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Single-photon blockade in doubly resonant nanocavities with second-order nonlinearity
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We propose the use of nanostructured photonic nanocavities made of χ (2) nonlinear materials as prospective
passive devices to generate strongly sub-Poissonian light via single-photon blockade of an input coherent field.
The simplest scheme is based on the requirement that the nanocavity be doubly resonant, i.e., possess cavity
modes with good spatial overlap at both the fundamental and second-harmonic frequencies. We discuss the
feasibility of this scheme with state-of-the art nanofabrication technology and the possibility to use it as a passive
single-photon source on demand.
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I. INTRODUCTION

Several prospective applications in quantum information
science employing photonic systems require the ability to
efficiently generate indistinguishable single-photon states,
possibly on-demand.1–3 To this end, significant progress
has been made to achieve single-photon emission from
nonresonantly driven solid-state quantum emitters,4 such as
single quantum dots5 or impurities in solids,6 most often
coupled to photonic nanostructures such as waveguides7–9

or cavities10–15 for increase emission rate and collection ef-
ficiency. Alternatively, since nonresonant pumping results in a
reduced indistinguishability between the sequentially emitted
single photons, the same effect can be obtained by resonant
coherent driving of an emitter-cavity coupled system inducing
conventional single-photon blockade:16 when a coherent light
beam enters a nonlinear system whose effective nonlinear
response is able to produce a shift of the two-photon resonance
that is larger than its linewidth, it generates a stream of single
photons at the output of the device. Such an effect has been
shown both with atomic17 and solid-state cavity quantum
electrodynamics (cQED) systems based on single quantum
dots in photonic resonators.18–20 Several proposals have been
recently put forward to achieve conventional photon blockade
with enhanced resonant nonlinearities in confined photonic
systems.21–25 In addition, a mechanism of unconventional
photon blockade has also been proposed26–28 to relax the
requirements on the system nonlinearity, essentially relying
on destructive quantum interference between coupled modes
that—under suitable pump/detection conditions—could sup-
press two-photon emission from the system. However, no
conclusive experimental demonstration has been shown con-
firming such proposals to date.

Open issues towards a fully integrated quantum photonic
technology include the scalability on one side and the possi-
bility to work at telecommunication wavelengths for a direct
interfacing with long distance communication networks on the
other. In the former case, scalable single-photon sources based
on single quantum emitters, e.g., semiconductor quantum dots,
might be hindered by difficulties in deterministic positioning
and their degree of inhomogeneity. In the second, the develop-
ment of efficient single-photon emitters at telecommunication
wavelengths is still at its beginning.29,30 For these reasons,
a promising alternative would be to directly generate single-

photon outputs from bulk material nonlinearities, such as the
second- or third-order sub-band-gap electronic contributions
to the nonlinear polarization of semiconductors or insulators.31

Nonlinear susceptibilities in ordinary semiconductors em-
ployed in nanophotonics applications, such as silicon (Si),
are too small to produce single-photon nonlinear behavior.
Nevertheless, for centrosymmetric materials with χ (3) �= 0,
it has been recently proposed that the ultimate regime of
single-photon blockade might be within reach for both a
conventional32 and an unconventional33 scheme, thanks to
the unprecedented progress in nanofabrication technology
that allows one to realize midinfrared nanocavities with
subdiffraction-limited mode volumes, Vmode, and ultrahigh
quality factors, Q (see, e.g., Ref. 34).

Here we extend the previous treatment to second-order
nonlinear materials with a susceptibility χ (2) �= 0, which is
much larger than χ (3) and potentially allows one to relax
some of the stringent requirements on cavity Q factors.32

In this case, applications to noncentrosymmetric materials
(such as GaP or GaAs) are implicitly assumed,35 although
strain- or surface-induced χ (2) can be enhanced also in typical
centrosymmetric materials, such as silicon.36 We apply the
quantum master equation for the density matrix of the system,
with fundamental and second-harmonic frequencies assumed
as high-Q and mode-overlapping resonances. Such doubly
resonant systems,37,38 which might be realized either with
two overlapping single-mode cavities or with two different
harmonics of the same cavity [see schematic picture in
Fig. 1(a)], possess an effective photon-photon interaction due
to confinement-enhanced bulk χ (2) nonlinearity. A similar
model has already been discussed in the literature with a
focus on strong coupling between single photons.39,40 We go
beyond previous works by numerically solving the master
equation under coherent resonant driving, focusing on the
statistics of the emitted photons, and we show that this scheme
allows one to obtain conventional single-photon blockade
with state-of-the-art system parameters. We finally explore the
potential use of this passive device as a single-photon source on
demand, where the output of the quantum nonlinear source of
light is solely determined by the resonance wavelength of the
nanocavities, which can be tuned to the telecommunication
band by suitable design and for which the limitations on
scalability are sensitively relaxed.
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FIG. 1. (Color online) (a) Scheme of a doubly resonant nanocav-
ity made of a χ (2) nonlinear material, which is driven by a coherent
field nearly resonant to its fundamental frequency and undergoes
single-photon blockade at the driving laser frequency. (b) The
schematic energy spectrum of the doubly resonant nonlinear cavity
system [see the Hamiltonian in Eq. (3)]. The arrows show the
frequency of the resonantly driving laser.

