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We propose an implementation of a source of strongly sub-Poissonian light in a system consisting of a

quantum dot coupled to both modes of a lossy bimodal optical cavity. When one mode of the cavity is

resonantly driven with coherent light, the system will act as an efficient single photon filter, and the

transmitted light will have a strongly sub-Poissonian character. In addition to numerical simulations

demonstrating this effect, we present a physical explanation of the underlying mechanism. In particular,

we show that the effect results from an interference between the coherent light transmitted through the

resonant cavity and the super-Poissonian light generated by photon-induced tunneling. Peculiarly, this

effect vanishes in the absence of the cavity loss.
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An optical cavity containing a strongly coupled quantum
emitter, such as an atom or a quantum dot (QD), constitutes
a system in which an optical nonlinearity is present even at
a single photon level [1–3]. The eigenenergies of this
coupled system form an anharmonic ladder, which gives
rise to phenomena like photon blockade and photon-
induced tunneling [4–7]. In photon blockade, coupling of
a single photon to the system hinders the coupling of the
subsequent photons, whereas in photon-induced tunneling,
coupling of initial photons favors the coupling of the
subsequent photons. In an experiment, the signature of
blockade or tunneling is observed by measuring the

second-order autocorrelation function gð2Þð0Þ; a value of

gð2Þð0Þ< 1 (> 1) demonstrates the sub-Poissonian (super-
Poissonian) photon statistics of the transmitted light and
indicates that the system is in a photon blockade (tunnel-
ing) regime.

Photon blockade can be used to route photons in a quan-
tum photonic circuit [8], or to mimic interacting bosons for
efficient simulation of complex quantum phase transitions
[9–11]. While most of the recent experiments focus on
photon blockadewith a single two-level system and a single
cavity [4–7], there have been several theoretical proposals
predicting similar effects and sub-Poissonian light genera-
tion in systems based on multilevel atoms in a cavity [12]
and on a quantum dot interacting with a pair of proximity-
coupled nanocavities [13,14] or wave-guides [15].

The cavity quantum electrodynamic (cQED) systems in
which photon blockade can be studied depend on three
important rate quantities: the coherent coupling strength
between the atomic system and the cavity g, the cavity field
decay rate � and the dipole decay rate �. In all aforemen-
tioned proposals, the photon blockade occurs when the
coherent interaction strength is larger than the loss rates
in the system. In fact, the limit of g=�, g=� ! 1 results in
vanishing overlap between the energy eigenstates of the
anharmonic ladder, which in turn leads to a perfect photon

blockade (gð2Þð0Þ ¼ 0). In a solid-state optical system

based on a photonic-crystal cavity with an embedded
single QD as the two-level system, the condition g � �
is generally easy to satisfy. However, achieving the condi-
tion of g � �, which requires a high quality (Q) factor of
the cavity, is generally difficult due to fabrication chal-
lenges. As a result, even the best photon blockade with a
QD embedded in a solid-state nanocavity reported so far in

the literature gives a second-order correlation gð2Þð0Þ �
0:75 [7]. Though a proposal based on a QD interacting
with a photonic molecule (a pair of coupled cavities)
predicts efficient blockade even for cavities with easily
achievable Q factors [13,14], the suggested scheme re-
quires both individual addressability of each cavity and a
large coupling strength between the two cavities. Since
nanophotonic cavities are generally coupled via spatial
proximity, large coupling poses a major challenge for
achieving individual addressability [16].
In this paper, we propose a different approach for gen-

