈a†a〉
(1)
0

≈
|c(1)1 |

2

|E|2
κ2, (8)

with 〈a†a〉
(1)
0 being the transmission of the first photon though an empty cavity on resonance,

and solve equation (7) in the steady state ( d
dt c

(1)
j = 0) to find the value of c(1)1 .

In a similar fashion, the non-Hermitian Hamiltonian describing the system’s transition
between the first and second manifold can be written as

H̃(2) = H̃(1) − (iγ f s +1 f s)| f 〉〈 f | + g f s(a
†
|s〉〈 f | + a| f 〉〈s|). (9)

We assume that the system is in a state described by

|ψ (2)
〉 = c(2)0 |g, 1〉 + c(2)1 |g, 2〉 + c(2)2 |e, 1〉 + c(2)3 |s, 1〉 + c(2)4 | f, 0〉 (10)

and we are trying to extract the information about the transmission encountered by the second
photon (assuming that the first photon has already coupled into the system) by solving the
equation

i
d

dt
|ψ (2)

〉 = H̃(2)|ψ (2)
〉. (11)

Again, in the limit of E→ 0, we set c(2)0 ≈ 1, neglect the manifold-connecting effects of the
probe, define the transmission of the second photon as

T (2)
=

〈a†a〉

〈a†a〉
(2)
0

≈ 2
|c(2)1 |

2

|E|2
κ2, (12)

with 〈a†a〉
(2)
0 being the transmission of the first photon through an empty cavity on resonance,

and solve equation (11) in the steady state to find the value of c(2)1 . Note that we only included
state |g, 1〉 from the first manifold in equation (10) as the other states will not have a leading-
order effect on the transmission of the second photon.
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(1eg =1 f s =1c) with parameters from figure 2(b). The border of the strong
coupling regime for the |g〉 → |e〉 transition is marked by the vertical dashed
line in each plot.

An analogous approach can be used to estimate the transmission of the first and second
photons through a cavity with a two-level emitter. The result of that calculation is plotted in
figures 4(a) and (c) for comparison with the four-level emitter case. We see that deep in the
strongly coupled regime (κ = geg/3 in figure 5(c)) the best transmission of the first photon
is achieved for |

1c
geg

| = 1, while the transmission of the second photon at this detuning is
significantly suppressed (figure 4 (a)). Unfortunately, with increasing the cavity field decay κ ,
the transmission of the second photon increases for |1c| = geg. One can remain in the photon
blockade regime by adjusting the frequency of the probe—effectively trading off the
transmission of the first photon for reduced transmission of the second photon—until the
transmission peaks of the second photon become too broad and adjusting 1c will not have a
noteworthy effect on the statistics of the transmitted light anymore.

Returning to the ideal four-level emitter, we see that when the probe is resonant with
the bare cavity (1c = 0, figure 4(d)) the transmission of the first photon is maximized, while
at the same time there is a minimum in the transmission of the second photon (figure 4(b)).
This convenient frequency alignment of the maximum transmission for the first photon with a
local minimum in the transmission of the second photon is present even outside the strongly
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Figure 5. (a) Numerical simulation of g(2)(0) as a function of cavity decay rate κ
and probe detuning1eg from the |g〉 → |e〉 transition in a four-level system based
on 133Cs (ωsg −ω f e = 2π × 8.941 GHz). Here, the probe is resonant with the
cavity (1c = 0) and we keep1sg = 0 by settingωd = ωp −ωsg. geg/2π = 3 GHz,
g f s = 1.5geg, �= geg. (b) g(2)(0) as a function of the amplitude of the classical
field � for different values of κ . (c) Effects of the probe field amplitude E on
g(2)(0). In both (b) and (c) the value of 1eg is chosen to minimize g(2)(0). In all
plots, γeg = γes = γ f g = γ f s = 2π × 10 MHz and γsg = 2π × 1 MHz.

coupled regime and while the energies of the dressed states (figure 2(a)) remain degenerate.
This minimum can be thought of as a generalized case of dipole-induced transparency [42] and
a similar minimum in the transmission of the second photon at 1c = 0 can be observed in the
case of a two-level emitter (figure 4(a)). In this case however, this minimum coincides with
a minimum in the transmission of the first photon (figure 4(c)) and is therefore not useful in
implementing photon blockade.