II. THEORY

We adopt the classical nonlinear optics notation in SI
units.31 For a χ (2) material, the optical response to an applied
electromagnetic field is described by

Di(r,t) = ε0εij (r)Ej (r,t)

+ ε0
[
χ

(2)
ijk(r)Ej (r,t)Ek(r,t) + O(χ (3))

]
, (1)

where the indices run over the three spatial directions. Speci-
fying the nonlinear response to the case of two modes of the
electromagnetic field, and assuming dielectric inhomogeneity
but isotropic response for simplicity [i.e., we will assume
scalar linear and nonlinear susceptibilities, ε(r) and χ (2)(r)],
canonical quantization can be formulated after expressing the
field operators as

Ê(r,t) =
∑
i=a,b

i

√
h̄ωi

2ε0

[
Âi

�αi(r)√
ε(r)

e−iωi t − Â
†
i

�α∗
i (r)√
ε(r)

eiωi t

]

(2)

and B̂(r) = (−i/ω)∇ × Ê(r), where Âa = â (â†) and Âb = b̂

(b̂†) define the destruction (creation) operators of single-
photon quantum in the modes oscillating at ωa and ωb =
2ωa , respectively. In this general formalism, Eq. (2) fully
takes into account the spatial dependence of the dielectric
environment, such as in actual nanostructured semiconductor
cavities.32 For each of the two modes, the three-dimensional
cavity field is normalized according to

∫ |�αi(r)|2d3r = 1
(i = a,b). Thus, the second-quantized system Hamiltonian up
to nonlinear leading orders is derived from the expression
of the time-averaged electromagnetic energy density, Hem =
1
2

∫
[E(r) · D(r) + H(r) · B(r)] d3r , where H = B/μ0, as the

nonlinear expression39,40

Ĥs = h̄ωaâ
†â + h̄ωbb̂

†b̂ + h̄gnl[b̂(â†)2 + b̂†â2], (3)

where the nonlinear interaction coefficient can be expressed in
terms of the classical electric field profiles of the two modes:

h̄gnl = Dε0

(
h̄ωa

2ε0

)√
h̄ωb

2ε0

∫
dr

χ (2)(r)

[ε(r)]3/2
α2

a(r)αb(r). (4)

For simplicity, we are assuming here that the scalar field
profiles are effectively given by the relevant components

of the vectorial fields at fundamental and second-harmonic
frequencies, as coupled by the nonzero elements of the χ

(2)
ijk

tensor. We stress that any quantitative discussion must be
specified to the material under consideration, its crystalline
orientation, and the exact spatial distribution of the field
components for the two cavity modes.40 In Eq. (4) this is
shortly described by the addition of a degeneracy factor (D)
accounting for the number of equivalent terms contracted
in the second-order nonlinear contribution of Eq. (1) (see
Ref. 41 for a detailed analysis). From diagonalization of the
Hamiltonian in Eq. (3), the schematic level diagram for the
first few excitation manifolds can be analytically found as
shown in Fig. 1(b). The preferential basis is given by states
of the form |na,nb〉, where na and nb are the number of
quanta in the cavity modes a and b, respectively. The ground
state is |0,0〉 and the first excited state is |1,0〉. However,
the bare states |2,0〉 and |0,1〉 are degenerate and mix to
give a splitting of 2

√
2gnl between the diagonal eigenstates

in the second excitation manifold [labeled by n, see Fig. 1(b)].
Hence, when this nonlinear system is driven by a laser at
the fundamental cavity resonance [evidenced by the arrow
in Fig. 1(b)], the first photon couples easily to the incoming
radiation while the second one cannot enter the cavity, as there
is no available state. Thus, a single-photon blockade is realized
in close analogy to Kerr-type16,21,32 or cQED17–19 nonlinear
systems. This condition holds as long as the excitation power
remains small, since at larger pumping rate higher excitation
manifolds become occupied, and more photons’ eigenstates
appear at the empty cavity resonance (see, e.g., n = 4 in the
level scheme), effectively destroying the blockade effect. This
qualitative understanding will shortly be confirmed by rigorous
numerical results.

