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Generation of nonclassical states of light via photon blockade in optical nanocavities
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E. L. Ginzton Laboratory, Stanford University, Stanford, California 94305, USA

(Received 28 August 2009; published 23 March 2010)

The generation of nonclassical states of light via photon blockade with time-modulated input is analyzed. We
show that improved single-photon statistics can be obtained by adequately choosing the parameters of the driving
laser pulses. An alternative method, where the system is driven via a continuous-wave laser and the frequency of
the dipole is controlled (e.g., electrically) at very fast time scales is presented.
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I. INTRODUCTION

Photons at optical frequencies are commonly used in
quantum key distribution systems [1] and play a fundamental
role in proposed devices for quantum information processing
[2,3]. While the majority of quantum cryptography systems
currently in use are based on coherent light sources, most of
the proposals for more advanced quantum information devices
are based on nonclassical states of light, mainly single-photon
states. These type of devices include quantum repeaters [4,5],
linear optics quantum computing devices [3], and quantum
networks based on cavity quantum electrodynamics [6].
Considerable research has been done to make deterministic
single-photon sources, which can generate indistinguish-
able single photons with very high efficiency. One way to
generate single photons is by parametric down-conversion or
attenuation of coherent laser beams such that the probability
of having multiphoton states is considerably diminished.
However, this causes increased probability of the vacuum
state, so most of the time there are no photons in the light
source. To make a good single-photon source one has to
ensure suppression of both the multiphoton states as well
as the zero-photon state. There are several proposals for
making on-demand single-photon sources, such as above-band
or resonant excitation of solid-state single emitters [7] or
adiabatic state transfer in single atoms [8].

In the recent years, there has been increased interest in
generating nonclassical states of light via strongly coupled
cavity quantum electrodynamics (CQED) systems [9–12].
Nonclassical states of light that closely resemble the single-
photon states can be generated in this kind of systems
by operating in the photon blockade regime [9] with a
single emitter strongly coupled to an optical resonator. The
photon blockade, was first observed in atomic physics [13]
and recently has been demonstrated in solid-state CQED
using quantum dots in photonic crystal cavities [14]. These
experiments demonstrated photon antibunching caused by
photon blockade, a signature of enhanced probability of the
single-photon states at the output. There are a few advantages
for using photon blockade for single-photon generation. First,
the produced single photons are free of the temporal jitter
that is present in systems that are not driven resonantly, due
to the probabilistic nature of the exciton capture. Second,
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the collection efficiency of the photons is very high due to
the presence of a cavity. However, for on-demand single-
photon generation, the source must be operated in the pulsed
regime and one photon should be generated for each pulse.
This requirement has not been satisfied in any experiments
performed so far on photon blockade.

In this paper, we analyze the optimal conditions that must
be satisfied by the CQED system for on-demand generation
of single-photon states via photon blockade. The system
considered here is a quantum dot (QD) strongly coupled to
a photonic crystal cavity, although our conclusion is valid
for any cavity QED system where the cavity has an ultrasmall
mode volume. We analyze two different driving configurations
that lead to on-demand single-photon generation. In Sec. II
we consider the system coherently driven by laser pulses. In
Sec. III we consider a system driven by a continuous wave
laser where the deterministic single-photon generation is done
by electrical control of the QD resonance frequency.

II. PHOTON BLOCKADE IN PULSED OPERATION
OF THE DRIVING FIELD

The studied optical system consists of a single emitter
(QD) strongly coupled to a cavity, as shown in Fig. 1. When
coherently driven by a laser field, the strongly coupled system
is well described by the Jaynes-Cummings Hamiltonian

H = h̄[ωaσ+σ− + ωca
†a + ig(a†σ− − aσ+)

+�(t)(aeiωl t + a†e−iωl t )], (1)

where ωa and ωc are the QD and the cavity resonance
frequency, respectively, ωl is the driving laser frequency,
and g is the coupling strength of the QD to the cavity
mode. �(t) is the Rabi frequency of the laser and is given
by �(t) = µE(t)/h̄, where µ is the dipole moment of the
transition being driven by the laser and E(t) is the temporal
electric field of the laser inside the cavity; a is the annihilation
operator for the cavity mode. If the excited and ground state
of the QD are denoted by |e〉 and |g〉, respectively, then
σ− = |g〉〈e|, σ+ = |e〉〈g|. In a frame rotating with the laser
frequency, under the rotating wave approximation (RWA) the
Hamiltonian can be written as

