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The ease of integration and a large second-order nonlinear
coefficient of atomically thin layered two-dimensional (2D)
materials presents a unique opportunity to realize second-
order nonlinearity in a silicon compatible integrated pho-
tonic system. However, the phase-matching requirement
for second-order nonlinear optical processes makes the
nanophotonic design difficult. We show that by nano-
patterning the 2D material, quasi-phase-matching can be
achieved. Such patterning-based quasi-phase-matching
could potentially compensate for inevitable fabrication
errors and significantly simplify the design process of the
nonlinear nanophotonic devices. © 2017 Optical Society of
America

OCIS codes: (130.0130) Integrated optics; (190.0190) Nonlinear

optics.

https://doi.org/10.1364/OL.42.003586

Realizing low-power nonlinear optics in a scalable manner is
important for both fundamental scientific studies, such as
quantum simulation using correlated photons [1], and for tech-
nological applications, such as efficient nonlinear frequency
conversion of single photons for quantum communication
[2] or optoelectronic information processing [3]. Second-order
χ�2� nonlinearity is particularly promising, as this effect has a
stronger dependence on cavity quality factors (Q) than χ�3�
nonlinearities, and can potentially reach few-photon nonlinear
optics [4,5]. However, efficient χ�2� processes require the phase-
matching condition to be satisfied [6]. Several methods exist
for achieving phase-matching in macroscopic systems, such
as utilizing birefringence in KDP crystals [7], or quasi-phase-
matching (QPM) in periodically poled lithium niobate
(PPLN), or GaAs [8–10]. In integrated nanophotonic cavities,
the phase-matching condition amounts to maximizing a spa-
tial overlap integral between cavity modes at the fundamental
and harmonic frequencies [11].

Most integrated nonlinear optical platforms utilize large res-
onators, as they are easier to design and fabricate compared to
compact nonlinear devices. For instance, in large integrated
ring resonators, phase and frequency matching have been at-
tained by making the effective mode indices at the fundamental

and the second-harmonic frequency equal [12]. This method is
only effective for large devices on the order of hundreds of
wavelengths or larger and has stringent fabrication tolerances.
These problems become more pronounced in smaller, wave-
length-scale devices, which are more attractive as nonlinear ef-
fects occur at lower powers due to reduced mode volume. The
limitation on device size originates from the mixing of the
electric field components (with respect to the nonlinear crystal
basis) in wavelength-scale cavities. In the presence of such mix-
ing, it becomes increasingly difficult to simultaneously satisfy
both the phase and frequency matching conditions. One ap-
proach to solving this problem is to design cavities using sophis-
ticated optimization techniques [11], which is computationally
intensive and often results in devices that are very difficult to
fabricate.

Atomically thin layered materials, in particular, transition
metal dichalcogenides (TMDCs), present a unique platform
to create a hybrid nonlinear nanophotonic system [13].
Recently, researchers measured large χ�2� coefficients in this
material system [14,15] and have integrated these materials
with nanophotonic devices [16] to observe optically pumped
lasing [17–19], strong exciton–photon coupling [20,21], cavity
enhanced electroluminescence [22], and second-harmonic
generation (SHG) [23–25]. For a perfectly phase-matched
optical resonator, the effective nonlinearity in a layered two-
dimensional (2D) material integrated cavity is proportional
to the product of the second-order nonlinear coefficient and
the thickness of the nonlinear material [13]. Due to the extreme
thinness of the 2D material, the effective nonlinear interaction
strength is reduced. However, this extreme thinness and the
evanescent nature of the interaction with the photonic device
allow 2D materials to be integrated on a nano-cavity without
significantly perturbing its electromagnetic modes. Via finite
element electromagnetic simulations, we confirmed that the
mismatch between the spatial distribution of modes with
and without 2D material on top is of the order of 1 × 10−4.
For these simulations, we used graphene as the candidate
2D material for the availability of the model parameters, which
have been proven to conform to experimental results [26]. We
expect similar behavior for TMDCs as well. Based on this in-
tuition, we propose and theoretically analyze a method to ob-
tain QPM in ultra-compact nano-cavities by post-fabrication
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patterning of the 2D material. The efficiency of the SHG in a
patterned TMDC clad nano-cavity is evaluated by calculating
the overlap integral. Our analysis suggests that, in a cavity with-
out any phase-matching, we can retain the modal overlap of
∼65% of the value in a perfectly phase-matched cavity. By pat-
terning the 2D materials on a nano-cavity with a low inherent
nonlinear overlap, we can approach the values of the nonlinear
overlap obtained by perfect phase-matching. This ability is ab-
sent in the usual nonlinear cavities, where the cavity itself is
made of the nonlinear material, and patterning the nonlinear
material completely changes the confined modes. The robust-
ness of the cavity modes against the perturbation of 2Dmaterial
makes patterning-based phase-matching possible.