In order to fully describe the physical scheme proposed in
Fig. 1, we assume to pump the fundamental cavity mode with
an input laser of frequency ωL at a rate, �, which is described
by

Ĥ = Ĥs + h̄�(t)e−iωLt â† + h̄�∗(t)eiωLt â. (5)

The system dynamics can be rotated with respect
to the laser frequency ωL by applying the operator
R̂(t) = exp{i(ωLt â†â + 2ωLt b̂†b̂)}, which gives an effective
Hamiltonian Ĥeff = R̂Ĥ R̂† − ih̄R̂(dR̂†/dt), i.e.,

Ĥeff = h̄�aâ
†â + h̄�bb̂

†b̂ + h̄gnl[b̂(â†)2 + b̂†â2]

+ h̄�(t)â† + h̄�∗(t)â. (6)

In the last expression, �a = ωa − ωL and �b = ωb − 2ωL are
the detunings of the fundamental and second-harmonic modes
from the driving laser frequency and its second harmonic,
respectively. Losses can be described within a master equation
treatment for the rotated density matrix, ρ̃ = R̂ρR̂†, in Markov
approximation:

dρ̃

dt
= i

h̄
[ρ̃,Ĥeff] + L(κa,b) + Ld (γa,b), (7)

where L = ∑
i=a,b κi[Âi ρ̃Â

†
i − Â

†
i Âi ρ̃/2 − ρ̃Â

†
i Âi/2] and

Ld = ∑
i=a,b γi[Â

†
i Âi ρ̃Â

†
i Âi − (Â†

i Âi)2ρ̃/2 − ρ̃(Â†
i Âi)2/2]

are the Lindblad operators corresponding to the intrinsic
(κa,b) and pure dephasing (γa,b) loss rates of the two modes,
respectively. In the absence of pure dephasing, the quality
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factors of the two resonant modes are defined as Qa = ωa/κa

and Qb = ωb/κb (i.e., Qb = 2ωa/κb in this case), respectively.
We notice that we did not take into account any nonlinear loss
mechanism, such as two-photon absorption. This is justified
when assuming weak pumping, under which conditions these
effects can safely be neglected.32

The figure of merit quantifying the single-photon sensitivity
for this quantum nonlinear system is the time-ordered second-
order autocorrelation function, defined as42

G
(2)
i (t,t ′) = 〈Â†

i (t)Â
†
i (t

′)Âi(t
′)Âi(t)〉, (8)

with t ′ − t = τ > 0 and i = a,b, or its normalized version

g
(2)
i (t,t ′) = G

(2)
i (t,t ′)

〈Â†
i (t)Âi(t)〉〈Â†

i (t
′)Âi(t ′)〉

. (9)

In the following, we numerically calculate the latter quantities
by assuming realistic parameters for state-of-the-art nanostruc-
tured resonators. Mutual correlations between the fundamental
and second-harmonic photons can also be investigated through
the cross-correlation function

g
(2)
ab (t,t ′) = 〈â†(t)b̂†(t ′)b̂(t ′)â(t)〉

〈â†(t)â(t)〉〈b̂†(t ′)b̂(t ′)〉 . (10)

Under continuous wave (cw) excitation, �(t) = �0, we
will mainly refer to the steady-state zero-time-delay
second-order correlation, i.e., g

(2)
i (0) = 〈Â†2

i Â2
i 〉/〈Â†

i Âi〉2 =
Tr{Â†2

i Â2
i ρ̃ss}/n2

i , where ni = Tr{Â†
i Âi ρ̃ss} and ρ̃ss is the

steady-state solution corresponding to dρ̃/dt = 0. Under
pulsed excitation, e.g., for a train of Gaussian pulses �(t) =
�0exp{−(t − nT0)2/�T 2} (n = 0, ± 1, . . .), where T0 and
�T are the pulse separation and width, respectively, Eq. (8)
needs to be evaluated numerically through1,21

G
(2)
i (t,t ′) = Tr{ÂiUt,t ′ [Âi ρ̃(t)Â†

i ]Â
†
i }, (11)

where Ut,t ′ indicates the evolution from t to t ′ with Eq. (7), for
an initial condition given by the operator Âi ρ̃(t)Â†

i .

