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Phonon mediated off-resonant quantum dot–cavity coupling under resonant excitation of the
quantum dot
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We propose a model for phonon-mediated off-resonant quantum dot–cavity coupling and use it to successfully
explain recently observed resonant quantum dot spectroscopic results. We explicitly incorporate the effect of
phonons, which explains the role of temperature in the coupling mechanism and predicts an asymmetry in the
coupling depending on whether the quantum dot is red or blue detuned with respect to the cavity. We show that
the off-resonant coupling is enhanced by the cavity; in the absence of such enhancement, the coupling strength
is greatly diminished at higher dot-cavity detunings. These results demonstrate that phonon-mediated processes
effectively extend the detuning range in which off-resonant QD-cavity coupling may occur beyond that given by
pure dephasing processes.
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I. INTRODUCTION

One of the interesting recent developments in cavity
quantum electrodynamics (CQED) experiments with quantum
dots (QDs) coupled to semiconductor microcavities is the
observation of off-resonant dot-cavity coupling. This un-
usual phenomenon has been observed both in photolumines-
cence studies1–5 and under resonant excitation of the QD.6,7

The coupling observed via photoluminescence is attributed
to several phenomena including pure QD dephasing,8 the
electron-phonon interactions,9–12 multiexciton complexes,13

and charges in the vicinity of the QD.14 We note that the effect
of electron-phonon interactions in cavity QED studies with
QDs has been previously studied,15,16 though not in the context
of off-resonant coupling. To isolate the role of phonons in
off-resonant QD-cavity coupling, studies employing resonant
excitation of the QD are preferable as they avoid possible
complications arising from multiexcitonic complexes and
nearby charges generated in above band pumping. Though
recent experiments were able to affirm the role of phonons
in off-resonant coupling by performing photoluminescence
measurements, these measurements required site-controlled
QDs.17 Resonant excitation of a QD coupled to an off-resonant
cavity has been recently used to perform QD spectroscopy,
enabling the observation of power broadening of the QD
linewidth and saturation of the cavity emission.18,19 However,
there is presently no theoretical model accounting for off-
resonant dot-cavity coupling for the case of resonantly excited
QDs. Although off-resonant coupling can be modeled by
introducing a phenomenologically incoherent cavity pump-
ing mechanism,20 such treatment masks the actual physical
phenomenon responsible for the coupling. Without an explicit
coherent driving term in the system Hamiltonian, the resonant
QD spectroscopy results cannot be explained.

In this paper, we theoretically and experimentally
investigate off-resonant dot-cavity coupling under resonant
excitation of the QD. We first theoretically model the coupling
via pure QD dephasing. Then, we propose a model where
the phonon-mediated coupling is enhanced by the cavity.
We compare these two models and find that they predict
qualitatively similar signatures in resonant QD spectroscopic

studies, such as power broadening and QD saturation.18,19

However, in the second model, the coupling is maintained
even at very large QD-cavity detunings (∼3 meV). Simulated
QD spectroscopy results also exhibit an inherent asymmetry
between phonon emission and absorption rate, depending on
whether the QD is red or blue detuned from the cavity. To
contrast the two theoretical models, we experimentally study
several QDs that are off-resonantly coupled to a photonic
crystal cavity mode. Analysis of the detuning dependence
of the off-resonant coupling shows that pure QD dephasing
is incapable of describing experimentally observed results.
The phonon-mediated model, on the other hand, provides an
intuitive picture that accurately accounts for the persistence
of off-resonant coupling at large QD-cavity detunings.

II. THEORY WITH PURE QD DEPHASING

The dynamics of a coherently driven QD (with ground state
|g〉 and excited state |e〉) coupled to an off-resonant cavity
mode is governed by the Hamiltonian H (in a frame rotating
at the driving laser frequency):

H = �ωca
†a + �ωaσ

†σ + ig(a†σ − aσ †) + �(σ + σ †),

(1)

where a and σ are the annihilation and lowering operators
for the cavity mode and the QD, respectively; �ωc = ωc − ωl

and �ωa = ωa − ωl are the cavity and dot detunings from
the driving laser, respectively; � = ωa − ωc is the QD-cavity
detuning; � is the Rabi frequency of the driving laser and is
proportional to the laser field amplitude; and g is the coherent
interaction strength between the QD and the cavity.