eration of strongly antibunched light which employs a
bimodal cavity with both of its modes coupled to a QD.
We will show that in this approach the cavity loss is
actually crucial for achieving the effect, as opposed to
photon blockade systems introduced so far in which the
cavity loss plays a negative role. Specifically, the effect
does not occur in our system in the limit of g=� ! 0,
which is intuitively expected, as this is the case of an
infinitely large loss (and this is what also happens for the
cases of blockade with a single QD strongly coupled to a
single cavity and in previous photonic molecule pro-
posals). However, for g=� ! 1 (zero loss, i.e., an infinite
cavityQ-factor), the proposed system fails to generate sub-
Poissonian light, in contrast with the single cavity with a
strongly coupled QD, where perfect photon blockade oc-
curs in such a limit. Here, we provide an intuitive expla-
nation of how a balance between the coherent QD-cavity
interaction and the decay of the cavity field is required to
achieve a strong sub-Poissonian output photon stream.
Second-order autocorrelation of such a bimodal cavity
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was analyzed before experimentally [17] and theoretically
[18] in the context of semiconductor microdisk cavities,
where the right and left hand circularly polarized cavity
modes are degenerate. However, the unusual dependence
of the sub-Poissonian light on g=� ratio was not reported
before. Additionally, we analyze the nanophotonic plat-
form for possible experimental realization of this effect.
We note that the role of cavity loss in generation of
entanglement between two cavity modes was previously
studied in Ref. [19].

In a conventional strongly coupled QD-cavity system, a
QD interacts with a single cavity mode [Fig. 1(a)]. In a
bimodal cavity, the QD is coupled to both cavity modes
(with photon annihilation operators a and b) although there
is no direct coupling between the two modes [Fig. 1(b)].
Assuming the cavity modes are degenerate and the QD is
resonant with both of them, the HamiltonianH describing
such a system (in a frame rotating at the frequency of the
laser driving the cavity mode a) is:

H ¼ �ðayaþ �y�þ bybÞ þ gaðay�þ a�yÞ
þ gbðby�þ b�yÞ þ E

ffiffiffiffi

�
p ðaþ ayÞ: (1)

Here, � is the QD lowering operator, ga and gb are the
coupling strengths between the QD and the two cavity
modes,� is the cavity field decay rate, E denotes strength
of the driving laser and � is the detuning between the
driving laser and the cavity modes. The loss in the system
is incorporated in the usual way by using the Master
equation [16]. The numerical calculations are performed
using the integration routines provided in the quantum
optics toolbox [20]. Figure 1(c) shows the transmitted light
collected from the driven cavity (�hayai) for both single
(dashed line) and double mode cavities (solid line). The
cavity output is qualitatively similar for both cases, and
the split resonance is caused by coupling of the QD to the
cavity and creation of polaritons. For the single mode
cavity, the two polaritons are separated by 2g, while for

the bimodal cavity, the separation is 2
ffiffiffi

2
p

g due to the
presence of two modes, as will be explained later.
Increased cavity transmission at � ¼ 0 for the bimodal
case is also due to the presence of two modes. However, the
second-order autocorrelation functions of the cavity trans-

mission gð2Þð0Þ ¼ hayayaai
hayai2 are strikingly different for two

cases [Fig. 1(d)]. For the single mode cavity, one observes

photon blockade (gð2Þð0Þ< 1), when the driving laser is
tuned close to the frequency of the polariton, � � �1:5g.
For the bimodal cavity, sub-Poissonian statistics are ob-
served at three different detunings: � � �1:8g and � ¼
0. A slight deviation from the polariton frequencies (for

single mode cavity � � �g and for bimodal cavity � �
� ffiffiffi

2
p

g) is due to the losses in the system. The weak sub-

Poissonian light (g2ð0Þ � 0:95) at � � � ffiffiffi

2
p

g is compa-
rable to that observed in the single mode cavity, and it arises
from the same mechanism. At � ¼ 0, the sub-Poissonian
character is much stronger (g2ð0Þ � 0:4), and it is this
regime in the bimodal cavity that we will focus on. Note
that the sub-Poissonian character observed at this frequency
of the driving laser cannot be explained by the anharmonic
nature of the ladder alone. In fact, in the energy structure of
the coupled QD and the bimodal cavity, we always find an
available state at this empty cavity frequency [16].
To further illustrate the difference between the photon

blockade in a single mode cavity and the effect we observe
in a bimodal cavity, we perform numerical simulations for
a range of coupling strengths g and cavity field decay rates
� in both systems. Using these simulations, we obtained

the values of gð2Þð0Þ for the transmitted light for a single
mode cavity (laser tuned to one of the polaritons, i.e., � ¼
g) and for a double mode cavity (the laser tuned to the bare
cavity frequency, i.e., � ¼ 0). Figures 2(a) and 2(b) shows

gð2Þð0Þ as a function of g and �. For a single mode cavity,
blockade appears at high g and low �, as generally
expected for any photon blockade system [Fig. 2(a)].

