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Abstract: Despite tremendous advances in the fundamentals and applications of cavity 
quantum electrodynamics (CQED), investigations in this field have primarily been limited to 
optical cavities composed of purely dielectric materials. Here, we demonstrate a hybrid metal-
dielectric nanocavity design and realize it in the InAs/GaAs quantum photonics platform 
utilizing angled rotational metal evaporation. Key features of our nanometallic light-matter 
interface include: (i) order of magnitude reduction in mode volume compared to that of 
leading photonic crystal CQED systems; (ii) surface-emitting nanoscale cylindrical geometry 
and therefore good collection efficiency; and finally (iii) strong and broadband spontaneous 
emission rate enhancement (Purcell factor ~ 8) of single photons. This light-matter interface 
may play an important role in quantum technologies. 
© 2016 Optical Society of America 

OCIS codes: (220.4241) Nanostructure fabrication; (260.3910) Metal optics; (230.5750) Resonators; (270.5580) 
Quantum electrodynamics; (270.0270) Quantum optics; (230.5590) Quantum-well, -wire, and -dot devices. 
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1. Introduction 

A prototypical cavity quantum electrodynamics (CQED) system that consists of a quantum 
emitter (QE) in an optical cavity is described by three rates, the emitter decay rate γ, the 
cavity field decay rate κ, and the coherent emitter-cavity coupling rate g [1]. The coherent 

coupling rate scales as 1/g V∝ , where V is the cavity mode volume, and therefore 

increasing field localization has long been recognized as a path to boosting emitter-field 
coupling strength [2–5]. For example, whispering gallery GaAs microdisk resonators exhibit 
mode volumes 3~ 5 ( / )V nλ and coupling to InAs quantum dots with rate / (2 ) ~ 2 3g π −  

GHz [6]. Planar photonic crystal nanocavities possess an order of magnitude smaller mode 
volume 3~ 0.5 ( / )V nλ  with light-matter coupling strengths up to / (2 ) ~ 40g GHzπ  [7–9]. 
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Moving beyond this nanophotonic CQED regime and achieving 
/ (2 ) 40g GHzπ > requires coupling a single QE to a nanoscale cavity characterized by deep 

sub-wavelength optical confinement [10,11]. While recent work theoretically demonstrates 
the ability to reach ultra-small V with dielectric cavities [12], experimental efforts have 
focused primarily on nanometallic cavities and, in particular, plasmonic cavities that can 
shrink the effective optical wavelength. For example, continued work on the now common 
nanoparticle-on-mirror (NPOM) geometry [13] has led to room-temperature strong coupling 
between the NPOM cavity and organic fluorophores [14]. However, there have been no 
related reports involving solid-state emitters such as defect centers in crystal lattices or self-
assembled emitters such as the InAs quantum dot (QD), which is of great interest for quantum 
light sources thanks to its large internal quantum efficiency and short radiative lifetime [15]. 
In order to reach this regime with such emitters, we require a cavity that can achieve ultra-
small V without resorting to plasmonic effects, as solid-state emitters have been shown to 
quench in their presence [16]. 

In this article, we investigate a hybrid metal-dielectric CQED system that is a variation of 
recent theoretical proposals [3,17] and an integrated solid-state alternative to early 
demonstrations with other emitters such as dye molecules and colloidal quantum dots [18–
22]. Notably, our modification allows for surface emission and hence good collection 
efficiency compared both to the bulk and to fully-embedded geometries that require optical 
addressing through a substrate. We propose this geometry as a general platform for quantum 
photonics and discuss the fabrication challenges inherent to surface-emitting metal-dielectric 
material interfacing. Finally, we demonstrate broadband enhancement of the rate of 
spontaneous emission of a QD as well as single-photon emission as a proof-of-concept for the 
platform’s potential for strong light-matter interactions. The proposed platform may play an 
important role in the studies of fundamentals of cavity quantum electrodynamics [23] as well 
as in its application to optical interconnects [24] and quantum information processing [25–
27]. 
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Fig. 1. Schematic depiction of the hybrid metal(εm)-dielectric(εd) nanocavity from (a) top-down 
and (b) side views. FDTD simulation of the nanocylinder cavity field intensity (|Ex|

2) for the x-
polarized TE11 waveguide mode viewed in the nanocylinder cross-section (c) and along the 
nanocylinder axis (d). 
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2. Structure and modeling of the hybrid metal-dielectric nanocavity 

