
PHYSICAL REVIEW A 85, 033802 (2012)

Nonlinear temporal dynamics of a strongly coupled quantum-dot–cavity system
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We theoretically analyze the temporal dynamics of strongly coupled quantum-dot–cavity system driven by a
resonant laser pulse and observe the signature of Rabi oscillation in the time-resolved response of the system (i.e.,
in the numerically calculated cavity output). We derive simplified linear and nonlinear semiclassical models that
approximate well the system’s behavior in the limits of high- and low-power driving pulses and describe the role
of quantum coherence in the exact dynamics of the system. Finally, we also present time-resolved transmission
measurements showing the dynamics of a quantum-dot–cavity system in the presence of a short laser pulse.
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I. INTRODUCTION

A single quantum dot (QD) coupled to a photonic crys-
tal microcavity constitutes an integrated nanophotonic plat-
form for probing solid-state cavity quantum electrodynamic
(CQED) effects [1]. The eigenstates of this coupled system
form an anharmonic ladder, which results in an optical
nonlinearity at a single photon level. In recent years, this
nonlinearity has been used to perform all-optical [2,3] and
electro-optic switching [4] as well as to generate nonclassical
states of photons [5–7].

In this paper, we study the temporal dynamics of the coupled
dot-cavity system driven by a short laser pulse [Fig. 1(a)] using
a full quantum optical numerical simulation. The oscillatory
behavior of the cavity output [Fig. 1(b)], which is caused by
the vacuum Rabi splitting, is analyzed at low, intermediate,
and high intensity of the driving laser. Specifically, we derive
a linear semiclassical description of the system (similar to
Refs. [8,9]) and show that under weak driving, the coupled
QD-cavity system follows the same dynamics as a set of
two classical linear coupled oscillators. Following this, we
describe an improved, nonlinear semiclassical model that
mimics the quantum optical model very well for both very
low and high peak intensity of the driving pulse. However,
the nonlinear semiclassical model deviates from the quantum
optical description at intermediate peak intensities of the drive
pulse, and we show that this discrepancy arises from the
coherence present in the quantum optical system. Finally,
we present a study of the temporal dynamics as a function
of the major parameters describing the cavity-QD system
as well as experimental data showing the signature of the
Rabi oscillation in the time domain and the dependence of
these oscillations with laser power signifying the nonlinear
nature of the system. We note that temporal Rabi oscillations
were previously reported in atomic CQED system with a
single atom [10] but not with a single solid-state quantum
emitter. In the solid-state system, much larger dipole-cavity
interaction strength is possible due to the large QD dipole
moment and tight confinement of the light field inside the
small mode-volume cavity (the vacuum Rabi frequency is
on the order of ∼10 GHz compared to MHz in atomic
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CQED systems) [11,12]. As a result, the temporal dynamics
probed here is much faster than that previously reported in
the atomic system [10]. We note that time-resolved Rabi
oscillations were previously analyzed theoretically [13] and
experimentally [14] with quantum well excitons embedded in
planar microcavities. However, that system is very different
from a single quantum emitter (e.g., single quantum dot)
embedded in a nanocavity, which we study in this paper and
in which time-resolved vacuum Rabi oscillation has not been
studied previously. Moreover, we study nonlinear dynamics
and power dependence of Rabi oscillations, which have not
been studied in other systems [13,14].

II. QUANTUM AND SEMICLASSICAL DESCRIPTION

In the rotating-wave approximation, the quantum-
mechanical Hamiltonian H describing the coherent dynamics
of the coupled QD-cavity system is given by [15]

H = ωaσ
†σ + ωca

†a + ig(aσ † − a†σ ). (1)

Here, ωc and ωa are, respectively, the resonance frequencies
of the cavity and the QD; a is the annihilation operator for the
cavity mode; σ = |g〉〈e| is the lowering operator for the QD
with excited state |e〉 and ground state |g〉; g is the coherent
interaction strength between the QD and the cavity, and h̄ is
set to 1. When this system is coherently driven by a laser pulse
with an electric-field amplitude envelope �(t) = �0p(t) and a
center frequency ωl , the driven Hamiltonian in a frame rotating
at the frequency ωl is

H = �ca
†a + �aσ

†σ + ig(a†σ − aσ †) + i�(t)(a − a†).

