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Abstract. We theoretically study the bichromatic driving of a solid-state cavity
quantum electrodynamics (QED) system as a means of probing cavity dressed
state transitions and observing the coherent interaction between the system and
the light field. We show that this method can enable the observation of the
higher order cavity dressed states, supersplitting and ac-Stark shift in a solid-state
system comprised of a quantum dot (QD) strongly coupled to a photonic crystal
cavity for the on- and far off-resonant cases. For the off-resonant case, phonons
mediate off-resonant coupling between the QD and the photonic resonator,
a phenomenon unique to solid-state cavity QED.
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1. Introduction

Many proposed methods in quantum information processing employ the strong optical
nonlinearity created by a single quantum emitter coupled to an optical resonator [1], such
as for example a quantum dot (QD) coupled to an optical microcavity [2]. Such solid-state
cavity quantum electrodynamics (QED) systems can be used for the scalable implementation
of quantum information processing devices, but in order to do that it is important to observe
the coherent interaction between the QD and a laser field. The existence of the light-field
dressed states is seen in several quantum optical phenomena, for example, the Mollow triplet in
resonance fluorescence measurements [3], Rabi oscillations between the QD ground and excited
states [4] and the Autler–Townes splitting in the absorption spectrum of the QD [5].

The observation of the Mollow absorption spectrum is a classic example of bichromatic
driving where a strong pump is used to dress the QD whose absorption spectrum is observed via
a weak probe [6]. Observing the Mollow triplet in the resonance fluorescence of the QD requires
a very sensitive background-free measurement. Experiments performed in solid-state systems
have so far relied on complicated fabrication techniques to build structures where the probe and
collected light follow orthogonal paths [7] or they have used sophisticated signal isolation for
background reduction [8].

Recently, there has been a novel experimental demonstration that makes use of off-
resonant QD–cavity coupling combined with bichromatic driving to observe the dressing of
the QD [9]. When the QD is driven resonantly the cavity emits light through an incoherent read-
out channel spectrally removed from the QD resonance [10–13]. This read-out channel arises
from incoherent processes that result in the emission of photons at the cavity frequency under
optical excitation of the QD and vice versa [14, 15].

In this paper, we show that in addition to QD dressing, such bichromatic driving can be
used to observe several coherent effects in a dressed cavity QED system, including higher order
dressed states, supersplitting of the dressed states and the ac-Stark shift of the dressed states
for a resonant cavity–QD system. These effects are manifested in the response of the cavity
emission intensity in a CW pump–probe experiment.

All the simulations considered in this paper have been performed with experimentally
realizable parameters as found in a system composed of InAs QDs embedded in GaAs planar
nanocavities. In particular, our theory on the appearance of the QD dressed states in the cavity
emission spectrum models a recent experiment [9]. The values of the relevant parameters,
including the cavity decay, the QD decay, the vacuum Rabi frequency and the QD driving,
can be experimentally verified. Experiments demonstrating the other theoretical results of this
paper, namely supersplitting or ac-Stark shift of the dressed states, have not yet been performed.
It should also be noted that we have ignored the effects of spectral diffusion, which reduces the
visibility of coherent effects.

2. Theory

2.1. Physical model

We theoretically model driving the QD resonantly with a pump field strong enough to dress the
exciton states. A weak probe beam is scanned across the QD resonance and the photoemission
of the cavity is observed. We consider the optical transition of the QD as a two-level system,
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and model the coherent driving of a cavity QED system using the Jaynes–Cummings (JC)
Hamiltonian

H = ωca
†a + ωdσ

†σ + g(σ †a + σa†) + J6 + J ∗6†, (1)

where ωc and ωd are, respectively, the cavity and QD resonant frequencies, a and σ are,
respectively, the annihilation operators for the cavity mode and the lowering operator for the
QD, g is half of the vacuum Rabi splitting and J is the Rabi frequency of the field driving the
QD. 6 is either a or σ depending on whether the cavity or QD is being driven, respectively.
Since the laser field is bichromatic, J takes on the following form, where ωl is the frequency of
the pump laser, J1 and J2 are the Rabi frequencies of the pump and probe lasers, respectively,
and δ is the detuning between the pump and probe lasers:

J = J1eiωlt + J2ei(ωl+δ)t . (2)

Without loss of generality, we assume that J1 and J2 are real. Pumping the QD on resonance
(ωl = ωd) and transforming equation (1) to a frame rotating with the pump laser field leads to