Our nanocavity consists of a dielectric nanopillar surrounded by a metallic film on all sides 
but left bare on the top surface as shown in Figs. 1(a) and 1(b). This nanopillar behaves as a 
cylindrical waveguide with guided TE and TM modes that are confined vertically by an 
impedance mismatch between the air, waveguide, and underlying substrate. This mismatch 
gives rise to a weak Fabry-Perot effect that leads to a standing wave in the vertical direction. 
Using the finite-difference time-domain (FDTD) method, we simulate the fundamental TE11 
nanocylinder mode of a GaAs (n = 3.46) nanopillar with r = 50 nm and h = 200 nm that is 
surrounded by a Ag [28] film, as shown in Figs. 1(c) and 1(d). We note that the in-plane field 
profile mimics that of the textbook cylindrical waveguide, while the vertical profile 
demonstrates confinement in the top half of the pillar, as expected given the smaller 
impedance mismatch between the effective index of the waveguide and air. The pillar 
supports degenerate x̂ and ŷ polarized TE11 waveguide modes but we concentrate our ensuing 

discussion on one polarization. Finite-difference time-domain simulations show that the 
nanocavities possess resonances with optimal quality factor Q ~ 25 and ultra-small mode 
volumes 3~ 0.025 ( / )V nλ at the emission wavelength according to 

2 2( ( )) ( ( ))
( ) / max ( )

r r
V E r dV E r

ωε ωε
ω ω

∂ ∂ =  ∂ ∂ 
  

 [29]. 

A QE embedded within the nanocavity may decay via emission of a photon polarized into 
either of the orthogonal TE11 nanocylinder modes. Moreover, the spontaneous emission rate is 
enhanced from the bulk rate due to the enhanced density of optical states (Purcell effect). The 
cavity exhibits a maximum achievable Purcell factor / ~ 35p Bulk CavityF τ τ=  according to the 

expression 
3

2

3

4
c

p

Q
F

n Vπ
λ   =      

, which agrees with the FDTD simulation in Fig. 2. In this 

case, application of the dipole approximation is valid despite the small size of the cavity since 
the gradient of the field at the QD position is negligible when near the field maximum [30]. 

 

Fig. 2. FDTD simulation of Purcell factor as a function of emission wavelength for an r = 50 
nm, h = 200 nm cavity, demonstrating an approximate Q ~ 25. 

In practice, solid-state QEs can spectrally cover a wide range of both the visible and near-
infrared regimes of the electromagnetic spectrum. In addition, emitters can be spatially 
located at arbitrary depths in their host substrates, but only in the case of growth processes 
allowing for precise control of depth such as molecular beam epitaxy. For strong light-matter 
interaction, the nanocavity must be designed such that the fundamental mode is both 
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spectrally aligned with the emitter’s optical transition and spatially concentrated such that the 
field maximum lies at the emitter’s location. In order to satisfy these conditions for an 
arbitrary emitter, we present detailed FDTD simulations showing the mode-dependence on 
key geometric features: nanopillar radius and height. 

First, we investigate tuning of the resonance as a function of the nanopillar radius. The 
resonance dramatically red-shifts for increasing radius, consistent with an increasing 
waveguide effective index, as shown in Fig. 3(a). Hence, small radius modifications can be 
utilized as a coarse adjustment for spectral alignment. The radius can be arbitrarily small but 
will be practically limited by fabrication constraints and quenching of emitters if they are 
positioned too close to interfaces. On the other hand, we note that beyond a particular radius 
that depends on the specific material system, the higher-order cylindrical waveguide modes 
will be above cutoff and hence the nanocavity will enter the undesired multi-mode regime. 
Operation in the higher order mode regime results in an enlarged mode volume and has the 
potential to shift the spatial field maximum off of the QE target depth. 

We then perform a similar analysis by varying pillar height in Fig. 3(b). Varying pillar 
height can be utilized for emitter spatial alignment in the vertical direction given that the field 
is confined to the top half of the pillar. Hence, a taller pillar may be used for emitters that are 
deeper into the substrate and vice-versa. Spectrally, we observe a redshift for increasing 
height, which is consistent with increasing the length of a Fabry-Perot cavity in line with our 
intuitive model. This redshift is less pronounced than for an equivalent change in pillar 
diameter, and therefore can be considered a finer adjustment for spectral alignment. 
Realistically, the pillar height can only be as small as the diameter of the pillar, given that the 
Fabry-Perot terminated waveguide picture breaks down below a 1:1 aspect ratio and the 
nanocavity will no longer support cylindrical waveguide modes. On the other hand, the high 
aspect ratios required for increased pillar heights present increased demands on multiple steps 
in the fabrication process including the etch and metallization. 