H = h̄[�aσ+σ− + �ca
†a + ig(a†σ− − aσ+)

+�(t)(a + a†)], (2)

where �a = ωa − ωl and �c = ωc − ωl are the detuning of
the QD and of the cavity, respectively, with the laser. To
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FIG. 1. (Color online) (a) Schematic representation of a single
emitter coupled to an optical resonator. The optical resonator has
mirrors with different reflection coefficients (Rin � Rout) such that
most of the field coupled into the cavity is emitted at the output port.
(b) Schematic representation of the energy eigenstates for a strongly
coupled cavity-emitter system.

fully describe a real system, loss must be included in the
Hamiltonian. The two main loss mechanisms are the cavity
field decay rate κ = ωc/2Q (where Q is the quality factor
of the resonator) and the QD spontaneous emission rate γ .
When the coupling strength g is greater than the loss rates κ and
γ , the system is in the strong coupling regime [15,16]. In this
regime, energy eigenstates are grouped in two-level manifolds
with eigenenergies given by nωc ± g

√
n (for ωa = ωc), where

n is the number of energy quanta in the cavity-QD system. The
eigenstates can be written as

|n,+〉 = |g, n〉 + |e, n − 1〉√
2

, (3)

|n,−〉 = |g, n〉 − |e, n − 1〉√
2

. (4)

The splitting between the energy eigenstates in each
manifold has a nonlinear dependence on n. This anharmonicity
in the splitting of the energy eigenstates gives rise to nonlinear
optics phenomena at the single-photon level. One of these
phenomena is photon blockade, where the presence of one
photon in the cavity blocks the coupling of subsequent photons.
For example, the system could be driven by a coherent light
source (see Fig. 1) with frequency resonant with one of the
polaritons (say |1,−〉). Once a photon is coupled, the system is
excited into the state |1,−〉, so the coupling of another photon
with energy ωc − g would require the system to transition to
energy state 2(ωc − g). However, the system does not have an
eigenstate at this energy, the closest being at 2ωc − g

√
2. For

this reason, the probability of coupling the second photon is
reduced.

A typical experimental configuration for observing photon
blockade is depicted in Fig. 1(a), where light can be coupled
into the cavity via the input port ain and the output can
be collected at the port bout. The resonator is represented
by two mirrors with reflection coefficients Rin and Rout,
with Rin � Rout. In a photonic crystal configuration this

could be achieved by coupling the resonator to two optical
waveguides and precisely controlling the cavity-waveguide
coupling [17].

For on-demand generation of nonclassical states of light,
it is desirable that the state is delivered at the output port at
times that can be chosen deterministically. This means that
the interaction between the input beam and the cavity-QD
system is controlled in the time domain. One way to achieve
this is by driving the system with light pulses with controlled
shape, as illustrated schematically in Fig. 2(a). In this section,
we investigate how the nonclassical state of light observed at
the output depends on the properties of the laser pulse at the
input.

In principle, the input laser pulse can have any spe-
cific waveform. To limit the number of free parameters,
we analyze the configuration where the system is driven
with Gaussian pulses. In this case, the free parameters are
the length, the intensity, and the center frequency of the
pulse.

To simulate the system we use the quantum trajectory
method [19]. The evolution of the density matrix ρ of the
system, including all the losses, is given by (in the normalized
form with h̄ = 1)

dρ

dt
= −i[H, ρ] + κ

2
(2aρa† − a†aρ − ρa†a)

+ γ

2
(2σρσ † − σ †σρ − ρσ †σ ), (5)

where H is the system Hamiltonian without any loss as given
in Eq. (2). For the Monte Carlo simulation using the quantum
trajectory method [19] the Schrödinger equation is

i
dψ

dt
= Heff(t)ψ, (6)

where Heff is given by

Heff(t) = H (t) − i

2

∑
k

D
†
kDk, (7)

where H (t) is the system Hamiltonian without loss [Eq. (2)]
and Dk is the collapse operator corresponding to the kth
dissipation channel. In the experiment considered here, there
are mainly two decay channels: the spontaneous emission
of the QD, D1 = √

γ |g〉〈e|, and the cavity decay D2 =√
κa. The dephasing rate of the QD and any nonradiative

decay is neglected. As the nonclassical state is collected
from one of the output modes of the cavity (bout), only
the collapse operator corresponding to the cavity decay is
monitored.