III. NONLINEAR COUPLING

For an order of magnitude estimate of the coupling rate
between fundamental and second-harmonic photons, we can
simplify the expression in Eq. (4) as

h̄gnl = ε0

(
h̄ωa

ε0εr

)3/2
χ̄ (2)

√
Vmode

, (12)

where we have assumed ωb = 2ωa , D = 2 (conservative
assumption), and αa(r) = αb(r) = α, i.e., perfect spatial
alignment and overlap between the two harmonic modes
(optimistic assumption). Within our formalism, an effective
mode volume for the scalar field profile is defined in Eq. (12)
as V

−1/2
mode = ∫

[α(r)]3d3r. We point out that such a definition
for the mode volume does not coincide with the usual one
employed in cQED.43 This is a consequence of the effective
mode volume being defined according to the specific nonlinear
process under examination, and different definitions might
lead to slightly different quantitative estimates,34 for which
care must be taken in comparing our values to the ones already
present in the literature. An analytic estimation can be given
for a normalized function describing the field confinement

in a nanostructure cavity. With reference to photonic crystal
resonators at near infrared wavelengths,34 we assume
α(r) = (2/πσxσyd)1/2 exp(−x2/2σ 2

x − y2/2σ 2
y ) cos(π/d)z,

which satisfies the normalization condition above, and
for which one analytically gets V

1/2
mode = √

4πσxσyd/3
as a function of the relevant confinement lengths along
the three spatial directions. In Eq. (4) we have made the
further approximation of considering averaged values for the
dielectric permittivity and the nonlinear susceptibility of the
resonator, which we take to be equal to the bulk values of
the related material henceforth.

In photonic crystal resonators made of high-index non-
centrosymmetric materials, values can be as small as:44,45

σx = σy = d = λ/(2
√

εr ), εr = 12. With these values, and
assuming λ = 1.5 μm, the mode volume estimated from the
expression above is Vmode 
 0.04 μm3. For a typical second-
order susceptibility, χ̄ (2) 
 2 × 10−10 m/V, which holds for
III-V semiconductor compounds (see e.g. Ref. 46), we get a
realistic order of magnitude estimate for the coupling constant
in Eq. (4) as h̄gnl 
 2 μeV, which is a remarkably large value
for a passive nonlinear material. To solve the master equation
for this model system, we have to assume a realistic value
for cavity modes’ loss rates. Neglecting the effects of pure
dephasing for the moment, we take Qa = 2Qb = 7 × 105, and
hence h̄κa = h̄κb/4 
 1 μeV at 1.5 μm. Such values have been
experimentally demonstrated for fundamental photonic crystal
cavity modes at 1.55 μm in state-of-the-art nanostructured
cavities made of III-V materials,47 and we have assumed that
second-harmonic modes will have a Q factor that is at least a
factor of 2 smaller than the fundamental mode.48 It should be
noted that the scheme proposed here relies on the simultaneous
realization of three main conditions for the nanostructured cav-
ity: high Q factor of fundamental mode, small mode volume,
and double resonance. As discussed above, these conditions
have been shown (either experimentally or theoretically) to
occur separately in different types of photonic crystal cavities,
but not simultaneously at the time of writing. However, the
fast pace of advancement of cavity design and nanostructuring
capabilities is likely to produce the required conditions within
the same device in the near future and holds promise for the
present proposal to stimulate further efforts in this direction.

IV. CONTINUOUS WAVE EXCITATION

A. Dependence on cavity parameters

With the parameters estimated above, we have solved the
master equation for the steady-state density matrix and calcu-
lated the second-order correlation functions (both auto- and
cross-correlations between fundamental and second-harmonic
modes) at zero time delay as a function of the pump/cavity
mode detuning, with a cw pump at constant rate �0. The results
are shown in Fig. 2. The average number of photons in the
cavity at frequency ωa follows an almost Lorentzian resonance,
as shown in Fig. 2(a). Correspondingly, a strong antibunching
signal can be detected in the autocorrelation, Fig. 2(b), for
a laser frequency exactly tuned with the fundamental cavity
mode (i.e., g(2)

a (0) = 0.043 in the minimum of the antibunching
dip). Under such conditions, the system acts as an efficient
single-photon blockade device for the laser photons. In the
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FIG. 2. (Color online) Average photon population in the fun-
damental cavity mode at frequency ωa as a function of laser
frequency detuning (a), and corresponding auto- and cross-correlation
functions between modes a and b at zero time delay, respectively (b).
Parameters: gnl/κa = 2, κb = 4κa , and �0/κa = 0.1.