In this coupled system, there are two independent mech-
anisms for energy dissipation: cavity decay and QD dipole
decay. The system losses can be modeled by the Liouvillian,
and the master equation describing the dynamics of the lossy
system is given by

dρ

dt
= −i[H,ρ] + 2κL[a] + 2γL[σ ], (2)

where ρ is the density matrix of the coupled QD-cavity system,
and 2γ and 2κ are the QD spontaneous emission rate and
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the cavity population decay rate, respectively. We neglect
any nonradiative decay of the QD exciton. L[D] = DρD† −
1
2D†Dρ − 1

2ρD†D is the Lindblad operator corresponding
to a collapse operator D. In addition, phonons in the solid
state system destroy the coherence of the exciton. This is
generally modeled by adding an additional incoherent decay
term 2γdL[σ †σ ] to the master equation, where 2γd is the pure
dephasing rate of the QD. This term destroys the polarization
of the QD without affecting the population of the QD.
The dissipation of the QD polarization and population (σz =
[σ †,σ ]) is described by the mean-field equations:

d〈σ 〉
dt

= −(γ + γd )〈σ 〉, (3)

d〈σz〉
dt

= −2γ (1 + 〈σz〉). (4)

The linewidth of the QD, at the zero excitation power limit,
is 2(γ + γd ). However, in this model, the effect of phonons
is embedded in the phenomenological pure dephasing rate γd ,
which affects only the QD and does not include any cavity
effects.

III. THEORY WITH CAVITY-ENHANCED PHONON
PROCESS

We now propose a different model for off-resonant dot-
cavity coupling, where the phonon-mediated coupling strength
is affected by both the cavity and the QD. The effect of phonons
can be modeled by adding two additional incoherent decay
terms to the master equation. For a blue-detuned QD [Fig. 1(a)]
the master equation has the form

dρ

dt
= −i[H,ρ] + 2κL[a] + 2γL[σ ]

+ 2γr n̄L(σ †a) + 2γr (n̄ + 1)L(σa†), (5)

where 2γr is the effective decay rate of the QD exciton states
via the emission of a phonon and a photon at the off-resonant
cavity frequency. n̄(�,T ) = (eh̄�/kBT − 1)−1 is the average
number of phonons at the dot-cavity detuning �, present
in the system at thermal equilibrium with the reservoir at a
temperature T (see the appendices). The analysis for a QD
red detuned from the cavity [Fig. 1(b)] can be carried out in
a similar manner by replacing the final two terms of Eq. (5)
with 2γr n̄L(σa†) and 2γr (n̄ + 1)L(σ †a).

The decay term σ †a denotes the annihilation of a cavity
photon and excitation of the QD, while the term σa† denotes
the creation of a cavity photon and collapse of the QD to its
ground state. Each process is then accompanied by the creation
(or annihilation) of phonons to compensate for the QD-cavity
frequency difference. Only the second process is important
for observing cavity emission under resonant excitation of
the dot. We also note that the observation of QD emission
under resonant excitation of the cavity6 can be modeled in
the same way by changing the coherent driving term from
�(σ + σ †) to �(a + a†). In this case, the collapse operator σ †a
is important. Similar decay channels have been proposed to
model cavity assisted atomic decay.21 We refer to this process
as a cavity-enhanced phonon process.
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FIG. 1. (Color online) (a), (b) Energy levels of the coupled QD-
cavity system where the QD is blue (a) and red (b) detuned from the
cavity. A laser drives the quantum dot [transition between ground state
(1) and excited state (2)] resonantly. The excited state (2) can decay
via two paths: The first is by direct decay back to the ground state (1)
via the spontaneous emission; the second is by indirect decay via the
emission [Fig. 1(a)] or absorption [Fig. 1(b)] of a phonon [transition
(2) to (3)] and subsequent emission of a photon at the cavity frequency
[transition (3) to (1)]. (c), (d) Emission S(ω) as a function of frequency
ω for a resonantly driven QD, which is blue (c) and red (d) detuned
from the cavity, where ωl is the laser frequency. Three different cases
are considered: without any dephasing, with pure dephasing, and with
a cavity-enhanced phonon process. We observe the Mollow triplet at
the QD frequency in all three cases. The insets of (c) and (d) show
an enlarged view of the emission at the cavity frequency. For the
simulation we assume g/2π = κ/2π = 20 GHz, γ /2π = 1 GHz,
�/2π = 6 GHz, and QD-cavity detuning � = ±6κ .