To summarize, the optimal frequency alignment of the maximum transmission for the first
photon with a local minimum in the transmission of the second photon provides an intuitive
explanation for the superior photon blockade performance of the four-level emitter. At the
same time, for both the two-level and the four-level emitter case, the blockade performance
deteriorates with increasing κ mainly because of the broadening of the line widths of the dressed
states, which makes it easier for the second photon to off-resonantly couple into the system.
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5. The off-resonant system

While the fully resonant system is interesting as a model for understanding the mechanisms
behind the photon blockade and for estimating the limits of its behavior, a practical
implementation of this scheme will most likely have to be done with a four-level quantum
emitter in which the frequencies of the |g〉 → |e〉 and |s〉 → | f 〉 transitions differ significantly.
For example, in the alkali atoms used commonly for cQED experiments, such as rubidium or
cesium, the frequency difference between these two transitions is about two orders of magnitude
larger than the atom–field coupling rate g achieved in current experimental atomic cQED
systems [11, 12, 43], which report g/2π ∼10–100 MHz. The only exceptions are disc cavities
reported by Barclay et al [44], who predict g/2π ≈ 0.9 GHz for atoms displaced 100 nm from
the cavity surface. However, coupling of atoms with these cavities has not yet been demonstrated
to the best of our knowledge.

In this section, we therefore base the four-level quantum emitter on the 133Cs atom, in which
ωsg −ω f e ≈ 2π × 8.941 GHz, to study the photon blockade under conditions that are closer
to a realistic system. Of course this representation of the cesium atom, while maintaining the
frequency scales, is still highly simplified. To study this system in detail one needs to implement
a full simulation including the effects of all participating levels of the cesium atom in a fashion
similar to the work presented by Birnbaum et al [45].

Following the approach suggested by Greentree et al [31], we keep the probe resonant
with the cavity, adjust ωd to stay on resonance with the two-photon transition |g〉 → |s〉 (ωd =

ωp −ωsg), and vary the probe detuning 1eg from the |g〉 → |e〉 transition. In this approach,
the probe can couple well into the cavity, while adjusting 1eg optimizes the strength of
the interaction of the cavity photons with the two cavity-coupled transitions |g〉 → |e〉 and
|s〉 → | f 〉. Figure 5(a) then plots g(2)(0) as a function of cavity decay rate κ and probe detuning
1eg from the |g〉 → |e〉 transition for a probe resonant with the cavity (1c = 0). We see that
for each value of κ within the range under consideration, there is a value of 1eg optimizing
the anti-bunching of the light inside the cavity (i.e. g(2)(0) is minimized). Similarly, as in the
case of the ideal atom, changing the value of � affects blockade only slightly (figure 5(b)) and
the light inside the cavity remains anti-bunched for a relatively wide range of intensities of the
probe light (figure 5(c)). Note that both these plots display the minimum value of g(2)(0) for a
given � or E that can be achieved by adjusting 1eg while keeping the probe resonant with the
cavity.

The effects of adjusting 1eg on the photon blockade in an off-resonant system can also be
observed in the intuitive picture described in the previous section. Figure 6 plots the estimated
transmission for the first and second photons through the system numerically simulated in
figure 5(a) for the strong coupling regime (κ = geg/3) and outside of the strong coupling regime
(κ = 2geg). In both cases we see that the transmission of the first photon remains highest at
1c = 0 as the detuning of the probe 1eg from the |g〉 → |e〉 transition is changed (figures 6(c)
and (d)). On the other hand, there is a minimum with respect to 1eg in the transmission of the
second photon when 1c = 0. This minimum is particularly pronounced in the strong coupling
regime (figure 6(a)) and remains present, although in a washed-out form, even as the cavity
decay is increased to κ = 2geg (figure 6(b)). However, in terms of the value of 1eg at which the
minimum happens, the agreement with the numerical simulation in figure 5 is only qualitative,
most likely due to the manifold-connecting effects of the probe field E that are neglected in the
intuitive picture.
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Figure 6. Estimated transmission of the first two photons through the system
numerically simulated in figure 5 as a function of detuning 1c of the probe from
the cavity: (a) and (c) for the case of strong coupling regime between the emitter
and the cavity (κ = geg/3); (b) and (d) for the system being on the verge of the
strong coupling regime (κ = 2geg).