H = 1ca
†a + 1dσ

†σ + g(σ †a + σa†) + J1σx + J2(e
iδtσ + e−iδtσ †)

≡ H0 + J2eiδt6 + J2e−iδt6†, (3)

where 1i = ωi − ωl, σx = σ + σ †. The term J1σx + J2

(
eiδtσ + e−iδtσ †

)
describes the bichromatic

driving of the QD [16, 17]. While there is no frame in which the equation of motion is
time independent, the fact that the system is weakly probed allows us to solve the problem
perturbatively by the method of continued fractions [18]. From the Hamiltonian and associated
incoherent loss terms, we find the fluorescence spectrum of the cavity as a function of the
pump strength J1 and the pump–probe detuning δ. To this end, we develop a framework for
calculating any number of observable quantities for a bichromatically driven cavity–dot system.
To incorporate incoherent losses, the problem is framed in terms of the master equation for the
density matrix

ρ̇ = −i[H, ρ] +D(
√

2γ σ)ρ +D(
√

2κa)ρ +D(
√

2γdσ
†σ)ρ +D(

√
2γra

†σ)ρ, (4)

where D(C)ρ indicates the Lindblad term CρC†
−

1
2

(
C†Cρ + ρC†C

)
associated with the

collapse operator C . The second and third terms of equation (4) represent cavity decay and
spontaneous emission from the QD, with γ and κ being the spontaneous emission rate and cavity
field decay rate, respectively. The fourth term proportional to γd induces pure dephasing and
represents a phenomenological interaction of the QD with its environment. The effect of pure
dephasing is to broaden the resonant lineshapes and destroy coherence, decreasing the visibility
of coherent effects [19]. The term proportional to γr is of particular importance as it describes
phonon-mediated coupling between an off-resonant QD and a cavity mode [14], a phenomenon
unique to solid-state systems where relaxation of the excited QD occurs through the generation
or absorption of a phonon and the creation of a photon in the cavity. Such a term better
accounts for off-resonant coupling than pure dephasing alone as it induces population transfer
between the QD and the cavity for larger detuning ranges, consistent with experiments [14]. As
a simplification, we take the low temperature limit of the phonon-mediated coupling, ignoring a
term proportional to n̄aσ †, where n̄ is the population of phonons at frequency 1 = 1c − 1d as
given by the Bose–Einstein statistics. n̄ is relevant in experimental systems, as it is generally not
negligible and gives rise to the temperature dependence of the off-resonant coupling. It should
also be noted that here we consider only the case of a QD blue-detuned from the cavity, where
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the relaxation of the QD corresponds to the creation of a phonon. The appropriate Lindblad
terms would be different if the QD were red-detuned; specifically more terms would have to be
included, as off-resonant coupling is not observed in the zero temperature limit [14]. The master
equation (4) can be written in terms of Liouvillean superoperators as

ρ̇ =
(
L0 +L+eiδt +L−e−iδt

)
ρ. (5)

This formulation of the master equation is identical to equation (4). In the regime that we
consider experimentally, L± are proportional to J2 and can be treated as perturbative additions
to L0. Specifically,

L0ρ = −i[H0, ρ] +D(
√

2γ σ)ρ +D(
√

2κa)ρ +D(
√

2γdσ
†σ)ρ +D(

√
2γra

†σ)ρ, (6)

L+ρ = −iJ2[6, ρ], (7)

L−ρ = −iJ2[6†, ρ]. (8)

This equation can be solved by Floquet theory, and a solution of the form ρ(t) =∑
∞

n=−∞
ρn(t)einδt can immediately be postulated [20]. Introducing this trial solution into

equation (5), taking the Laplace transform and equating terms proportional to einδt yields the
recurrence relation

zρn(z) + ρ(0)δn0 + inδρn(t) = L0ρn(z) +L+ρn−1(z) +L−ρn+1(z), (9)

which can be solved numerically by the method of continued fractions. We seek the resonance
fluorescence spectrum of the cavity which is found to be the real part of the Fourier transform
of the stationary two-time correlation function 〈a†(t + τ)a(t)〉. Application of the quantum
regression theorem allows this quantity to be calculated as tr{a† M(τ )}, where M(τ ) solves
the master equation with the initial condition M(0) = aρ(t → ∞) [21]. From the recurrence
relation and the aforementioned initial condition, the method of continued fractions allows us to
obtain an expansion of the Laplace transform of M(τ ) of the form M(z) =

∑
∞

n=−∞
Mn(z + inδ),

from which the cavity resonance fluorescence spectrum is

S(ω) = Re(tr{a† M0(iω)}), (10)

where ω is the angular frequency of the emitted light, centered at the frequency of the pump
laser. In our calculation, ρ0 is found to first order in J2 by assuming that all ρn for |n| > 1 are 0,
reflecting the relatively weak probe strength. In the regime under consideration, much less than
one photon is ever in the cavity at any time (i.e. 〈a†a〉 � 1) and the photon basis is truncated to
a small subspace of Fock states {|0〉, |1〉, |2〉}. These approximations are validated by observing
no change in the calculation with an expansion of either basis.