 

Fig. 3. FDTD parameter study of (a) pillar resonances as a function of radius r, for pillar height 
h = 200 nm and (b) as a function of pillar height h, for a fixed pillar radius r = 50 nm. These 
results demonstrate cavity resonance shift as a function of the pillar parameters in line with the 
intuitive description of the nanocavity as a Fabry-Perot terminated cylindrical waveguide. 
Here, refractive index of the pillar is n = 3.46 corresponding to GaAs at a temperature of 10 K 
in the studied wavelength range, and the pillar coating is Ag with refractive index from optical 
constant data [28]. 

Therefore, there exists a tradeoff between maintaining the desired electromagnetic 
landscape and allowing for a design that can be fabricated reliably. Despite this tradeoff, there 
remains a large parameter space of radii and heights that can be tailored to an emitter of 
interest as evidenced above. 
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3. Results and discussion 

3.1 Nanofabrication strategies and challenges 

The proof-of-concept structure is realized in the well-established InAs/GaAs quantum dot 
platform. Our QE is a bound electron-hole pair (neutral exciton X0) confined in a self-
assembled InAs quantum dot grown by the Stranski-Krastanov process in a molecular beam 
epitaxy system. Individual InAs quantum dots are roughly ~ 20 nm in lateral cross section and 
about 3 nm tall, and are located ~ 100 nm below the top surface of the GaAs wafer. We note 
that this process can be adapted to any material system that exhibits QEs provided a reliable 
anisotropic etch recipe exists. 

The metal-dielectric nanocavity is defined in the GaAs wafer using a 100 kV electron-
beam lithography system (JEOL 6300-FS) and a process based on a negative-tone electron-
beam resist (ma-N 2405). The high acceleration voltage allows for resolution of circular 
pillars with diameters as low as 70 nm due to minimal forward scattering in the resist layer. 
The negative-tone process allows for fast and compact exposure of devices on a chip, 
minimizing deleterious backwards scattering that can lead to overexposure. The devices are 
exposed in a periodic pattern and align to randomly positioned QDs in a purely stochastic 
manner. 

The resist pattern is transferred to the device layer with an inductively-coupled plasma 
reactive-ion etch process (Oxford Instruments PlasmaPro). The devices are etched using BCl3 
at a flow rate of 2 sccm and Ar at a flow rate of 28 sccm, with a chamber pressure of 2 mTorr 
and driving powers of 60 W of RF power and 450 W of ICP power. This balance of physical 
and chemical etching results in a highly vertical sidewall etch profile as shown in Fig. 4(a). 

100 nm 100 nm

(a) (b) 1

0
 

Fig. 4. (a) SEM micrograph of a bare pillar with resist mask removed to show the vertical etch 
profile. For actual devices, the resist mask is used to lift off metal after the angled rotational 
deposition process, leaving an uncapped pillar that is surrounded by metal (inset of a). (b) |Ex|

2 
of a pillar with a 20 nm air gap to the metal wall, showing field localization in the gap, with an 
SEM micrograph of a fabricated pillar with standard top-down metal deposition that exhibits 
the air gap (inset of b). 

The nanocavity requires a surrounding Ag film that conformally coats the sidewalls of the 
pillar. The presence of any air gap between metal and dielectric precludes the TE11 mode and 
leads to field localization in air and hence diminished interaction with embedded solid-state 
QEs at their frequencies of emission, as shown in Fig. 4(b). Conventional electron-beam or 
thermal metal evaporation cannot satisfy this requirement as it is anisotropic and hence 
experiences a self-shadowing effect as metal accumulates on the resist mask used for liftoff, 
as shown in the inset of Fig. 4(b). For this reason, a common strategy in other metal-dielectric 
devices is to remove the resist mask before capping the entire device in a metal film. 
However, this correlates with drastically reduced extraction efficiencies due to collection 
through the substrate. Here we devise and demonstrate an approach to conformally coat the 
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sidewalls of a pillar without coating the top to allow for surface emission. We evaporate Ag 
using a custom electron-beam metal evaporation system that uniquely allows for rotation 
about an axis that can tilt along with the substrate. We evaporate onto etched devices that are 
rotating about an axis tilted at 45°, allowing for metal to accumulate directly on the walls of 
the pillar as shown in Fig. 4(a). Finally, the remaining resist mask can easily be removed 
using n-methyl-2-pyrrolidone in an ultrasonic bath. 