(2)

Here, �c and �a are the detuning of the cavity and the QD
resonance from the laser frequency; �0 is the maximum laser
strength, and p(t) is proportional to the envelope of the laser
electric field. Also taking into account the dissipation of the
cavity field to the environment with a decay rate κ and a dipole
spontaneous emission rate γ , the dynamics of the QD-cavity
system are determined by the master equation

dρ

dt
= −i[H,ρ] + 2κL[a] + 2γL[σ ], (3)
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FIG. 1. (Color online) (a) The schematic of the coupled QD-
cavity system. It is driven by a laser pulse, and the cavity output is
monitored. (b) The cavity transmission calculated by three different
models: the quantum optical (red), semiclassical linear (blue) and
nonlinear (black) model at low (�0/2π = 1 GHz) peak intensity of
the driving pulse. All three models match quite well. The input pulse
is also shown (green dashed line). The oscillation in the cavity output
is due to Rabi oscillation of the photon between the QD and the cavity.
The inset shows the cavity transmission spectrum in the presence and
in the absence of the strongly coupled QD. The split resonances are
separated approximately by twice the coherent dot-cavity interaction
strength g. The spectral shape of laser pulses with pulse lengths
of 5 ps (blue dashed line) and 40 ps (green dashed line) is also
shown. Parameters used for the simulations are g/2π = 25 GHz,
κ/2π = 29 GHz, and γ /2π = 1 GHz.

where ρ is the density matrix of the coupled QD-cavity system.
L[D] is the Lindblad operator corresponding to a collapse
operator D to model the incoherent decays and is given by

L[D] = DρD† − 1
2D†Dρ − 1

2ρD†D. (4)

The master equation is solved using numerical integration
routines provided in the quantum optics toolbox, truncating the
photon states to 20 photons [16]. This method is completely
quantum mechanical, and no approximation (other than the
standard Born-Markov approximation and truncation of Fock
state basis) is made.

A semiclassical description of the coupled system [17] can
be derived by using the relation

d〈D〉
dt

= Tr

[
D

dρ

dt

]
, (5)

which is valid for any operator D. The mean-field dynamical
equations for the coupled QD-cavity system can then be
written as

d〈a〉
dt

= −κ 〈a〉 + g 〈σ 〉 − √
κ�(t), (6)

d〈σ 〉
dt

= −γ 〈σ 〉 + g 〈aσz〉 , (7)

d〈σz〉
dt

= −2γ (〈σz〉 + 1) − 2g(〈a†σ 〉 + 〈aσ †〉), (8)

where σz = |e〉 〈e| − |g〉 〈g|. We note that this set of equations
is not complete; for an exact solution we need to find the
equations describing all the other higher-order moments,
namely, 〈aσz〉 and 〈aσ †〉. However, in the low-excitation
regime (no more than one photon in the system), the QD will

remain mostly in its ground state, and we can approximate
〈σz〉 ≈ −1 and replace 〈aσz〉 = − 〈a〉. The resulting set of
equations

d〈a〉
dt

= −κ 〈a〉 + g 〈σ 〉 − √
κ�(t), (9)

d〈σ 〉
dt

= −γ 〈σ 〉 − g 〈a〉 (10)

is identical to the set of equations describing the dynamics
of two coupled linear classical oscillators (see Appendix A).
Although this approximation neglects the nonlinear nature of
the QD, it matches the actual output quantitatively at low
excitation power. However, with increasing drive intensities
�0, this model fails completely, as the approximation 〈σz〉 ≈
−1 becomes invalid. For sufficiently high drive intensi-
ties, however, one can approximate 〈σz〉 → 0, and Eq. (7)
simplifies to

d〈σ 〉
dt

= −γ 〈σ 〉 . (11)

Alternatively, we can retain the dynamics of the σz term,
while making the set of Eqs. (6)–(8) complete by using
the approximations 〈aσz〉 ≈ 〈a〉 〈σz〉 and 〈a†σ 〉 ≈ 〈a†〉 〈σ 〉 [9].
While this approach neglects the coherence of the system while
analyzing the mean-field dynamical equations, the nonlinear
behavior of the QD is taken into account.