2.2. Method of continued fractions

The method of continued fractions is performed by assuming the existence of matrices Sn and
Tn with the following properties:

ρn =

{
Snρn−1 if n > 0,

Tnρn+1 if n < 0.
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These matrices can be found explicitly by solving the following infinite system of equations:

Sn = −[(L0 − (z + inδ)1) +L−Sn+1]−1L+, (11)

Tn = −[(L0 − (z + inδ)1) +L+Tn−1]−1L−. (12)

In practice, a solution is found by assuming that at some large n (−n), the matrix Sn ( T−n) is 0,
and finding all other matrices. Once the set of Sn and Tn has been found, all ρn can be found,
starting with ρ0:

ρ0(z) = [L0 − z1+L−S1 +L+T−1]−1ρ(0). (13)

To obtain the resonance fluorescence spectrum, the initial conditions must be chosen carefully,
and by setting ρ(0) = aρ(t → ∞), then M0(z) = ρ0(z) in equation (13). The method of
continued fractions is also used to calculate the steady-state behavior of the density matrix,
but in the long time limit, ρ can be expanded as ρ(t → ∞) =

∑
∞

n=−∞
ρneinδt , which is the

same as the previous expansion but in this case the ρn carry no explicit time dependence. The
modified continued fraction matrices are found by setting z = 0 in equations (11) and (12). To
lowest order, the steady-state density matrix ρss = ρ0 is the nullspace of (L0 +L−S1 +L+T−1).
Normalizing ρ0 such that its trace is 1, the density matrix to first order is (ρ0 + ρ1eiδt +
ρ−1e−iδt)/(1 + tr{ρ1}eiδt + tr{ρ−1}e−iδt) which yields a first-order time-averaged density matrix
ρss = ρ0 − tr{ρ1}ρ−1 − tr{ρ−1}ρ1. This quantity is used to find the cavity resonance fluorescence
spectrum with ρ(0) = aρss .

3. Dressed state probing and supersplitting

In the absence of dissipation or pure dephasing the JC Hamiltonian H = ωc(a†a +
σ †σ) + 1σ †σ + g(a†σ + aσ †) has an eigenvalue spectrum nωc + 1

2(1 ±
√

4g2n + 12), where
1 = ωd − ωc, and n refers to the integer number of excitations in the system. A peak splitting
can be observed in low-power transmission or reflection measurements, whose magnitude can
be found by perturbation theory with a perturbing Hamiltonian J (a eiωlt + h.c.). Under resonant
excitation, the cavity transmission spectrum is

T (ω) ∝
J 2

(
γ 2 + (1 − ω)2

)
g4 + 2g2( 1

2 J 2 + γ κ + (1 − ω)ω) + (γ 2 + (1 − ω)2)(J 2 + κ2 + ω2)
, (14)

which, for the case of zero detuning between the QD and cavity, has peaks at ω± = ωc ±√√
g2(g2 + J 2) + 2g2γ (γ + κ) − γ 2, with approximate linewidth (κ + γ )/2. These resonances

correspond to the dressed states of the coupled QD–cavity system. The dependence of the peak
frequencies on the drive strength J is the ac-Stark shift caused by coupling between the ground
state and first manifold. As J increases, higher orders in perturbation theory must be considered
as the drive field couples higher order transitions between states in the JC manifold. As J
approaches the dressed state linewidth, these higher order transitions will become apparent in
transmission spectra as additional resonances (higher order dressed states), and as J surpasses
the dressed state linewidth, dressing of the cavity dressed states will be observable as splitting
of these dressed state resonances (supersplitting). As we show below, all three effects, ac-Stark
shift, higher order dressed states [22] and supersplitting [23, 24], can be observed by CW
bichromatic driving of the cavity QED system.
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Figure 1. Simulated deviation of cavity emission from the steady state for
increasing values of the pump Rabi frequency J1 under bichromatic driving
wherein the pump is resonant to the lower dressed state of the first manifold
(ωl = ω−). Plots are vertically offset for clarity. Parameter values used in
the simulation are γ /2π = 1 GHz, γd/2π = 1 GHz, γr/2π = 0, κ/2π = 3 GHz,
ωc = ωd, g/2π = 30 GHz and J2/2π = 0.01 GHz. The box identifies the onset
of supersplitting for the lower dressed state.