The conversion efficiency of SHG in a nano-cavity is deter-
mined by the spatial integral of the overlap between the fun-
damental and the second-harmonic mode. A measure of the
overlap integral is given by the β-factor [11], defined as
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Here, χ�2�ijk are elements of the χ�2� tensor in the Cartesian

coordinates; ~Ef and ~Eh are the electric fields at the fundamen-
tal and second-harmonic frequency, respectively; the integra-
tion in the numerator is performed only over the space
where the nonlinear material is present, whereas the integral
in the denominator is performed over the whole space.
Unfortunately, this overlap integral often turns out to be very
small due to the natural tendencies for the numerator to inte-
grate to zero from mode symmetries. In nanophotonic cavities
[11,27], the spatial distribution of the nonlinear coefficient χ�2�ijk
and the field distributions are interdependent, complicating the
optimization process. In a 2D material-clad nano-cavity, we can
engineer the spatial distribution of χ�2�ijk and the cavity modes
independently. Hence, the β-factor can be changed signifi-
cantly by selectively patterning the 2D material, allowing
the complex optimization problem to be split into two straight-
forward optimization steps. To show the efficacy of patterning
the 2D materials, here, we calculate β in 2D material �χ�2�yyy �
60 pm∕V� [15] clad nanophotonic cavities, such as ring and
disk resonators (Fig. 1), and compare them to those calculated
for previously reported cavity systems with aluminum nitride
(AlN) with χ�2�zzz � 5 pm∕V [12] and gallium phosphide (GaP)
with χ�2�xyz � 80 pm∕V [28]. For these calculations, we assume
the fundamental mode is at 1550 nm, and the second harmonic
is at 775 nm. We note that our methods can be employed for
both travelling wave resonators and resonators with standing
waves. While the mode profiles in a travelling wave resonator

change with time, the overlap integral is independent of time,
and, thus, the 2D material-patterning approach is valid.

For large rings, the optimization process for the bare cavity is
less complex, as there is little mixing between different polar-
izations. Hence, just ensuring the same effective mode index
neff for the fundamental and second-harmonic modes is suffi-
cient. By satisfying the mode-matching condition, we ensure
that the harmonic and the square of the fundamental mode
will retain the same relative phase as they propagate [6]. We
calculate the neff by using finite element methods and deter-
mine the waveguide width, where the effective indexes at
775 and 1550 nm are the same, keeping the waveguide thick-
ness fixed at 350 nm. We find that the fifth-order harmonic
mode crosses the fundamental mode at a waveguide width
of ∼1.1 μm [Fig. 2(a)]. In a ring resonator, the waveguide
bends cause a rotation of the electric field with respect to
the monolayer crystal axes, forcing us to account for the tensor
nature of the optical nonlinearity. TMDCs belong to the
P63∕mmc crystal symmetry group whose non-zero compo-
nents of the χ�2� tensor are d yyy � −d yxx � −d xxy � −d xyx
[14,29]. Moreover, since the thickness of the monolayer is
much smaller than the wavelengths, we will take the fields
to be roughly constant over its thickness and reduce the integral
in the numerator to a surface integral multiplied by the 2D
material interlayer thickness of d ≈ 0.7 nm [15]. By converting
to cylindrical coordinates and taking the radial position to be
approximately constant over the radial integration, the
expression for the overlap integral simplifies to
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: (2)Fig. 1. Schematic of (a) ring and (b) disk resonator with patterned
layered materials on top for the phase-matching.

Fig. 2. Layered material-clad ring resonator: (a) effective mode in-
dices in a large ring resonator as a function of the waveguide width.
The upper inset corresponds to the mode profile of the harmonic
mode whose effective index is plotted in red, while the lower inset
is the fundamental mode plotted in black. (b) The resulting nonlinear
overlap from the fundamental and harmonic modes in (a). The red
dotted line shows the position of the 2D material. The field experi-
enced by the 2D material is shown in the top half of the figure. (c) The
overlap surface profiles for a mode-matched ring with the correspond-
ing optimal 2D material shown by the hexagonal pattern. (d) The
overlap and optimal pattern with a mode mismatch �Δm � 2�.
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Here, Af and Ah represent the modal profiles shown in
Figs. 2(a) and 2(b), while Lf and Lh correspond to the fields
at the surface of the waveguide where the TMDC is placed; R is
the ring radius, ϵ is the permittivity, ϵ0 is the vacuum permit-
tivity, and da is the area differential. Figure 2(b) shows the non-
linear overlap of the cross-sectional mode profiles for the two
previously discussed modes with the inset plotting the overlap
function for the cut designated by the dashed red line, where
the TMDC will be placed. We find that the overlap integral can
be increased by restricting the integration domain to only in-
clude portions of the overlap function with the same sign.
Assuming that one of the 2D material axes is aligned along
the polarization of the modes in the waveguide, a two- to
three-fold increase in SHG power can be achieved in a straight
waveguide, depending on which of the two patterning options
(signs) is chosen. The integral over the azimuthal coordinate θ
[Eq. (2)] details how the overlap changes due to the tensor
nature of the second-order nonlinearity of the TMDCs. The
odd nature of the integrand implies that without patterning,
a perfectly circular ring with mode-matching will nullify the
second-order nonlinearity of the TMDCs placed on top.
However, nullification of the nonlinearity due to these sign in-
versions can be avoided by inverting the radial patterning
[Fig. 2(c)].