same plot we also show the cross-correlation between first-
and second-harmonic photons, displaying a strongly anticor-
related signal. The latter indicates a suppressed probability
for the simultaneous presence of single photons at ωa and
2ωa , respectively. As a consequence, single-photon emission
can occur alternatively at fundamental or second-harmonic
frequency, although the latter process is far less efficient than
the first (owing to the reduced population at 2ωa). The spectral
broadening of the antibunching dip in Fig. 2(b) evidently
reflects the low-power resonance broadening in Fig. 2(a). The
small bunching that is visible for g(2)

a (0) around �a/κa ∼ ±√
2

derives from the incoming laser resonantly driving the second
excitation manifold, which occurs at ωL 
 ωa ± √

2gnl/2 [see
Fig. 1(b)].

In Fig. 3 we show the tolerance of the antibunching dip
for resonant excitation, i.e., ωL = ωa , on the second-order
mode deviation from the ideal second-harmonic condition, i.e.,
g(2)

a (0) as a function of �b − 2�a = ωb − 2ωa , for fixed ωa .
As it can be seen from the numerical results, the single-photon
blockade of the input laser is preserved up to several linewidths
(e.g., at least ±5κa) from the second-harmonic frequency. This
is promising in view of possible realizations of this proposal,
where exact matching of the frequency ωb with the condition
2ωa is likely to be dependent on fabrication tolerances of
realistic devices (see also discussion in the previous section).

FIG. 3. (Color online) Autocorrelation function at zero time delay
for the fundamental mode with resonant laser, as a function of second-
order mode frequency. Parameters of the calculation: gnl/κa = 2,
κb = 4κa , and �0/κa = 0.1.

So far, we have assumed a pumping rate �0 � κa in
the calculations to ensure remaining in the weakly nonlinear
regime. Hence, from the results in Fig. 2 we can estimate
the maximum single-photon emission rate at the driving laser
frequency (ωL = ωa) as naκa 
 1 GHz, which is comparable
to single-photon sources based, e.g., on single quantum dots5

with a typical lifetime on the order of nanoseconds. The de-
pendence of the average number of photons in the fundamental
mode on the driving strength is shown in Fig. 4(a). At a
small pumping rate, the second-harmonic mode population
is negligibly small as compared to the fundamental mode,
as shown in the inset. This a posteriori justifies neglecting
terms proportional to nb in Eq. (3). On increasing the pump
power, the antibunching dip is suppressed, as explicitly shown
in Fig. 4(b). Such behavior can be attributed to the fact that
with increasing driving the number of excitations in the system
increases. This leads to the appearance of eigenstates at the
empty cavity resonance, as previously discussed on the basis
of the schematic level scheme reported in Fig. 1(b). Such
behavior is similar to the single-photon blockade mechanism
in a cQED system described by the Jaynes-Cummings model,
which behaves classically (i.e., does not emit antibunched
radiation) under strong driving.49 From the results shown in
this figure, it is evident that the device works efficiently in the
single-photon blockade regime only at low pump powers of
about �0/κa � 0.1.

Clearly, the efficiency of such a passive device as a cw
single-photon source is strongly dependent on the effective
value of the nonlinear coupling rate between fundamental
and second-harmonic modes, gnl. Even if we have used a
realistic estimate as given in Sec. III, we show in Fig. 5 how
the antibunching explicitly depends on the ratio gnl/κa . As it
can be seen, g(2)

a → 0 quite rapidly for gnl/κa > 1, similarly
to the Kerr-type nonlinearity.32 From the results in Fig. 5 it
can also be inferred that single-photon blockade is preserved
to a good extent even when decreasing the second-harmonic
Q factor, especially if gnl/κa is kept large enough: even if
the second-harmonic mode has a fivefold lower Q factor
than the fundamental mode (i.e., κb = 10κa), g(2)

a (0) < 0.1
already for gnl/κa 
 3. From a practical point of view, there
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FIG. 4. (Color online) Average photon population in the fun-
damental cavity mode as a function of pumping rate (a), and
corresponding auto- and cross-correlation functions at zero time delay
between modes a and b, respectively (b). The inset of panel (a) shows
the average population of the second-harmonic mode. Parameters:
gnl/κa = 2, κb = 4κa , and �a = �b = 0.