In this simulation, the cavity mode is resonantly pumped, and the transmission of a
weak probe is used to provide an indication of the three aforementioned effects. The system
is modeled by equations (6)–(8), where 6 = a. The time-averaged cavity transmission is
proportional to 〈a†a〉 = tr{a†aρss}.

We assume that a cavity with Q ≈ 54 000 is resonant with a QD (ωc = ωd), and the
pump laser is tuned to ωl = ω−, maximizing the field inside the cavity. This corresponds
to κ/2π = 3 GHz, γ /2π = 1 GHz, γd/2π = 1 GHz and g/2π = 30 GHz. These parameters
represent optimistic but realizable photonic crystal cavities made of GaAs-containing InAs QDs.
A weak probe is swept across the cavity/QD resonance and the total emission intensity of the
cavity (proportional to 〈a†a〉) is measured. Figure 1 displays the simulated cavity transmission
spectrum as a function of the probe frequency for increasing pump power J1. The probe is weak
and equal to J2/2π = 0.01 GHz. The pump is resonant with the lower dressed states of the first
manifold, at a frequency ω−. The vacuum Rabi splitting is clearly demonstrated in peaks located
at ∼ωc ± g, whereas the third visible peak is located at ∼ωc − (

√
2 − 1)g, and is indicative of

a transition between the first and second manifolds, as the combined lasers make up an energy
∼2ωc +

√
2(g). Increasing the pump Rabi frequency past a threshold value induces dressing

of the dressed states, visible in the red box in the uppermost curve of figure 1 as splitting in
the transmission spectrum. Pure dephasing effectively increases the value of J1 necessary for
supersplitting to be observed.

Supersplitting in the transmission spectrum can be classically explained to occur when
the field radiated by the dressed state destructively interferes with the pump field, by analogy
with the dipole-induced transparency [25]. It occurs even when J1 is below the dressed state
linewidths, which are approximately 2 GHz in our simulations. Figure 2 shows the increasing
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Figure 2. Increased supersplitting (red box in figure 1) for increasing values of
the pump Rabi frequency J1. Parameter values used in the simulation are the
same as those used in figure 1.

splitting of the driven dressed state with pump power. The splitting is expected to be linear in
J1 for a two-level system, but the influence of the higher order states complicates the situation
and alters the functional dependence.

At higher pump powers, when both first manifold dressed states display splitting, the
second manifold states exhibit a notable ac-Stark shift. Figure 3 shows the simulated cavity
emission spectrum for a value of J1 large enough to split both first manifold dressed states. Both
dressed states in the second manifold are visible, one of which is significant. When the pump
and probe frequencies satisfy the two-photon resonance condition for the second manifold and
the pump Rabi frequency surpasses the loss rate of the second manifold, the dressed states in
the second manifold become increasingly visible in the transmission spectrum. Increasing the
pump Rabi frequency, the lower dressed state in the second manifold displays a notable ac-Stark
shift as seen in figure 3. The resonance shift displays a clear transition when J1/2π ≈ 5 GHz,
when the pump Rabi frequency surpasses the loss rate of the second manifold.

The previously described simulations place the QD and cavity resonances at the same
frequency; if they were detuned, the coherent effects would be less visible, but all plots would
appear to be qualitatively the same.

4. Appearance of quantum dot dressed states

In the experiment that we emulate [9] (see figure 4), a QD coupled to an off-resonant photonic
crystal cavity is pumped resonantly. The light emitted from the system is dispersed by a grating
and the signal at the cavity frequency is spectrally isolated. A weak probe beam is scanned
across the QD resonance and the change in cavity emission intensity is measured. Spectra
obtained in this manner change dramatically as the pump power is increased and the QD states
are dressed by the pump laser. We calculate the cavity response as the maximum value of
the cavity emission spectrum at a frequency closest to the native cavity frequency, mimicking
the experimental measurement. Our simulations were performed with experimentally relevant
parameters for InAs QDs coupled to GaAs photonic crystal cavities [26]. We ignore coherent
cavity–QD coupling and set g = 0. Not only does this make the underlying physics easier
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Figure 3. Frequency (relative to QD resonance) of the emission peak from the
second manifold dressed states (see the inset) for increasing values of the pump
Rabi frequency J1. Parameter values used in the simulation are the same as those
used in figure 1. The inset shows the simulated cavity emission spectrum for
J1/2π = 3 GHz. Supersplitting is visible in both the first manifold dressed states,
and the two-photon transition to the second manifold is large.