We first consider the case where the QD is blue detuned
from the cavity [Fig. 1(a)]. The qualitative nature of the
dissipation of the QD polarization and population can be
determined from the mean-field equations (in the limit n̄ = 0):

d〈σ 〉
dt

= −γ 〈σ 〉 − γr (1 + 〈a†a〉)〈σ 〉, (6)

d〈σz〉
dt

= −2γ (1 + 〈σz〉) − 2γr (1 + 〈a†a〉)(1 + 〈σz〉).
(7)

We notice that unlike the pure dephasing case, both the
QD population and polarization are affected by the cavity-
enhanced phonon process. The linewidth of the QD in the zero
excitation power limit is given by 2[γ + γr (1 + 〈a†a〉)], which
differs qualitatively from the pure QD dephasing model owing
to the fact that the presence of cavity photons affects the QD
linewidth.

IV. SIMULATION RESULT: POWER BROADENING AND
EMISSION SATURATION

The resonance fluorescence of the coupled system is given
by the power spectral density (PSD). As we collect the
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fluorescence primarily from the cavity, the PSD is calculated
as the Fourier transform of the cavity field autocorrelation
S(ω) = ∫ ∞

−∞〈a†(τ )a(0)〉e−iωτ dτ . To determine the two time
correlation functions and, subsequently, the PSD, we use the
quantum regression theorem.22

We simulate the coupled system using numerical integration
routines provided in the quantum optics toolbox23 with realis-
tic system parameters κ/2π = g/2π = 20 GHz and γ /2π =
1 GHz. Off-resonant coupling is observed for both strongly
(g > κ/2) and weakly (g < κ/2) coupled QDs. Figure 1(c)
shows numerically calculated resonance fluorescence spectra
obtained from the cavity under resonant excitation of a blue
detuned QD for three different cases: no dephasing, pure QD
dephasing, and no dephasing with a cavity-enhanced phonon
process at a bath temperature of 4 K. We first note that no
emission is observed at the cavity frequency in the absence of
pure dephasing or cavity-enhanced phonon process [see inset
of Fig. 1(c)]. Though the pure dephasing (γd/2π = 0.5 GHz)
and the cavity-enhanced phonon process (γr/2π = 0.5 GHz)
cases both show off-resonant cavity emission, the latter shows
enhanced cavity emission. In all three cases, we also observe
the Mollow triplet at the QD frequency, as expected from QD
resonance fluorescence.24 The Mollow sideband closer to the
cavity is enhanced causing an asymmetric triplet. Figure 1(d)
shows similar spectra for a red-detuned QD. Our model
predicts that emission at the cavity frequency is considerably
smaller for a red-detuned QD than for a blue-detuned one
at finite temperatures, as the process for a red-detuned dot
relies on a less-likely phonon absorption and not on phonon
emission.

In experimental studies, QD saturation and power broad-
ening have been observed with increasing resonant laser
excitation power.18,19 These phenomena are also observed in
our theoretical simulations for both models of off-resonant
coupling. We first treat the case of a blue-detuned QD.
Figure 2(a) plots the cavity fluorescence as a function of the
laser Rabi frequency �. For both models, the cavity fluores-
cence I follows a saturation curve I = Isat P̃ /(1 + P̃ ), where
P̃ ∝ �2 and Isat is the saturated cavity emission intensity.
Figure 2(b) shows the QD linewidth as a function of the laser
Rabi frequency �. The power broadened QD linewidth �ω is
fitted with the model �ω = �ω0