are different possibilities to increase the ratio gnl/κa in realistic
devices. First of all, we have based our analysis on a Q factor
for the fundamental mode Qa < 106, while larger Q factors
have already been shown in the literature at near infrared
wavelengths in the 1.5-μm band (see Ref. 34 for a recent
review). Second, the actual values of gnl depend on a number

FIG. 5. (Color online) Dependence of the antibunching dip for
the fundamental mode on the effective two-photon nonlinearity, for
different second-harmonic mode loss rates. Parameters used for these
calculations are �0/κa = 0.1 and �a = �b = 0.

of details of the specific cavity design or material choice, as
is immediately evident from Eq. (4). In any case, the results
shown here are a good indication that interesting quantum
photonics applications might be in order for passive devices
based on second-order nonlinear materials, provided a doubly
resonant nanocavity can be designed and realized.

B. Effect of pure dephasing

We now analyze the effects of a detrimental source of
decoherence in the system, such as pure dephasing of the
cavity modes. Such an effect is the analog of phonon-assisted
scattering or spectral diffusion for solid-state quantum emit-
ters, which produces a line broadening of the resonance line
shapes, whose effects on single-photon sources based on cQED
systems have been fully characterized (see, e.g., Ref. 4). In the
present context, any source of pure dephasing on the cavity
photons (i.e., acting on coherences rather than populations)
is potentially going to affect the degree of antibunching and
hence the effective usefulness for single-photon generation.
From a physical point of view, three main sources of pure
dephasing can be identified in passive devices: (i) thermal
instabilities (depending on the experimental conditions), (ii)
coupling to mechanical vibrations of the nanocavity (im-
portant, e.g., for suspended resonators such as photonic
crystal membranes), and (iii) stability of the pumping laser
wavelength. Overall, these effects can be described by the
Lindblad termLd (γa,b) in Eq. (7), in which we assume the same
pure dephasing rate γd = γa,b for fundamental and second-
harmonic modes, respectively. Even if in such a general context
it is difficult to attribute specific pure dephasing rates, the latter
depending on the system under investigation, nevertheless
we give here an indication on how the antibunching dip in
the second-order autocorrelation essentially depends on the
magnitude of this source of decoherence.

In Fig. 6 we show the time-dependent second-order autocor-
relation in steady state for the fundamental cavity mode, under
resonant cw excitation at rate �0 = 0.1κa and as a function of
pure dephasing rates, γd (given in units of the population decay
rate at ωa). For these calculations, we have assumed a realistic

FIG. 6. (Color online) Steady state second-order autocorrelation
of the fundamental mode as a function of time delay (τ = t ′ − t , with
t → ∞), for different values of the pure dephasing rate. Parameters:
h̄κa = 1 μeV, gnl/κa = 2, κb = 4κa , �0/κa = 0.1, �a = �b = 0.
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cavity decay rate for the fundamental mode, κa/2π 
 1.5 GHz
(corresponding to Qa 
 7 × 105 at 1.5-μm wavelength). The
behavior of g(2)

a (τ ) closely mimics the typical one from a
cw coherently driven two-level system, with a recovery time
determined by the internal photon lifetime (in this case set
by 2π/κa 
 0.66 ns). As can be seen from the figure, the
antibunching dip is only weakly affected for values of pure
dephasing rates on the order of γd � 0.1κa , where g(2)

a (0) 

0.055 has to be compared to the value of 0.043 of Fig. 4 for
the same pumping rate and γd = 0. On increasing the pure
dephasing rate, the antibunching dip is progressively reduced,
and finally the system behaves as a bunched light source similar
to a thermal radiator. However, it should be emphasized that
we indeed expect typical pure dephasing rates to be γd < 0.1κa

in realistic devices, even at room temperature. Overall, such
results confirm a substantial robustness of the present model
to decoherence of the photon field inside the resonator.