FIG. 1 (color online). (a) Schematic of a QD coupled to a
single mode cavity, with a coupling strength of g. (b) Schematic
of a bimodal cavity with a coupled QD. The two cavity modes
are not directly coupled to each other. However, both of them are
coupled to the QD with interaction strengths ga and gb. (c) The
cavity output �hayai as a function of the driving laser detuning
� from the empty cavity resonance both for a single mode cavity
(dashed line) and the bimodal cavity (solid line). The split
resonance observed is due to the coupled QD. (d) Second-order
autocorrelation gð2Þð0Þ function calculated for the collected out-
put of the driven mode for a single mode (thick dashed line) and
bimodal cavity (solid line). The green dashed line marks the
Poissonian statistics of a coherent state (always 1). For single
mode cavities at ���1:5g and for bimodal cavities at ��
�1:8g, we observe a weakly sub-Poissonian light (g2ð0Þ slightly
less than 1). However, for bimodal cavity a strong sub-
Poissonian light is generated when � ¼ 0. For bimodal cavities
we assumed identical interaction strengths and cavity decay rates
for two modes. Parameters used for the simulations: QD-cavity
interaction strength g=2� ¼ ga=2� ¼ gb=2� ¼ 10 GHz, cav-
ity field decay rate �=2� ¼ 20 GHz, dipole decay rate �=2� ¼
1 GHz, and driving laser strength E

ffiffiffiffi

�
p

=2� ¼ 1 GHz.
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However, for a bimodal cavity (when excited at � ¼ 0),
the effect disappears and the transmitted photon output
becomes Poissonian whenever g and � are disproportion-
ate (i.e., g=� ! 0 or g=� ! 1). A strongly sub-
Poissonian output can be observed from a bimodal cavity
when g and � are comparable. Figure 2(c) plots the g2ð0Þ as
a function of the ratio �=g for different g demonstrating
sub-Poissonian light in the bimodal cavity even in the weak
coupling regime. We stress again that this result cannot be
explained just by the anharmonicity of the ladder of energy
eigenstates. We note that for the bimodal cavity when

pumped at � � ffiffiffi

2
p

g, the light is sub-Poissonian only at
high g and low �, consistent with conventional photon
blockade.

To understand the origin of the strongly sub-Poissonian
light transmitted through a bimodal cavity, we transform
the system’s Hamiltonian to a different cavity mode basis:

� ¼ ðaþ bÞ= ffiffiffi

2
p

and � ¼ ða� bÞ= ffiffiffi

2
p

. The Hamiltonian

H can be written (assuming ga ¼ gb ¼ g) as H ¼
H 1 þH 2 with

H 1 ¼ �ð�y�þ �y�Þ þ ffiffiffi

2
p

gð�y�þ ��yÞ

þ E
ffiffiffiffi

�
p
ffiffiffi

2
p ð�þ �yÞ (2)

describing a driven single mode cavity coupled to a QD

with a strength of
ffiffiffi

2
p

g and

H 2 ¼ ��y�þ E
ffiffiffiffi

�
p
ffiffiffi

2
p ð�þ �yÞ (3)

describing a driven empty cavity mode. Both cavities

are driven at the bare cavity resonances. We monitor a ¼
ð�þ �Þ= ffiffiffi

2
p

which, in the transformed basis, is equivalent
to the output from two cavities: one with a coupled QD (�)
and the other empty (�), combined on a beam splitter.
Figure 3(a) shows the transmitted cavity output for three
different cases: cavity � alone, cavity � alone and the
combined output. Note the polariton peaks in the combined

output at� ffiffiffi

2
p

g and increased transmission of light at zero
detuning due to the empty cavity.
The cavity transmission with a strongly coupled QD