√
1 + P̃ , where �ω0 is the in-

trinsic linewidth of the QD and P̃ is obtained from the fit to the
saturation of the cavity emission. The theoretical model does
not reproduce the additional power-independent broadening
of the QD,18 which results from QD spectral diffusion.25

However, the results are dramatically different for a red-
detuned QD, as shown in Fig. 3. This is expected because at any
temperature, the rates of absorption and emission of phonons
are different. We observe that the difference in linewidths of
the red- and blue-detuned QD (measured via the off-resonant
cavity) is larger, when the QD is weakly driven and hence is
not power broadened.18 This difference reaches the maximum
value of 2γr at high temperatures [Fig. 3(a)]. Figure 3(b)
shows the ratio of the cavity emission as a function of the bath
temperature for different driving laser Rabi frequencies �. The
difference in cavity emission between a red- and blue-detuned
QD is maximum at lower bath temperature and is almost zero
at higher temperature.
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FIG. 2. (Color online) Theoretical resonance fluorescence I

collected from the cavity and QD linewidth for a blue-detuned QD
(� > 0): (a) Normalized cavity fluorescence as a function of the
Rabi frequency � of the laser for two models. Saturation of the
cavity emission is observed. (b) Power broadened QD linewidth
(read through the cavity, as in Ref. 18) vs laser Rabi frequency � for
QD-cavity detuning �/2π = 6 GHz. (c) Dependence of the saturated
cavity emission Isat on the dot-cavity detuning �. (d) Dependence of
the intrinsic QD linewidth �ω0 on dot-cavity detuning �. �ω0/2π

approaches 2(γ + γd )/2π or 2(γ + γr )/2π (both chosen to be
4 GHz) with large �. (Parameters used for all the simulations
are κ/2π = g/2π = 20 GHz and γ /2π = 1 GHz.)

In addition, we investigate the dependence of the saturation
emission intensity Isat on the QD-cavity detuning � for a
blue-detuned dot [Fig. 2(c)]. We note that throughout the paper
we fit experimentally measurable quantities with an empirical
exponential model �−α to estimate how rapidly the dot-cavity
coupling decays as a function of the QD-cavity detuning �.
This type of model is not valid when the QD is very close to
the cavity. However, in experiments this small detuning regime
cannot be probed due to large laser background. Also, for very
small detunings it cannot be assumed that the laser excites
the dot without exciting the cavity, thus complicating the
interpretation of experimental results. Results show that Isat

falls as 1/�2 with the detuning � when the dot-cavity coupling
is modeled as a pure dephasing process. However, when the
coupling is modeled as a cavity-enhanced phonon process,
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FIG. 3. (Color online) (a) The difference in QD linewidths
measured via collected emission through the off-resonant cavity for
a blue (�ω+) and a red (�ω−) detuned QD for different values
of the excitation laser Rabi frequency � as a function of the bath
temperature T . (b) Ratio of the cavity intensity for an off-resonant
QD blue (I+) and red (I−) detuned from the cavity as a function of
the bath temperature T . For all the simulations, the absolute value of
the QD-cavity detuning is kept at 10κ .
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the saturation intensity exhibits a much weaker dependence
on detuning � (estimated to be ∼1/�0.25 for the employed
simulation parameters). This signifies an important difference
between the two models: The cavity-enhanced phonon process
permits observation of off-resonant coupling for a much larger
detuning range than that associated with pure dephasing. We
also analyze the intrinsic QD linewidth �ω0 [obtained from
Fig. 2(b) at � = 0 limit] as a function of the QD-cavity
detuning � for two different models [Fig. 2(d)]. We observe
that at large detuning, �ω0 approaches the unperturbed QD
linewidth 2(γ + γd ) and 2(γ + γr ) for the pure dephasing
and cavity-enhanced phonon models, respectively. The weak
dependence of the intrinsic QD linewidths on the dot-cavity
detuning shows that the off-resonant cavity does not perturb
the QD significantly.