Figure 1(b) compares the time-resolved cavity transmission
in the low-excitation limit (�0/2π = 1) when calculated by
the three different models: (i) semiclassical in the linear ap-
proximation, (ii) semiclassical in the nonlinear approximation,
and (iii) the numerical master equation solution up to truncated
Fock state basis n = 15. For the numerical simulation, we used
a Gaussian pulse with full width at half maximum (FWHM) of
5 ps to drive the dot-cavity system with a pulse with bandwidth
higher than the coupled system [as shown in the inset of
Fig. 1(b)]. In this low-excitation limit, all three models closely
agree and exhibit an oscillation in the cavity transmission. This
oscillation is due to the coherent Rabi oscillation of the photons
between the QD and the cavity and vanish when g → 0. Note
that further oscillations are quenched by the decay of the cavity
field.

To intuitively understand the origin of the oscillation, one
can consider the analytical solution of the linear semiclassical
equations to find the eigenvalues of the lossy coupled system:

ω± = ωc + ωd

2
− i

κ + γ

2
±

√
g2 + 1

4
[δ − i(κ − γ )]2, (12)

where δ = �c − �a is the dot-cavity detuning. In the dot-
cavity system the dipole spontaneous emission rate γ is
very small. Hence, when g > κ/2, the system is in the
strong-coupling regime, and the split resonance appearing
in the cavity transmission spectrum [inset of Fig. 1(b)] will
be the result of the formation two distinct energy eigenstates
in the system. At the same time without a coupled QD, a
single Lorentzian peak is observed in the spectrum of the
cavity transmission. The two peaks then correspond to the
entangled states of the QD and the cavity, known as polaritons.
When the cavity is driven with a short pulse with bandwidth
larger than that of the coupled system, the cavity output is
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FIG. 2. (Color online) Comparison between the temporal cavity
transmission obtained via the quantum optical (red dashed line) and
the semiclassical nonlinear (black solid line) models. The cavity
transmission is normalized by the maximum cavity transmission, and
plots are vertically offset for clarity. The two models match quite well
at low and high driving power, but at intermediate power, they differ.
The inset shows the coherence, calculated as (〈a†σ 〉 − 〈a†〉〈σ 〉)/�2

0,
integrated over time as a function of the driving strength �0. We
observe that quantity increases in the intermediate driving power.
Parameters used for the simulations are g/2π = 25 GHz and κ/2π =
29 GHz.

modulated at the frequency difference between the polaritons,

i.e., 2
√
g2 + 1

4 [δ − i(κ − γ )]2.
Although the nonlinear semiclassical model allows QD

saturation, it neglects the quantum-mechanical coherence
between the QD and the cavity. Figure 2 compares the
semiclassical and quantum optical simulations of the coupled
dot-cavity system. We find that the results match well both
at low (when the QD excited-state population is almost zero
and 〈σz〉 ∼ −1) and high (when the QD is saturated and
〈σz〉 ∼ 0) intensities of the driving field. As expected, the
nonlinear semiclassical approach deviates for intermediate
intensities. As a measure of the coherence, we plot the quantity
C = (〈a†σ 〉 − 〈a†〉〈σ 〉)/�2

0 integrated over time as a function
of the driving strength �0 in the inset of Fig. 2. C is zero in the
absence of any coherence and is much smaller for low and high
excitation powers than in the intermediate-excitation regime.
Note that the onset of the increase in the higher excitation
power is due to numerical errors caused by the truncated Fock
state basis.