driven at the cavity resonance is super-Poissonian due to
photon-induced tunneling [6] [� in Fig. 3(b)]. In this
regime, the coupling of initial photons into the system is
inhibited by the absence of the dressed states at this fre-
quency. However, once the initial photon is coupled, the
probability of coupling subsequent photons is increased as
higher order manifolds in the ladder of dressed states are
reached via multiphoton processes. In our system, as a
result of broadening of the dressed states, at the empty
cavity resonance one can excite multiple higher order
manifolds. Hence, the light transmitted through a cavity
in the photon-induced tunneling regime is a superposition
of Fock states with small photon numbers and a strong
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FIG. 2 (color online). (a) Second-order autocorrelation gð2Þð0Þ
for the conventional photon blockade in a single mode cavity as a
function of the QD-cavity coupling strength g and cavity field
decay rate �. gð2Þð0Þ decreases with increasing value of g=�, as
expected, as a result of reduced overlap of energy eigenstates in
the anharmonic ladder. (b) gð2Þð0Þ for the bimodal cavity as a
function of g and �. g2ð0Þ is calculated for the output of mode a,
i.e., for photons leaking from the mode a. We observe that
gð2Þð0Þ ! 1 (Poissonian output) when g=� ! 0 or 1.
However, we can observe very low gð2Þð0Þ even when the QD
is not strongly coupled to the two cavity modes (g < �=2).
(c) g2ð0Þ as a function of the ratio �=g for different g showing
sub-Poissonian light generation in the bimodal cavity even in the
weak coupling regime. For all the simulations E=2� ¼ 0:1 GHz
such that the QD is not saturated.

FIG. 3 (color online). (a) Cavity output for an empty cavity �
and another cavity � coupled to a QD with a coupling strength of
ffiffiffi

2
p

g. The combined output of these two replicates the output
from the bimodal cavity a (Fig. 1). (b) gð2Þð0Þ for these three
cases: the empty cavity � gives Poissonian light; the cavity �
with coupled QD gives super-Poissonian light due to photo-
induced tunneling [6] (the black curve goes to infinity at � ¼
0); the combined output a provides sub-Poissonian light.
Parameters for the simulation: g=2� ¼ 10 GHz, �=2� ¼
20 GHz, �=2� ¼ 1 GHz and E

ffiffiffiffi

�
p

=2� ¼ 1 GHz.
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presence of the vacuum state. As a result, the photon
statistics of this light is super-Poissonian [6]. On the other
hand, the empty cavity transmission (� in Fig. 3(b)] is a
purely Poissonian coherent state. When the outputs of

these two cavities are combined on a beam-splitter (a ¼
ð�þ �Þ= ffiffiffi

2
p

in Fig. 3(b)], the output shows sub-Poissonian
character. We note that similar interference effect was
previously reported in [17]. However, for efficient genera-
tion of sub-Poissonian light, one needs comparable trans-
mitted light intensity from both cavities, which calls for a
balance between the cavity loss � and the QD-cavity non-
linear interaction strength g. Using this effective model,

the somewhat unusual dependence of gð2Þð0Þ on g and �
can now be explained. When g=� ! 0, the coupled system
is linear and both of the equivalent cavities transmit just
coherent light. On the other hand, although photon-induced
tunneling does happen in the limit g=� ! 1, the amount
of super-Poissonian light transmitted through the cavity �
is so small (as the dressed states separation in the ladder is
so large that it is impossible to couple photons at energies
between them) that its interference with the coherent
light from the empty cavity � will still result in light
with Poissonian statistics. To generate enough super-
Poissonian light via photon-induced tunneling in cavity
(�) which can affect the coherent light from the empty
cavity (�), comparable values of dot-cavity interaction
strength g and cavity decay rate � are required.

Finally, we discuss the nanophotonic platform that can
be used to implement our proposal. A photonic-crystal
cavity with C6 symmetry can support two degenerate
cavity modes with orthogonal polarizations [21]. The two
cavity modes are thus not coupled to each other (since their
polarizations are orthogonal), and can be easily addressed
independently by a laser. At the same time, a QD can be
coupled to both cavity modes, if it is placed spatially at the
center of the cavity with its dipole moment aligned at a 45�
angle to the polarizations of both modes.