V. EXPERIMENTAL DATA

We now compare our theoretical model with experimental
studies of the cavity emission as a function of QD-cavity
detuning � for several QDs. Measurements are obtained using
the same experimental setup and approach as in Ref. 18.
Here, the QD linewidth and off-resonant cavity emission are
measured as a function of detuning �, where this detuning is
varied by varying the sample temperature. Figure 4 shows the
saturated cavity intensity as a function of the detuning � for
different QDs. The excitation laser power is the same for all the
detunings for a particular dot. For large detunings (�/κ > 10),
we do not expect significant cavity emission for the case of pure
dephasing (which is described by �−2 dependence), but expect
significant emission by the cavity-enhanced phonon model
[see Fig. 2(c)]. In our experiment, we observe significant cavity
emission for such highly detuned QDs; the cavity emission is
fitted well with �−α with α < 2. This weaker dependence on
detuning is thus more consistent with the description of the
off-resonant coupling as a cavity-enhanced phonon process.
On the other hand, for QDs with smaller detunings, α is very
close to 2 and the role of pure dephasing is evident. We do
not observe a significant change in the QD linewidth over the
detuning range, due both to the weaker dependence of the
linewidth on � as predicted by the theory [Fig. 2(d)] and to
additional broadening caused by spectral diffusion.
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FIG. 4. (Color online) Experimentally observed off-resonant
cavity emission as a function of the detuning � between the resonantly
driven QD and the cavity. Data are fitted with a model �−α . Extracted
values of α for the different curves are shown.

VI. CONCLUSION

In conclusion, we have compared theoretical treatments
of the off-resonant coupling between a resonantly driven QD
and a cavity as a pure dephasing process and as a cavity-
enhanced phonon process. Comparison with experimental re-
sults strongly suggests the role of the cavity-enhanced phonon
process in mediating the off-resonant coupling, particularly in
the case of large QD-cavity detuning.

While our paper was under review, we became aware of
related work26 analyzing the Mollow triplet in the presence of
the off-resonant cavity.
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APPENDIX A: DERIVATION OF DECAY TERMS

We use the level diagram as shown in Fig. 1(a) to model the
effect of phonons explicitly. The Hamiltonian of the system is
given by

H = H0 + HI , (A1)

where

H0 = ω1|1〉〈1| + ω2|2〉〈2| + ω3|3〉〈3| + ωa†a +
∑

j

νj b
†
j bj

(A2)

and

HI = gv(a|3〉〈1| + a†|1〉〈3|) +
∑

j

g
j

23(b†j |3〉〈2| + bj |2〉〈3|),

(A3)

where |i〉〈i| is the population operator for the ith level, a is the
annihilation operator for the cavity mode, and bj is the annihi-
lation operator for a phonon in the j th mode. ωi , ω, and νj are
the frequencies of the ith energy level, the cavity resonance,
and a phonon in the j th mode. gv signifies the interaction
strength between the cavity and the virtual transition, and g

j

23
is the interaction strength between the QD exciton and the
j th mode phonon. We note that this interaction Hamiltonian
is valid only for the level structure as in Fig. 1(a), where the
cavity is at lower energy than the QD. For the situation in
Fig. 1(b) (where the cavity is of higher energy compared to
the QD), the interaction Hamiltonian HI is given by

HI = gv(a|3〉〈1| + a†|1〉〈3|) +
∑

j

g
j

23(bj |3〉〈2| + b
†
j |2〉〈3|).

(A4)

In the following derivation, we will use the situation shown in
Fig. 1(a).

If we define the QD resonance frequency as ωa , then ωa =
ω2 − ω1, and the cavity frequency is given by ωc = ω3 − ω1.
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Then the QD-cavity detuning is given by � = ω2 − ω3.
Defining σij = |i〉〈j |, we can write

˙σ13 = −i[σ13,H0 + HI ]

= −iωcσ13 − igva(σ11 − σ33) − i
∑

j

g
j

23b
†
j σ12.

Similarly,

˙σ23 = −i[σ23,H0 + HI ]

= i�σ23 − igvaσ21 − i
∑

j

g
j

23b
†
j (σ22 − σ33).