V. PULSED EXCITATION

Single-photon sources on demand require the emission
of single-photon pulses at deterministic times. The most
straightforward way of obtaining such a source employs a
sequence of pulses with spectral pulse-width smaller than the
energy scale set by the single-photon nonlinearity in the system
(i.e., h̄gnl in our case) and temporal pulse separation much
larger than the cavity photon lifetime. Single-photon sources
on demand have been characterized by a master equation
treatment similar to the one employed here for either cQED
schemes1 or Kerr-type nonlinear cavities,21 respectively. Re-
cently, such highly efficient sources have been experimentally
demonstrated by using semiconductor quantum dots emitting
in the 1-μm wavelength range at cryogenic temperature.20

Here we show that the doubly resonant cavity scheme
with second-order nonlinearity is straightforwardly suited for
experiments under pulsed excitation, thereby promising this
system as a potential passive single-photon source on demand
for operation at arbitrary temperatures and wavelengths in
the midinfrared. The behavior of g(2)

a (0) under cw excitation
is a necessary condition for the device to be operated also
in pulsed excitation. We explicitly show in Fig. 7 that by
properly choosing the pulse duration and repetition, according
the the system nonlinearity and lifetime, the time-dependent
second-order correlation shows a pronounced antibunching
behavior for a train of Gaussian pulses. We assume parameters
as in the previous section, with a fundamental cavity photon
lifetime on the order of a nanosecond. The sequence of
Gaussian pulses is shown in Fig. 7(a), with a maximum
coherent pumping rate h̄�0 = 0.1 μeV. Correspondingly, we
show in Fig. 7(b) the numerically calculated G(2)

a (t,t ′), for
t = 2 ns and for positive time delay τ > 0. Notice that we do
not show the normalized g(2)

a (t,t ′), since the cavity population
is depleted after each pulse. However, the information on the
intensity correlation is already contained in the unnormalized
quantity G(2)

a (t,t ′). For a second-order nonlinear coupling
on the order of h̄gnl = 2 μeV, as assumed in the previous
section, we correctly get a suppression of the zero-time-delay
peak in the two-time correlation signal, as expected for a
pulsed single-photon source.1,21 We checked that by setting the
nonlinear coupling gnl = 0, no suppression occurs. The area

gnl=
gnl=

FIG. 7. (Color online) Sequence of Gaussian pulses with �T = 2
ns width and T0 = 20 ns separation (a), and corresponding unnormal-
ized second-order correlation function, calculated from Eq. (11), for
t = 2 ns in the cases with (solid line) and without (dashed) nonlinear
interaction (b). Parameters: h̄κa = 1 μeV, κb = 4κa , �0/κa = 0.1,
and �a = �b = 0.

of the suppressed peak reflects the value of the antibunching
dip as obtained under cw excitation.

VI. CONCLUSIONS

In conclusion, we propose the use of nanostructured
noncentrosymmetric materials with strong χ (2) contribution
to their nonlinear susceptibility for applications in quantum
photonics. The proposal relies on the ability to design and
fabricate doubly resonant photonic nanocavities with small
confinement volume and large quality factor for both funda-
mental and second-harmonic resonances. Although interesting
designs have recently been proposed for doubly resonant
ring resonators50 and it might be worth applying the present
concepts to these systems as well, mode volumes are still
too large in such devices; thus, it seems that most promising
systems to realize our proposal could be photonic crystal
cavities etched in thin nonlinear semiconductor slabs with high
index contrast,34,35,48 where all of the optimal conditions to
realize our proposed model are likely to be simultaneously
achieved in the near future. By assuming state-of-the-art
parameters for III-V semiconductor cavities, we have shown
that strong antibunching can be achieved at the output
of the device for resonant coherent driving with a laser
frequency tuned to the fundamental mode resonance, both
with continuous wave and pulsed excitations, respectively.
Such antibunching is a signature of single-photon emission,
for which we have checked the robustness against the main
sources of decoherence.

The results reported in the present paper show the use-
fulness of passive nanophotonic devices as single-photon
sources on demand, with potential impact in telecom-range
and room-temperature quantum photonic circuits2 where the
lack of suitable integrated quantum emitters might hinder
large-scale diffusion in the long term. We thus believe it

235319-6
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is worth realizing doubly resonant passive nanocavities as
a promising alternative to ongoing efforts in developing
integrated single-photon sources by using different types of
quantum emitters, such as single molecules, defects in solids,
or quantum dots.
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(2012).
50Z.-F. Bi, A. W. Rodriguez, H. Hashemi, D. Duchesne, M. Loncar,

K.-M. Wang, and S. G. Johnson, Opt. Express 20, 7526 (2012).