Two potential issues can arise from fabrication imper-
fections in a realistic system: a frequency difference �ab

between the two cavity modes and a mismatch between the
QD coupling strengths ga and gb to each mode. These
issues can be seen in the preliminary experimental results
shown in the Supplement [16]. To examine the robustness
of the proposed scheme against these imperfections, we

plot their effects on gð2Þð0Þ in Fig. 4. Figure 4(a) shows the

numerically calculated gð2Þð0Þ as a function of the detuning
between the two cavity modes �ab. We observe that the
sub-Poissonian character of the transmitted light vanishes
when �ab � �. This negative effect of frequency differ-
ence of the two modes can be balanced simply by increas-
ing the cavity decay rate �, i.e., by lowering the cavity
quality factor. This results in an increase of the frequency
overlap between the two modes and makes the degeneracy
of the two modes more robust. The effects of this improve-
ment outweigh the penalty incurred on the system’s per-

formance by reducing the g=� ratio, and we can see in
Fig. 4(a) that a strong sub-Poissonian output can still be
produced. Additionally, we analyze the performance of the
system as a function of the ratio gb=ga, where gb and ga
are the QD coupling strengths with the cavity modes a and
b assuming mode a is coherently driven. It can be shown
from the effective model that at a large gb=ga ratio, we
essentially drive only the empty cavity � and the photon
statistics is Poissonian (see Supplemental Material [16]).
Similarly, at a small gb=ga ratio, we drive only the cavity�
with coupled QD and the photon statistics is super-
Poissonian due to photo-induced tunneling [16]. When
gb=ga � 1, we meet the optimal condition of interference
between the coherent state and super-Poissonian state to
generate light with sub-Poissonian photon statistics. This

can be seen in the numerical simulations of gð2Þð0Þ as a
function of gb=ga in Fig. 4(b). The system performance is
insensitive to the actual value of ga for a relatively large
range, as long as the ratio gb=ga is maintained. At the same
time, we can see that the lowest value of g2ð0Þ is achieved
for the ratio of coupling strengths gb=ga � 0:8. We note
that this ratio depends on the driving strength of the laser,
and can be related to the requirement for similar trans-
mission from the cavities � and �.
In summary, we introduced a scheme for generation of

sub-Poissonian light in a cQED system with a bimodal
cavity and provided a theoretical and numerical analysis of
its performance. For similar system parameters, the bimo-
dal cavity can provide a much better sub-Poissonian char-

acter of the transmitted photon stream (gð2Þð0Þ � 0:1)

compared to a single mode cavity [gð2Þð0Þ � 0:9]. We

FIG. 4 (color online). (a) Second-order autocorrelation gð2Þð0Þ
of the cavity transmission, as a function of the relative detuning
�ab between two cavity modes for different cavity field
decay rates � ¼ �a ¼ �b. The quality of the sub-Poissonian
photon stream in the transmitted output degrades with
increasing detuning, which can be compensated by increasing
�, thereby maintaining low gð2Þð0Þ. For these simulations we
assume ga=2� ¼ gb=2� ¼ 10 GHz and E=2� ¼ 0:1 GHz.
(b) Second-order autocorrelation gð2Þð0Þ of the cavity transmis-
sion as a function of the ratio gb=ga for different ga. The
transmitted light behaves like a coherent state at high gb=ga
ratio and like a super-Poissonian state generated via photoin-
duced tunneling at low gb=ga ratio. In between, when gb=ga �
1, we observe strong sub-Poissonian output. Here, �=2� ¼
20 GHz for both cavity modes.
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also introduce an equivalent model which explains the
effect as an interference between a coherent state and a
super-Poissonian state generated by photon-induced tun-
neling, and a balance between the nonlinearity and the loss
of the system is required to observe it. Moreover, the effect
disappears in the absence of the cavity loss (g=� ! 1).
This interplay between loss and nonlinearity has great
potential to be exploited for the design of realistic coupled
cavity arrays for efficient quantum simulation.
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