Observe changes in
cavity emission intensity

Resonant pump
Swept probe

Figure 4. A depiction of the cavity resonance fluorescence spectrum to be
measured in experiment, showing the relevant laser frequencies for bichromatic
driving of the off-resonant QD–cavity system. The emission of the cavity is
observed while the QD is pumped resonantly with a strong laser, and a weak
probe is swept across the resonance while the intensity of the cavity emission is
measured in response.

to understand, but also off-resonant coupling is often observed in weakly coupled systems.
As will be discussed later, the observable effect of g is to create asymmetry in the cavity
intensity lineshape. The other parameters are representative of experiments in our group,
with γ /2π = 1 GHz, γd/2π = 3 GHz, κ/2π = 17 GHz and 1 = ωd − ωc = 8κ . The strength of
the off-resonant coupling has been approximated as γr/2π = 0.1 GHz to qualitatively match
emission spectra observed in experiment.
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Performing the simulation for the full system involves finding the cavity resonance
fluorescence spectrum from equation (4) and observing how the peak of the cavity emission
changes as a function of the pump–probe detuning δ. The physics can be understood
intuitively by considering the experiment as probing a four-level system created by the
resonant pump beam dressing the QD. When the probe beam is on resonance with one of
the dressed state transitions, coherent effects alter the cavity resonance fluorescence spectrum
significantly as the pump Rabi frequency J1 approaches and surpasses the natural linewidth of
the QD.

The effect of the collapse operator a†σ is to move population from the QD to the cavity.
Thus, changes in cavity emission are caused by changes in the excited state population of
the QD as induced by the probe. Because the probe has the effect of moving population,
the measurement is similar to an absorption measurement. Interference between quantum
mechanical pathways counters the effect of the probe moving population into the QD excited
state, resulting in characteristic dips in the cavity emission intensity lineshape. In essence, the
probe field has the effect of altering the steady-state QD excited state population, and it is the
interference of quantum mechanical pathways that results in the observed lineshapes, similar to
an absorption measurement [6].

For a pump Rabi frequency lower than the QD spontaneous emission rate, 2J1 < γ ,
the QD dressed states are not discernible, and the cavity emission lineshape (i.e. cavity
emission intensity versus pump–probe detuning δ) is a simple Lorentzian. The linewidth of
this Lorentzian is approximately the natural QD linewidth adjusted by power broadening and
pure dephasing. As the Rabi frequency increases beyond a critical threshold 2J1 ∼ γ , a notable
change in the cavity emission response occurs. Two dips appear symmetrically around δ = 0 that
deepen and separate further as the pump power is increased. These dips are direct evidence of
the dressing of the QD, and are separated by twice the Rabi frequency. The response lineshape
is directly related to the excited state population of the dot, given to second order in the probe
strength as

ρee =
J 2

1

2J 2
1 + γ (γ + γd)

+γ J 2
2

[
(8J 4

1 (γ + γd)(−2(γ + γd)
2
− 3δ2) + (γ + γd)

3(4γ 2 + δ2)

((γ + γd)
2 + δ2) + 4J 2

1 δ2(−3γ (γ + γd)
2 + γdδ

2))

]
[

(2J 2
1 + γ (γ + γd))

2((γ + γd)
2 + δ2)(4(2J 2

1 + γ (γ + γd))
2

+(−8J 2
1 + 5γ 2 + 2γ γd + γ 2

d )δ2 + δ4)

] . (15)

Figures 5(a) and (b) show the steady-state excited state population, 〈σ †σ 〉, of a QD under
bichromatic driving. The population is given with respect to the value with zero-probe field,
J 2

1 /(2J 2
1 + γ 2 + γ γd). For a weak pump, the response of the QD excited state is Lorentzian; for

a strong pump, 2J1 ∼ γ , the QD begins to saturate at which point the dressed states can be
resolved. When the probe is resonant with a dressed state transition, the excited state population
is decreased from its steady-state (probe absent) value. This effect gives rise to the central dip
observed in figures 5(a) and (b). For increasing J1, the dip separates into two distinct dips,
each of which corresponds to one of the two dressed state transitions. In the absence of pure
dephasing, the individual dips can be resolved for smaller values of J1, and the threshold value
of J1 also decreases.
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Figure 5. (a, b) Excited state population of a probed two-level system
under bichromatic driving (see figure 4). The values of the parameters are:
γ /2π = 1 GHz, J2/2π = 0.01 GHz and γd/2π = 3 GHz. (c, d) Deviation of off-
resonant cavity emission from steady state for different values of pump powers.
The parameter values used in the simulation are γ /2π = 1 GHz, γd/2π =