In cylindrically symmetric geometries, the supported modes
are discrete, allowing only momenta, which create constructive
interference over a round trip. Therefore, we can express the
momentum mismatch as Δm � mh − 2mf , where mh and
mf are the azimuthal mode numbers of the harmonic and fun-
damental modes, respectively. This leads to an additional azi-
muthal term, exp�iΔmθ�, inside the integral in the numerator
of the overlap function. For the AlN ring, this implies a
quenching of SHG light as the overlap function becomes iden-
tically zero. However, in the case of a 2D material integrated
ring, this integral will essentially cause additional sign flips in
the integrand that can be readily compensated for by adjusting
the patterning scheme [Fig. 2(d)]. We numerically calculate the
β-factor for cavities with modes at the fundamental and the
harmonic frequencies but with a slight momentum mismatch.
When the ring is phase-matched �Δm � 0�, a 2D material-clad
ring provides β � 0.009 J−1∕2, almost an order of magnitude
smaller than that of AlN ring �β � 0.089 J−1∕2� [12]. However,
for Δm ≠ 0, the overlap integral for the AlN ring iden-
tically falls to zero, whereas by appropriately designing the
pattern, the overlap function remains nearly constant at
β ≈ 0.008 J−1∕2, regardless of Δm for the ring with patterned
2D materials. We note that such non-zero momentum mis-
match will inevitably arise from fabrication errors. By allowing
the nonlinear overlap to be tailored after the fabrication of the
resonator, the tolerances can be significantly relaxed.
Furthermore, the second etching step also has rather loose fab-
rication tolerances. The exact penalties will completely depend
on the modes under consideration, but, for most reasonable
mode structures, slight fabrication errors will not destroy device
nonlinearity. For instance, the phase-matched ring retains 90%
of the optimal β even when over etched in each direction
by 60 nm.

The performance enhancement due to the patterning is
more prominent when we consider the whispering gallery
modes in a small resonator, where the polarizations are strongly
mixed with each other. In a small resonator, it is far more

difficult to optimize the nonlinear overlap function. This is
underlined by the comparatively small number of experimental
demonstrations of SHG devices with modes at the fundamental
and harmonic frequencies with good overlap [30]. One prom-
ising route to realize QPM in micro-disk resonators made of
III-V compounds is to exploit the 90 deg rotation about the
(100) crystal axis, which is equivalent to a domain inversion.
It has been demonstrated that QPM could be achieved by
introducing a phase mismatch �Δm � �2� that counteracted
the domain inversions [31]. We compare the performance of
our patterned 2D material approach with a GaP disk of a radius
of 3 μm and a thickness of 200 nm for the modes with
azimuthal mode numbers 26 and 54 for the fundamental
and second-harmonic modes. With a value of χ�2� �
80 pm∕V for GaP, we found β � 4.734 J−1∕2, compared to
β � 0.570 J−1∕2 for patterned 2D materials on the same
disk with the same modes. The bulk nonlinearity again
demonstrates a larger overlap due to the increased thickness,
but at the cost of much more stringent fabrication tolerances.
To demonstrate the flexibility of patterned monolayer devices,
we design an arbitrary SiN disk resonator with a radius of 3 μm
and a height of 350 nm. By choosing mh � 40 and mf � 15,
which correspond to modes at ∼775 and ∼1550 nm, we find
that β can be has high as 0.1626 [Fig. 3(a)]. The efficiency for
such a mismatched GaP disk resonator drops by many orders
of magnitude [32]. We note that the β values are larger for
the small disk, as is expected from the small mode volume
of the resonators. This overlap engineering can be extended
to modes with more complicated spatial profiles, as shown
in Fig. 3(b).

We report a new way to perform phase-matching using
layered materials. The insensitivity of the cavity-confined spa-
tial mode profiles to the 2D materials placed on top allows in-
dependent optimization of the nano-cavity and nonlinear
medium. Such ability will significantly simplify the design
process of nano-cavities and can potentially circumvent the
inevitable fabrication imperfections.

Funding. National Science Foundation (NSF) (1433496,
1640986); Air Force Office of Scientific Research (AFOSR)
(FA9550-15-1-0150).

Fig. 3. Nonlinear 2D material-clad disk resonators: the nonlinear
overlap integrand for a micro-disk resonator integrated with 2D ma-
terials on top. The patterned hexagonal regions correspond the optimal
patterns for the 2D material for (a) harmonic and fundamental modes
with radial mode index ρ � 1, and mh � 2 × mf � 30, and
(b) ρf � 1; ρh � 4 with mf � 15, and mh � 40.
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