The photon blockade achievable with the cesium-based four-level atom is put into
perspective in figure 7. The solid red curve plots the minimum value of g(2)(0) with respect
to 1eg from figure 5(a) as a function of κ . We see that the blockade is slightly worse than that
achievable with the ideal resonant system (green dashed curve), but it still vastly outperforms
the blockade achievable in an identical cavity with a comparable two-level atom (black dashed
curve). At the same time, the photon bunching predicted by Chang et al [15] and Rice and
Carmichael [46] in the limit of large κ for a resonantly driven system based on a two-level
emitter is absent here and our numerical simulations predict photon bunching only when the
amplitude of the probe field E is sufficiently increased (figure 3(c)). Intuitively, we can try to
explain the absence of photon bunching in a weakly probed system as follows: the non-classical
light inside the cavity is the result of interference between the coherent probe field injected into
the cavity and the field scattered by the emitter [46]. In contrast to a cavity with a two-level
emitter where this is based on a single transition, the scattering involves a three-photon process
in the case of a four-level emitter and, in the limit of large κ , the photons leave the cavity before
the three-photon process takes place.
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Figure 7. Comparison of g(2)(0) achievable with a four-level off-resonant emitter
based on cesium (solid red curve) with a resonant four-level emitter from
figure 2(c) (dashed green), with a comparable two-level emitter (dashed black
curve), and with a two-level atom coupled to a bimodal cavity (solid blue
curve and dashed blue horizontal line). The two dotted horizontal gray lines
correspond to blockade with a four-level off-resonant emitter based on cesium
and parameters demonstrated in current cQED experiments: geg/2π = 120 MHz,
κ/2π = 40 and 4 MHz for the upper and lower gray lines, respectively. The
decay rates of the atomic excited states are equal for all plots.

For comparison, the two gray dotted lines mark the expected blockade with a four-
level cesium-based atom and cavities with mode volume resulting in geg/2π ≈ 100 MHz,
which roughly represent state-of-the-art cavities used in atomic cQED experiments, such
as [38, 47, 48]. The upper line corresponds to κ/2π = 40 MHz achieved by Hood et al [38],
while the lower line represents κ/2π = 4 MHz, which is about five times smaller than the
field decay rate reported by Alton et al [48]. Finally, the solid blue line represents the g(2)(0)
expected with a two-level emitter coupled to two orthogonally polarized modes of a degenerate
bimodal nanocavity as proposed by Majumdar et al [13], with the blue dashed line marking
the lower limit of g(2)(0) in such a system. We see that this proposal provides photon-blockade
performance comparable to the four-level atom scheme analyzed here, but its implementation
with atoms might be difficult due to the selection rules of atomic transitions.

6. Outlook

In conclusion, our results show that, under conditions achievable with currently available
photonic-crystal nanocavities, the originally proposed photon blockade [1] should be
experimentally observable with realistic four-level atoms and even without achieving the strong
coupling regime between the atom and the cavity field. The potential for scalability of this
scheme when implemented with cold atoms and photonic-crystal nanocavities, as well as the
robustness to variations in experimental parameters seen in the presented simulations, make the
‘original’ photon blockade a great candidate for experimental realization of networks of coupled
nonlinear cavities in which the interactions between photons can be engineered [3].
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Additionally, the results presented here might be relevant for the exploration of photon
blockade with four-level solid-state emitters coupled to nanocavities, such as nitrogen–vacancy
centers in diamond [49–51] and charged quantum dots in a strong magnetic field [52].
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