3 GHz, γr/2π = 0.1 GHz, g/2π = 0, κ/2π = 17 GHz, 1 = ωd − ωc = 8κ and
J2/2π = 0.35 GHz.

Figures 5(c) and (d) show the change in off-resonant cavity emission from the value in the
absence of probe field (J2 = 0) as a function of the pump–probe detuning for various values
of the pump Rabi frequency J1. The lineshapes reflect the excited state of the QD, broadened
slightly by the cavity linewidth. The magnitude of the cavity response decreases with increasing
pump power since the J1-dependent background is subtracted from each curve. The background
increases with pump power, saturating with the QD excited state population. Thus, the probe
makes a decreasing contribution to the total incident power, effectively moving less population
into the excited state and producing a smaller overall effect. In the perturbative limit we are
considering, increasing the probe power simply increases the overall visibility of the signal as
the cavity response is proportional to J2.

It should be stressed that in the absence of coherent coupling the intensity of the cavity
emission is dependent only on γr, which describes the strength of the phonon-assisted process
and not explicitly on the detuning. Since the incoherent coupling is phonon mediated, the
coupling constant should depend on the population of phonons at the energy of the detuning,
i.e. γr ∝ n̄b = (exp(h̄|1|β) − 1)−1. Our model predicts that the cavity emission intensity should
be roughly proportional to γr(T, 1). The factor of proportionality, as derived in [14], is a
complicated summation over virtual state coupling strengths. As a point of reference, at 10 K,
n̄b for phonons of frequency 136 GHz is approximately 1.
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Figure 6. (a) Deviation of the cavity intensity from the steady state for different
values of the QD–cavity coherent coupling strength g. Parameter values used in
the simulation are γ /2π = 1 GHz, γd/2π = 3 GHz, γr/2π = 0.1 GHz, κ/2π =

17 GHz, 1 = ωd − ωc = 8κ , J2/2π = 0.35 GHz and J1/2π = 1.75 GHz.
(b) Dependence of the difference in intensity between the two peaks on g and
1. The remaining parameters are the same as in those (a). Dots show simulation
results and curves show fits to g2/(α + 1) for the free parameter α. All values
are in GHz.

The effect of the coherent coupling g, which was excluded in the previous calculations
for simplicity, is to create an asymmetry between the features of the cavity response lineshape.
Far off resonance, the cavity coupling enhances the QD resonance fluorescence, and this effect
is stronger for the dressed state transition nearer in frequency to the cavity resonance. The
cavity response when this dressed state is probed is suppressed relative to the background,
while the response to probing the other dressed state is enhanced. This asymmetry is shown in
figure 6(a) where the cavity response is shown for increasing g. In this regime where 1 � κ, γ

the difference in peak intensities is proportional to J2γrg2/(α + 1), for an empirical fitting
parameter α. Figure 6(b) shows this functional dependence.

By tuning the temperature of the QD–cavity system, the relevant parameters can be
found experimentally and g can be determined. One difficulty is that γr is also dependent on
temperature and detuning. An alternative but equivalent method is to fit the ratio of the larger
peak intensity to the smaller peak intensity to a function of the form 2αx/(1 + β − αx), where
α and β are fitting parameters and x = g2/1. In making this measurement, it should be noted
that asymmetries in the lineshape can also be caused by driving the QD with a detuned laser and
thus the pump laser should be very carefully tuned to the QD resonance.
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5. Conclusion

In this paper, we have theoretically analyzed the observation of dressed and supersplit states in
a solid-state cavity QED system by a bichromatic CW pump–probe experiment. We have shown
that the higher-order dressed states will be visible in such transmission measurements for the
current system parameters. By increasing the pump power, ac-Stark shift and supersplitting
of the dressed state resonances can be observed, an indication of the dressing of the dressed
states. Additionally, bichromatic driving of the QD can be used to observe the dressing of
the QD through an incoherent off-resonant QD–cavity coupling unique to solid-state systems.
Using the off-resonant cavity to make spectroscopic measurements of the QD could enable a
more convenient method of reading the state of the QD in quantum information processing
applications.
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