We note that for any device with a vertical sidewall and a high aspect ratio, metal coating 
with evaporation or sputtering will likely result in voids due to the aforementioned shadowing 
phenomenon even for fully embedded structures. We propose that our scheme for angled 
rotational deposition be used for any device requiring a conformal metal coating. 

3.2 Optical characterization and photon statistics measurements 

For the following measurements, the InAs quantum dot is contained within a GaAs nanopillar 
of radius r ~ 40 – 50 nm and height h ~ 200 nm that is surrounded by a Ag film. The QD is 
located at a local field intensity of / 0.8maxE E = due to suboptimal vertical positioning. The 

measurements are taken in an open-flow helium cryostat at a temperature of 10 K, though we 
note that this platform can easily be extended to room-temperature operation given a QE that 
maintains electron confinement at high temperatures. 

 

Fig. 5. (a) Representative photoluminescence spectrum of a nanocavity containing a single 
quantum dot. The single exciton (X) line is highlighted for coupling to the nanometallic cavity 
Xc (black) and a reference bare pillar Xp (green) that are offset horizontally (0.8 nm) and 
vertically (arbitrary) for clarity. (b) Total number of single photons collected per second (black 
circles) for quasi-resonant excitation of the exciton line Xc. The horizontal axis corresponds to 
incident power, measured before the objective lens, and the source is excited with pulses at an 
80MHz repetition rate. The data is fit to a saturation model (dashed red line). (c) Intensity 
autocorrelation g(2)(τ) measurements filtered on the single exciton line well above saturation 
powers show strong photon anti-bunching. (d) Fluorescence decay measurements (black 
circles) with an exponential decay fit (red line) taken with a streak camera for an exciton line 
in a hybrid metal-dielectric nanocavity, showing 8-fold enhancement in the radiative decay 
rate (spontaneous emission) over an exciton line in a bare pillar (inset). 

                                                                   Vol. 7, No. 1 | 1 Jan 2017 | OPTICAL MATERIALS EXPRESS 237 



Roughly one in ten fabricated cavities exhibits multiple emission lines from a variety of 
QD states, including the neutral exciton (X0), charged exciton (X-, X+) and bi-exciton (XX). 
The intensity of these quantum dots for well-coupled QD-cavity systems is quite bright with 
approximately ~ 8 – 10 X improvement compared to individual lines addressed in a bare 
nanopillar, as shown in Fig. 5(a). Due to the inability to isolate single QD exciton lines in 
bulk at the growth densities used in this experiment, we perform the reference measurement 
on a bare pillar of radius ~ 200 nm such that a single exciton line can be isolated without 
affecting the photonic density of states. In some of the nanometallic cavity devices (not used 
for the presented experiments), significant broadening of all transitions suggests that the 
quantum dots were located in close proximity to the GaAs/Ag interface. 

With the numerical aperture NA ~ 0.75 lens used in our experimental setup, FDTD 
simulations indicate that the lens collects ηcol,c ~ 7% of the photons coupled to the nanocavity 
mode assuming negligible loss due to metal absorption of photons emitted by the cavity 
mode. For a bare nanopillar with the size used in the reference measurements, the same lens 
collects ηcol,p ~ 3% of photons. Beyond this improvement in collection efficiency, any further 
enhancement provided by the nanometallic cavity relative to a bare pillar is subsequently 
evaluated as a Purcell effect. We note that FDTD simulations show both the cavity and a bare 
pillar exhibit improvements over the collection efficiency ηcol,b ~1.5% of a QD dipole in 
unprocessed bulk material. 