The driving term �(t) in the Hamiltonian described
in Eq. (2) is assumed to be of the form �(t) = �op(t),
where �o is the amplitude and the time dependence is
described by p(t). For the simulation we assume a Gaussian
shape for p(t):

p(t) = exp

[
−

(
t − t0

τ

)2
]

, (8)

where t0 is the time when the pulse reaches its maximum value
and τ is the pulse width.
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FIG. 2. (Color online) (a) Nonclassical state generation via pulsed operation in the photon blockade. The properties of the laser pulse
coupled at the input port are controlled such that the output field has primarily a single-photon component. (b) Normalized Fock-state
coefficients (|c0|2 for vacuum state, |c1|2 for single-photon state, and |cmulti|2 = ∑∞

n=2 |cn|2 for multiphoton probability) for the output
field as the intensity of the laser pulse �0 is modified and the pulse width is kept constant at τ = 0.45/κ . The ground state and one
of the first-order eigenstates form an effective two-level system [18] so Rabi oscillations are observed in the single-photon character
of the output field. The system has parameters κ/2π = 1 GHz, γ /2π = 0.1 GHz, and g/2π = 40 GHz. (c) Fock-state coefficients for
the output field as the duration of the laser pulse (τ ) is modified while �0 = 10 GHz was kept constant. The system has parameters
κ/2π = 1 GHz, γ /2π = 0.1 GHz, and g/2π = 40 GHz. (d) The same simulation as in panel (b) but for a system with κ/2π = 5 GHz and
g/2π = 30 GHz.

The nonclassical state of light emitted at the output is
analyzed by using an ideal single-photon detector. For each
quantum trajectory, a laser pulse is coupled to the cavity and
the number of clicks detected at the output is monitored.
Ideally, for a deterministic single-photon source, a single
click should be registered by the detector every time the
device is operated. However, the output field is not in a
pure single-photon state, and in a Fock state basis, it can be
expressed as

|bout〉 =
∞∑

n=0

ϕn |n〉 , (9)

where ϕn is the coefficient of the Fock state |n〉. Here we write
the output state as a pure state, considering that the dephasing
rate of the system is negligible. The normalized value (|cn|2)
of the coefficients |ϕn|2 can be estimated from the number of
detected photons at the output when running a large number
of trajectories. For example, |cn|2 = |ϕn|2∑

i |ϕi |2 is well estimated
by the relative number of trajectories for which n counts were
detected at the output. If the desired output state should be as
close as possible to a single-photon state, then the simulation
parameters should be optimized such that |c1|2 is maximized.

The experimental configuration considered here is as shown
in Fig. 2(a). The cavity has two mirrors, with decay rates

κ1 and κ2 such that κ1 � κ2. Effectively, the total decay
rate of the cavity is κ ≈ κ1. The driving laser is incident
on the mirror with higher reflectivity and the output field is
mainly collected from the lossier mirror. This configuration
allows for efficient collection of the nonclassical field at the
cavity output.

To illustrate the behavior of the system operating in
photon blockade under pulsed driving, we first analyze a
system with parameters κ/2π = 1 GHz, γ /2π = 0.1 GHz,
and g/2π = 40 GHz. The value κ/2π = 1 GHz corresponds
to a cavity with a quality factor of Q = 160 000. This is
about five times larger than the state-of-the-art values of
Q observed in GaAs cavities with coupled InAs quantum
dots operating around 930 nm, but still within the theo-
retical limit for this material [20]. Regarding the coupling
rate g, the typical values measured so far are around
g/2π = 25 GHz [21]. However, with further improvements
in the material system and the fabrication techniques it is
expected that higher values for Q and g, as considered here,
will be achievable. For this simulation, the cavity and the
quantum dot are assumed to be on resonance (ωc = ωa).
The center frequency of the driving field is set on resonance
with the transition to the first-order manifold (ωc + g) and
the pulse width is set to τ = 0.45/κ . Figure 2(b) shows the
zero-photon, single-photon, as well as multiphoton population
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(|cmulti|2 = ∑∞
n=2 |cn|2) as a function of the amplitude of a

driving pulse. The values for the coefficients |cn|2 are inferred
from the number of detection events detected over multiple
(3000) quantum trajectories.