Separating the slow and the fast components of the operators,
we can write

σ13 = σ̃13e
−iωct , (A5)

σ23 = σ̃23e
−iωj t , (A6)

σ12 = σ̃12e
−i(ωc−ωj )t , (A7)

a = ãe−iωct , (A8)

b
†
j = b̃

†
j e

−iωj t . (A9)

Hence the equations governing the dynamics of the system can
be written as

˙̃σ 13 = −igvã(σ̃11 − σ̃33) − i
∑

j

g
j

23b̃
†
j σ̃12 (A10)

and

˙̃σ 23 = i(� − ωj )σ̃23 − igvãσ̃21 − i
∑

j

g
j

23b̃
†
j (σ̃22 − σ̃33).

(A11)

As level 3 is a virtual level, it is never populated. Hence by
adiabatic elimination, using ˙̃σ 13 = ˙̃σ 23 = 0, we obtain

σ̃23 = gvãσ̃21 + ∑
j g

j

23b̃
†
j (σ̃22 − σ̃33)

� − ωj

(A12)

and

σ̃12 = −gvã(σ̃11 − σ̃33)∑
j g

j

23b̃
†
j

. (A13)

Using these values, we can find the interaction Hamiltonian.
The first term gv(aσ31 + a†σ13) denotes the coherent dynam-
ics. The second term, which signifies the effect of phonons,
can be written as [using Eqs. (A12) and (A13)]

Hph =
∑

j

g
j

23(b†j σ32 + bjσ23) (A14)

=
∑

j

g
j

23(b̃†j σ̃32 + b̃j σ̃23) (A15)

=
∑

j

g
j

23gv

� − ωj

(b̃†j ã
†σ̃12 + b̃j ãσ̃21) (A16)

+
∑

j

(gj

23)2

� − ωj

(σ̃22 − σ̃33)(b̃†j b̃
†
j + b̃j b̃j ). (A17)

The second term involves two-phonon processes which are
less likely. If we neglect them, we can model the effect of
phonons as follows:

Hph =
∑

j

g
j

23gv

� − ωj

(b̃†j ã
†σ̃12 + b̃j ãσ̃21). (A18)

We can write this Hamiltonian as

Hph = (ã†σ̃12̃
† + ãσ̃21̃), (A19)

where the operator ̃ can be written as

̃ =
∑

j

g
j

23gv

� − ωj

b̃j (A20)

and

 =
∑

j

g
j

23gv

� − ωj

bj e
−iωj t . (A21)

To obtain the familiar Lindblad term, we take the partial trace
of the correlation between the reservoir operators over the
reservoir variables. The correlation is given by

〈†(t ′)(t)〉R =
∑

j

∣∣∣∣∣
g

j

23gv

� − ωj

∣∣∣∣∣
2

e−iωj (t−t ′)〈b†j bj 〉R. (A22)

As the operators bj are bosonic and the system is in thermal
equilibrium with a bath at temperature T , using the relation

〈b†j bj 〉R = n̄(ωj ,T ) = 1

eh̄ωj /kBT − 1
, (A23)

we find

〈†(t ′)(t)〉R =
∑

j

∣∣∣∣∣
g

j

23gv

� − ωj

∣∣∣∣∣
2

e−iωj (t−t ′)n̄(ωj ,T ) (A24)

and

〈(t ′)†(t)〉R =
∑

j

∣∣∣∣∣
g

j

23gv

� − ωj

∣∣∣∣∣
2

e−iωj (t−t ′)[n̄(ωj ,T ) + 1].

(A25)

From the correlation, we find that the phonons with frequency
� (corresponding to the difference between levels |2〉 and
|3〉, i.e., QD-cavity mode detuning) have the maximum con-
tribution in the interaction Hamiltonian. In the Born-Markov
approximation, we can model the electron-phonon interaction
[for Fig. 1(a)] as an incoherent decay process by adding
two extra terms to the master equation: 2γr n̄L(σ †a) and
2γr (n̄ + 1)L(σa†), γr being the effective decay rate of the
excited QD state and given by

γr = 1

2

∑
j

∣∣∣∣∣
g

j

23gv

� − ωj

∣∣∣∣∣
2

. (A26)