III. DEPENDENCE ON THE SYSTEM PARAMETERS

We are now in a position to characterize the temporal
cavity transmission as a function of four relevant parameters
describing the coupled dot-cavity system: dot-cavity detuning
δ, the dot-cavity coupling rate g, the cavity field decay rate
κ , and pure QD dephasing rate γd . Figure 3(a) shows that the
time interval between two peaks decreases as the QD-cavity
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FIG. 3. (Color online) The temporal cavity output obtained from
the full quantum optical simulation as a function of (a) the dot-cavity
coupling strength g (here κ/2π = 20 GHz; δ = 0 and γd = 0), (b) the
cavity field decay rate κ (here g/2π = 20 GHz; δ = 0 and γd = 0),
(c) the dot cavity detuning δ (here g/2π = κ/2π = 20 GHz and
γd = 0), and (d) the pure QD dephasing rate γd (here g/2π = κ/2π =
20 GHz and δ = 0). For all the simulations a low excitation power
(�0/2π = 2) is assumed.

coupling rate g increases. This observation is consistent with
the oscillation period as predicted by the simple linear analysis.
At the same time, the oscillation period depends only weakly
on κ [Fig. 3(b)]. We note an increasing cavity output with
increasing cavity decay rate κ , which is due to the increasing
overlap between the input pulse and the cavity spectrum.
The oscillation frequency increases with increasing detuning
between the dot and the cavity; when the QD is detuned too
far from the cavity, the oscillation almost disappears. This is
expected, as with large enough detuning, the input pulse is
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FIG. 4. (Color online) The normalized cavity transmission for
different pulse durations. The pulse duration is changed from 5 to
50 ps. We observe oscillation in the cavity output, although the
oscillation frequency decreases with increasing pulse width. This
can be explained by the reduced overlap between the pulse and the
coupled dot-cavity system in frequency domain.
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FIG. 5. (Color online) Experimentally measured time-resolved transmission of 40-ps pulses through a strongly coupled dot-cavity system
for three different powers (averaged over the pulse repetition period): (a) 0.1 nW, (b) 0.23 nW, and (c) 1 nW. The powers are measured in front
of the objective lens in the confocal microscopy setup. For this specific system cavity field decay rate κ/2π = 29 GHz, and coherent dot-cavity
coupling strength g/2π = 25 GHz. Clear oscillations are observed in the cavity transmission, consistent with the the theoretical predictions.
We also observe decreasing oscillation with increasing laser power due to QD saturation.

not affected by the QD [Fig. 3(c)]. An important effect in
solid-state cavity QED is pure QD dephasing, which destroys
the coherence of the system without affecting the population of
the quantum-dot states. The effect of pure QD dephasing can
be incorporated by adding the term 2γdL(σ †σ ) in the master
equation [11,18], where γd is the pure QD dephasing rate.
Figure 3(d) plots the cavity output as a function of the pure
QD dephasing rate γd , indicating that the oscillation eventually
disappears when the dephasing rate is large.

Finally, we analyze the dependence of the cavity transmis-
sion on the pulse duration (Fig. 4). When the pulse duration is
changed from 5 to 50 ps, we observe a decreasing oscillation
frequency. This can be explained by the reduced overlap
between the input pulse and the coupled dot-cavity system with
reduction in pulse bandwidth. In other words, a long pulse does
not have sufficient bandwidth to excite both the polaritons [as
shown in the inset of Fig. 1(b)], and the oscillation frequency
in the cavity output deviates more from 2g.