As shown in Fig. 2(b), the probability of obtaining a single
photon at the output has a strong oscillatory dependence
on the intensity on the incoming pulse. When operating in
the blockade regime, the successful blocking of the second
photon depends on how well the first photon is coupled
to the QD-cavity system. One could consider the ground
state and the state |1,−〉 to constitute an effective two-level
system. Under pulsed excitation, the population in |1,−〉
Rabi oscillates with the pulse area [Fig. 1(b)]. For optimum
operation, one would choose the pulse area such that the system
transitions completely from |0〉 to |1,−〉 so one photon is
coupled into the system and then is released at the output
port. At the operation point with maximum single-photon-
state probability, the output field has ∼83% single-photon,
∼1% vacuum-state, and ∼15% multiphoton-state character
(i.e., |c0|2 = 0.01, |c1|2 = 0.83, and |cmulti|2 = ∑∞

n=2 |cn|2 =
0.16).

The oscillations of the single-photon population in the
output field can also be observed when the maximum field
intensity is kept constant and the pulse length is changed. This
is shown in Fig. 2(c), where the pulse intensity was chosen as
the intensity that gave the maximum single-photon output in
Fig. 2(c) (�0 = 10 GHz).

A similar but less prominent effect can be observed in a
system with κ/2π = 5 GHz and g/2π = 30 GHz, parameters
that are very close to those already achieved experimentally
[20,21]. For this set of parameters the maximum achievable
single-photon probability is ∼45%, with ∼30% vacuum state
and ∼25% multiphoton state, as shown in Fig. 2(d).

One of the parameters most commonly used to char-
acterize sources of nonclassical light is the second-order
correlation function at zero time delay, g(2)(0). For single-
photon sources it is desired that g(2)(0) = 0, which means
that the source emits either zero or one photon but never
multiple photons. However, the second-order correlation does
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FIG. 3. (a) Second-order correlation function of the output field,
for the case κ/2π = 1 GHz and g/2π = 40 GHz. (b) Second-order
correlation function for κ/2π = 5 GHz and g/2π = 30 GHz.
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FIG. 4. (Color online) Ratio of single-photon to multiphoton
probability in the output field of the nonclassical source with
κ/2π = 1 GHz and g/2π = 40 GHz as a function of mean photon
number per pulse, 〈n〉. The results are compared with a coherent
pulsed laser source of the same brightness 〈n〉.

not give any information about the efficiency of emitting
a single photon each time the source is operated. Starting
from the coefficients |cn|2, one may compute g(2)(0) =
[
∑∞

n=0 n(n − 1)|cn|2]/[
∑∞

n=0 n|cn|2]2, and the results are
shown in Figs. 3(a) and 3(b). For the case κ/2π = 1 GHz
and g/2π = 40 GHz, g(2)(0) can be as small as 0.12, while for
κ/2π = 5 GHz and g/2π = 30 GHz, the minimum value is
g(2)(0) = 0.64.

These sources of nonclassical light could improve the
speed of generating secure quantum keys, compared to current
systems that use coherent laser sources. Compared to coherent
laser pulses of the same brightness (with average photon
number per pulse of 〈n〉), the ratio of single-photon pulses
to multiphoton pulses (|c1|2/|cmulti|2) could be up to ten times
higher in the case of nonclassical light sources operating in
photon blockade as shown in Fig. 4. Since the same value of 〈n〉
can be achieved for different strengths of the driving field, mul-
tiple values of |c1|2/|cmulti|2 can be obtained for the same 〈n〉.