For the situation shown in Fig. 1(b), the decay terms are
given by 2γr n̄L(σa†) and 2γr (n̄ + 1)L(σ †a). We note that the
different rates in both cases are due to an inherent asymmetry
between the absorption and emission rates of the phonons.
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APPENDIX B: DERIVATION OF THE MEAN-FIELD
EQUATIONS

To find the mean-field equations for an operator A from the
master equation, we used the following relation:

d〈A〉
dt

= d

dt
tr[Aρ] = tr

[
A

dρ

dt

]
. (B1)

For the cavity-enhanced phonon process, the mean-field
equations for a nonzero n̄ is given by (when the QD is blue
detuned from the cavity)

d〈σ 〉
dt

= −γ 〈σ 〉 − γr (1 + 〈a†a〉)〈σ 〉 + γr n̄(1 + 2〈a†a〉)〈σ 〉,
d〈σz〉
dt

= −2γ (1 + 〈σz〉) − 2γr (1 + n̄)(1 + 〈a†a〉)(1 + 〈σz〉).
When the QD is red detuned from the cavity, the mean-field

equations are

d〈σ 〉
dt

= −γ 〈σ 〉 − γr〈a†a〉〈σ 〉 + γr n̄(1 − 2〈a†a〉)〈σ 〉,
d〈σz〉
dt

= −2γ (1 + 〈σz〉) − 2γr n̄(1 + 〈a†a〉)(1 + 〈σz〉).
We note that while deriving these mean-field equations, we

assume that the cavity and QD operators are uncorrelated and
write

〈a†aσ 〉 = 〈a†a〉〈σ 〉. (B2)

Under weak driving, the approximation holds very well.
However, in full quantum optical simulations, we do not make
any assumptions.

APPENDIX C: SIMULATION RESULTS FOR TWO
DIFFERENT MODELS: DEPHASING AND
CAVITY-ENHANCED PHONON PROCESS

We present more simulation results on the off-resonant
cavity emission and QD linewidth by two different models:
pure QD dephasing and cavity-enhanced phonon process. We
observe that the cavity emission I increases almost linearly
with the pure QD dephasing rate γd [Fig. 5(a)], but exhibits
a nonlinear dependence on the rate γr when the coupling is
enhanced by the presence of the cavity. Figure 5(b) shows
loge(I ) as a function of the cavity decay rate κ , for a fixed
detuning of �/2π = 200 GHz. For both models, the emission
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FIG. 5. Resonance fluorescence I collected from the cavity for
a blue-detuned QD (� > 0). (a) loge(I ) as a function of the rates
γd and γr (for two models, respectively). �/κ = 10. (b) loge(I ) as
a function of the cavity linewidth κ , when the dot-cavity detuning
� = 10κ . (c) QD linewidth as a function of the rates γd and γr for pure
dephasing and the cavity-enhanced phonon process, respectively. In
both cases, �/2π = 1 GHz and � = 12κ . The solid black line shows
the theoretical estimates of the QD linewidth when the laser excitation
power is very low and the QD is not significantly perturbed by the
cavity. (Parameters used for all the simulations are g/2π = κ/2π =
20 GHz and γ /2π = 1 GHz.)

falls off as 1/κ2, signifying that the off-resonant coupling
does not depend on the overlap between the QD and the cavity
spectra.

We now measure the QD linewidth �ω monitoring the
cavity emission, while scanning the laser wavelength across
the QD resonance, similar to the experiments in Ref. 18. We
observe that at very low excitation power �/2π = 1 GHz and
large QD-cavity detuning �/2π = 12κ , the linewidths of the
QD are very close to the theoretical linewidth in the absence
of the cavity [shown by the solid black line in Fig. 5(c)]. At
a constant QD-cavity detuning and laser excitation power, the
QD linewidth increases with increasing γd and γr [Fig. 5(c)].
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P. Petroff, and J. Vučković, Phys. Rev. Lett. 104, 073904
(2010).

7S. Ates, S. M. Ulrich, A. Ulhaq, S. Reitzenstein, A. Löffler,
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