235319-7

http://dx.doi.org/10.1103/PhysRevA.69.032305
http://dx.doi.org/10.1103/PhysRevA.69.032305
http://dx.doi.org/10.1038/nphoton.2009.229
http://dx.doi.org/10.1038/nphoton.2009.229
http://dx.doi.org/10.1103/PhysRevB.81.245419
http://dx.doi.org/10.1038/nphoton.2007.46
http://dx.doi.org/10.1103/PhysRevLett.85.290
http://dx.doi.org/10.1103/PhysRevLett.85.290
http://dx.doi.org/10.1038/nphoton.2009.287
http://dx.doi.org/10.1038/nphoton.2009.287
http://dx.doi.org/10.1063/1.3672214
http://dx.doi.org/10.1063/1.3672214
http://dx.doi.org/10.1103/PhysRevX.2.011014
http://dx.doi.org/10.1126/science.290.5500.2282
http://dx.doi.org/10.1103/PhysRevLett.89.233602
http://dx.doi.org/10.1038/nature01086
http://dx.doi.org/10.1103/PhysRevLett.95.013904
http://dx.doi.org/10.1103/PhysRevLett.95.013904
http://dx.doi.org/10.1038/nature05586
http://dx.doi.org/10.1038/nature05586
http://dx.doi.org/10.1038/nphoton.2011.52
http://dx.doi.org/10.1103/PhysRevA.61.011801
http://dx.doi.org/10.1038/nature03804
http://dx.doi.org/10.1126/science.1152261
http://dx.doi.org/10.1038/nphys1078
http://dx.doi.org/10.1038/nphoton.2011.321
http://dx.doi.org/10.1038/nnano.2012.262
http://dx.doi.org/10.1038/nnano.2012.262
http://dx.doi.org/10.1103/PhysRevB.73.193306
http://dx.doi.org/10.1103/PhysRevB.73.193306
http://dx.doi.org/10.1038/nphys708
http://dx.doi.org/10.1038/nphys708
http://dx.doi.org/10.1038/nphys1223
http://dx.doi.org/10.1209/0295-5075/90/37001
http://dx.doi.org/10.1209/0295-5075/90/37001
http://dx.doi.org/10.1088/1367-2630/15/2/025014
http://dx.doi.org/10.1088/1367-2630/15/2/025014
http://dx.doi.org/10.1103/PhysRevLett.104.183601
http://dx.doi.org/10.1103/PhysRevA.83.021802
http://dx.doi.org/10.1103/PhysRevA.83.021802
http://dx.doi.org/10.1103/PhysRevLett.108.183601
http://dx.doi.org/10.1103/PhysRevLett.108.183601
http://dx.doi.org/10.1063/1.2190466
http://dx.doi.org/10.1038/srep00321
http://dx.doi.org/10.1103/PhysRevB.85.033303
http://dx.doi.org/10.1088/1367-2630/15/2/025012
http://dx.doi.org/10.1088/1367-2630/15/2/025012
http://dx.doi.org/10.1088/0034-4885/73/9/096501
http://dx.doi.org/10.1364/OE.19.022198
http://dx.doi.org/10.1364/OE.19.022198
http://dx.doi.org/10.1063/1.3607281
http://dx.doi.org/10.1364/OE.18.026613
http://dx.doi.org/10.1364/OE.18.026613
http://dx.doi.org/10.1063/1.1786657
http://dx.doi.org/10.1103/PhysRevE.73.016613
http://dx.doi.org/10.1364/OE.15.007303
http://dx.doi.org/10.1103/PhysRevB.60.4907
http://dx.doi.org/10.1103/PhysRevLett.96.057405
http://dx.doi.org/10.1103/PhysRevLett.96.057405
http://dx.doi.org/10.1103/PhysRevB.35.1129
http://dx.doi.org/10.1103/PhysRevB.35.1129
http://dx.doi.org/10.1103/PhysRevB.60.13276
http://dx.doi.org/10.1103/PhysRevB.60.13276
http://dx.doi.org/10.1063/1.3582035
http://dx.doi.org/10.1063/1.3582035
http://dx.doi.org/10.1103/PhysRevLett.95.143901
http://dx.doi.org/10.1103/PhysRevLett.95.143901
http://dx.doi.org/10.1103/PhysRevLett.90.036801
http://dx.doi.org/10.1103/PhysRevLett.90.036801
http://dx.doi.org/10.1364/OL.33.001908
http://dx.doi.org/10.1364/OL.33.001908
http://dx.doi.org/10.1103/PhysRevB.73.235114
http://dx.doi.org/10.1103/PhysRevA.85.041801
http://dx.doi.org/10.1103/PhysRevA.85.041801
http://dx.doi.org/10.1364/OE.20.007526