After demonstrating that we may optically isolate a single exciton line in the cavity, we 
now characterize its properties as a single photon source. To do so, we measure the number of 
single photon counts detected per second (CPS) as a function of incident optical pump power 
(P, measured before the objective lens) under quasi-resonant, pulsed excitation and present 
this data in Fig. 5(b). We perform pulsed excitation with an 80MHz repetition rate. As is 
expected for a two-level system, we observe that the number of single photon counts 
increases linearly at low pump power and saturates at high powers [31]. Fitting photon counts 
data to a saturation model with the 

form /
0 (1 )SATP P

SAT BG LINCPS CPS CPS P CPS e−= + ⋅ + − gives
5

0
1( , , , ) (860,6.4 ,1.35 10 , 435 )BG LIN SATCPS CPS CPS P nW nW−= × . The constant background 

comes from detector dark counts, while linear background is due primarily to counts from the 
pump laser. Considering that we utilize pulsed excitation with repetition period much longer 
than the excitonic lifetime, the saturation power is not dependent on the modified excitonic 
lifetime. However, the single photon counts in continuous-wave saturation are thanks to 
strong Purcell enhancement in addition to an improvement in collection efficiency coming 
from the structure geometry. We note that with a detector efficiency of ~40%, a collection 
efficiency of 7%, a setup transmissivity of ~22%, and ~105kCPS collected at saturation from 
the orthogonal y-polarized cavity mode (data not shown), the total count rate of 240kCPS 
remains under the theoretical count rate of 500kCPS for an 80MHz repetition rate laser. We 
attribute the remaining discrepancy to metal absorption of photons emitted from the cavity 
mode on the order of ~50%, leading to an overall source efficiency η ~4%. With superior 
metal deposition techniques that lead to higher quality films, the source efficiency can 
approach the theoretical efficiency of 7%. 

In Fig. 5(c), measurement of the intensity autocorrelation function 
2(2) ) ( ) ( ) / ( )( I t T tg t Iτ τ= + filtered on the neutral exciton line Xc for quasi-resonant 

excitation in a Hanbury-Brown and Twiss (HBT) experiment shows strong anti-
bunching (2) ~ 0.12

cXg , further confirming the presence of a single QE coupled to the cavity 

mode. To extract this number as well as g2(0) for the nearest peak, we compare the counts at 
each peak to the counts for a peak far from the zero-delay point, as nearby peaks experience 
bunching due to QD-blinking [32]. While g2(0) is quite low, the value is non-zero due to re-
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excitation under quasi-resonant excitation of the neutral exciton from other states in the QD 
complex, such as the biexciton and charged exciton [33,34]. 

We conclude with a characterization of the dynamics of single photon generation by the 
nanocylinder cavity. First, we establish the roughly unmodified spontaneous emission 
decay 1.02 0.033Bulkτ = ± ns via pulsed excitation of an exciton in a large non-metallized 

nanopillar device and imaging on a streak camera in the inset of Fig. 5(d). Next, we 
performed the same measurement for the exciton coupled to the mode of our nanometallic 
cavity. We observe a modified QD lifetime of 142 7cτ = ± ps in Fig. 5(d). Justified by the 

large single photon counts observed from this device, we attribute the full intensity decay rate 
modification to the radiative effects, and estimate Purcell factor Fp,c ~7 – 8 for a single 
quantum dot. Because the metallic losses only affect the damping of the cavity mode (and not 
of the emitter itself, based on the unmodified emitter linewidth in a nanometallic cavity), the 
calculation of the Purcell factor can be performed in the same way as for a lossy dielectric 
cavity. Such a Purcell factor would already redirect nearly all of the QD spontaneous 
emission into the nanocavity mode, with the spontaneous emission coupling factor 

1
p

p

F

F
β =

+
 being near unity. 

4. Conclusion 

In conclusion, we have demonstrated a novel and versatile light-matter interface for single 
QEs featuring a hybrid metal-dielectric nanocavity. Key features of our platform include very 
small mode volume, a surface emitting nanoscale cylindrical geometry, and strong and 
broadband spontaneous emission rate modification via metallic confinement. Furthermore, we 
demonstrated a method for conformal metal deposition even for structures that require a bare 
top for surface emission that has broad applicability to various designs. In the future, even 
smaller mode volumes can be achieved using coaxial structures that would equally benefit 
from the fabrication improvements demonstrated here. Finally, this light-matter interface can 
also be implemented in emerging room-temperature quantum systems such as diamond [35] 
and silicon carbide [36]. With sufficient QE density in such systems, this nanocavity can be a 
candidate for room-temperature strong coupling between an ultra-small mode volume cavity 
and a solid-state QE. 
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