One of the main advantages of generating nonclassical
states of light using photon blockade instead of above-band
excitation and spectral filtering is the high degree of indis-
tinguishability of the output field. The two main effects that
affect the single-photon indistinguishability are the quantum
dot dephasing [22] and the jitter in the temporal origin of the
single photon. While jitter is completely avoided using this
method, the output field still suffers from the dephasing of the
quantum dot while the optical pulse passes through the cavity.
To maximize the indistinguishability, it is thus desirable to
operate with shorter laser pulses.

III. NONCLASSICAL STATE GENERATION VIA FAST
CONTROL OF DIPOLE FREQUENCY

In this section we present an alternative method for on-
demand generation of nonclassical light that is based on
ultrafast control of the optical dipole. The principle is depicted
in Fig. 5(a), where a continuous-wave field is incident on the
input port and the frequency of the dipole (�a) is controlled at
time scales comparable to the cavity decay rate. One method
to achieve this kind of ultrafast control in solid-state systems
is by using an electric field to shift the frequency of a quantum
dot via the quantum confined Stark effect [23,24].

In this configuration, the cavity frequency is kept constant
and the electric field controls the cavity-QD detuning. With
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FIG. 5. (a) Operation principle for nonclas-
sical state generation using a continuous-wave
input and fast control of the dipole frequency
using an electric field. (b) Detuning of the
dipole frequency with time. The cavity res-
onance is constant and zero detuning means
the dipole is resonant with the cavity. (c)
Normalized Fock-state coefficients (|c0|2 for
vacuum state, |c1|2 for single-photon state, and
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n=2 |cn|2 for multiphoton probabil-
ity) for the output field with varying inten-
sity of the continuous-wave input field (�0).
The system has parameters κ/2π = 1 GHz,
γ /2π = 0.1 GHz, and g/2π = 40 GHz. (d)
Normalized Fock-state coefficients for a system
with κ/2π = 5 GHz, γ /2π = 0.1 GHz, and
g/2π = 30 GHz.

the quantum dot and the cavity on resonance, the input laser
is tuned to the frequency of one of the first-order eigenstates
(say |1,−〉). Shifting the resonance of the quantum dot causes
an energy shift of both first-order eigenstates. To generate
single-photon states, one should start with the quantum dot
detuned from the cavity such that no light is transmitted to the
output. Then the quantum dot is brought into resonance with
the cavity such that |1,−〉 becomes resonant with the input
laser beam. The QD is kept resonant with the cavity so only
one photon is coupled and transmitted through the system, and
then it is detuned back as shown in Fig. 5(b).

The underlying Hamiltonian for this system is given in
RWA by

H = h̄[�a(t)σ+σ− + �ca
†a + ig(a†σ− − aσ+)

+�0(a + a†)]. (10)

In this case, the coherent driving term �0 is kept constant,
�a(t) is the time-dependent detuning of the dipole with the
cavity, and �c is the fixed detuning between the cavity and the
driving laser.

The quantum statistics of the output field as a function of
�0 is shown in Figs. 5(c) and 5(d) for different parameters of
the strongly coupled system. The quantum dot frequency is
detuned by up to g, as shown in in Fig. 5(b). Similar to the
optical time domain pulse shaping, oscillations are observed
in the magnitude of the single-photon state for κ/2π = 1 GHz
and g/2π = 40 GHz [Fig. 5(c)]. For optimal operation param-
eters, |c0|2 = 0.05, |c1|2 = 0.73, and

∑∞
n=2 |cn|2 = 0.22. The

results for κ/2π = 5 GHz and g/2π = 30 GHz are shown
in Fig. 5(d) and indicate 44% single-photon, 35% vacuum,
and 21% multiphoton Fock states at the point of maxium
single-photon-state probability.

IV. CONCLUSION

In conclusion, we have shown that the nonclassical states of
light that can be generated using the strong optical nonlinearity
of a solid-state cavity QED system (photon blockade regime)
have a strong dependence on the properties of the input driving
field. The parameters of the driving field were optimized such
that the main component of the output field is the single-photon
state. We demonstrate that nonclassical states that are 83%
single photon can be obtained using solid-state systems with a
quality factor of Q = 160 000 and a coupling rate of g/2π =
40 GHz, which are realistically achievable. These types of
nonclassical states represent a tool in the developing toolbox of
quantum technologies that could be used effectively to improve
the performance of quantum cryptography systems and linear
optics quantum computation.
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