IV. EXPERIMENTAL DATA

To test the validity of our numerical simulations, we
experimentally probed a strongly coupled QD-cavity system.
A cross-polarized reflectivity setup was used to obtain the
transmission of light through the coupled system, and the
cavity transmission was monitored with a Hamamatsu streak
camera. Details of the fabrication and the experimental setup
can be found in Ref. [12], with the experimental parameters
of the probed dot-cavity system being g/2π = 25 GHz and
κ/2π = 29 GHz [2]. We did not observe the predicted oscilla-
tions in the initial experiments measuring the transmission
of 5-ps pulses through the cavity, most likely because of
the limited time resolution of our detector. Subsequently, the
experiment was performed with a longer pulse (40-ps FWHM).
A long pulse does not have sufficient bandwidth to excite both
the polaritons [as shown in the inset of Fig. 1(b)], and the
oscillation frequency in the cavity transmission is different
from the value 2g, as shown in Fig. 4. Figures 5(a), 5(b),
and 5(c) show the experimentally obtained cavity output for
three different excitation powers. The experimental data match
qualitatively the predictions from the numerical simulation,

and clear oscillation is observed in the cavity output. This
oscillation disappears with increasing laser power, as expected
from the QD saturation. The oscillation period is estimated
to be 25 GHz, corresponding to a time difference of 39 ps
between the two peaks. We note that the numerically obtained
plots in Fig. 4 are calculated with very small excitation power.
However, the experiment cannot be performed with such low
excitation power as the detected signal is too low. Hence, in
the experiment, the coupled system is driven close to the QD
saturation, and the oscillations are less visible. Another reason
is that the extinction of the cross-polarized cavity transmission
measurement is not perfect, so the signal will be detected
together with light reflected from the surface of the sample
that did not interact with the QD-cavity system. Additionally,
possible charging of the QD moves the dot far out of resonance
and will blur the predicted oscillatory cavity transmission with
the nonoscillating spectrum for g = 0.

In summary, we have analyzed the nonlinear temporal
dynamics of a strongly coupled QD-cavity system driven by a
short laser pulse. We showed that this quantum optical system
behaves similarly to two coupled classical linear oscillators
when the system is driven with a weak pulse and that a
signature of the vacuum Rabi oscillations can be observed in
the time-resolved cavity transmission. For a strong excitation
pulse these oscillations die down due to saturation of the QD.
We provided a semiclassical nonlinear model and showed
that in the actual dynamics, the role of quantum coherence is
important. Last, we presented experimental evidence of those
oscillations in the cavity output.
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APPENDIX: DYNAMICS OF TWO CLASSICAL COUPLED
LINEAR OSCILLATORS

The dynamics of two classical coupled oscillators, with
resonance frequency ω0 and decay rates �1 and �2, are
governed by

d2x1

dt2
+ �1

dx1

dt
+ ω2

0x1 + G(x1 − x2) = �(t)eiω0t (A1)

and

d2x2

dt2
+ �2

dx2

dt
+ ω2

0x2 + G(x2 − x1) = 0, (A2)

where G denotes the coupling strength between the oscillators.
One of the oscillators is driven resonantly with driving strength
�(t), as the cavity is driven by a laser. We assume a solution
of the form x1(t) = X1(t)eiω0t and x2(t) = X2(t)eiω0t , where
X1(t) and X2(t) are slowly varying envelopes of the actual

oscillator outputs. Then we can write

dx1

dt
= iω0X1e

iω0t +
(

dX1

dt
eiω0t

)

d2x1

dt2
= 2iω0

dX1

dt
eiω0t − ω2

0X1e
iω0t +

(
d2X1

dt2
eiω0t

)
.

For x2 we can find similar equations. Using the slowly
varying envelope approximation ( dX1

dt
� iω0X1 and d2X1

dt2 �
iω0

dX1
dt

,ω2
0X1), we remove the bracketed terms and obtain the

following equations for the undriven coupled oscillator system:

dX1

dt
= −

(
�1

2
+ G

2iω0

)
X1 + G

2iω0
X2 + �(t) (A3)

and

dX2

dt
= −

(
�2

2
+ G

2iω0

)
X2 + G

2iω0
X1. (A4)
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