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Abstract: Weak material nonlinearity at optical frequencies poses a
serious hurdle to realizing optical bistability at low optical powers, which is
a critical component for digital optical computing. In this paper, we explore
the cavity enhancement of the second-order optical nonlinearity in order to
determine the feasibility of few photon optical bistability. Starting from a
quantum optical formalism of a doubly resonant cavity (required to meet
the condition of phase matching), we derive a dynamic classical model of
a cavity that is bistable at the fundamental mode. We analyze the optical
energy and the switching speed as a function of the cavity quality factors
and mode volumes and identify the regime where only ten’s of photons are
required to perform the switching. An unusual trend in the switching speed
is also observed, where the speed monotonically decreases as the cavity
linewidth increases. This is ascribed to the increase in the switching gain
with increasing cavity linewidth.
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phide photonic crystal nanocavities with ultralow continuous wave pump power,” Opt. Express 17, 22609–22615
(2009).

#238167 - $15.00 USD Received 16 Apr 2015; accepted 31 May 2015; published 10 Jun 2015 
(C) 2015 OSA 15 Jun 2015 | Vol. 23, No. 12 | DOI:10.1364/OE.23.016246 | OPTICS EXPRESS 16246 



17. S. Buckley, M. Radulaski, J. L. Zhang, J. Petykiewicz, K. Biermann, and J. Vučković, “Multimode nanobeam
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1. Introduction

It has long been a goal of optical physicists to utilize light to control the transmission of another
optical signal, and thus constructing all optical logic gates [1]. One way to achieve such control
is via optical bistability, in which two distinct output optical powers can be achieved for the same
input power [2]. Thus, one can control the output power by transitioning between two stable
states with a minimal change in the input signal. With an increasing trend of building optical
interconnects for data transfer over short distances, one can envision that optical systems could
be a new means of computation, rather than simply a channel for signal transportation [3, 4]. In
such optical computing networks, a bistable optical device is an essential component.

Optical bistability can be achieved in several ways, including via thermo-optic effects [5], car-
rier injection [6], a combination of both [7], or via optoelectronic feedback [8]. Unfortunately,
all these methods are inherently slow, as they implicitly or explicitly rely on carrier genera-
tion. Another way to achieve optical bistability is via nonlinear optical effects [9]. However,
nonlinear optical effects in bulk materials are often very weak, requiring large optical powers
(∼mW ) to observe the necessary bistability [10]. This increases the power consumption of such
devices and thus, limits the technological practicality. While we can select different materials
with greater nonlinear susceptibilities, we can also reduce the operating optical power by in-
creasing the strength of the nonlinear light-matter interaction itself, e.g. by using high quality
(Q) factor cavities with small mode volumes. However, the need for strong nonlinearity and
possibility of fabricating very high Q-cavities poses an interesting trade-off. Silicon compatible
materials (i.e. silicon or silicon nitride) have long formed the foundation of electronic devices
and have recently emerged as a scalable technology for photonics [11, 12]. However, these ma-
terials lack a second-order nonlinear susceptibility, which, when present, is often much stronger
and subsequently, more effective in reducing the required optical input power. Silicon materi-
als and their existing fabrication infrastructure could still form the basis for optically bistable
devices if one can successfully incorporate strongly nonlinear materials with silicon photonic
devices. In fact, several recently discovered materials, like transition metal dichalcogenides [13]
and topological insulators [14], exhibit strong second-order nonlinear susceptibilities and can
be easily integrated with silicon compatible platforms. The possibility of creating such hybrid
systems consisting of strongly nonlinear materials integrated with a silicon compatible optical
cavity, presents an opportunity to revisit the problem of low power optical bistability, based on
second-order nonlinearity. In this paper, we seek to theoretically explore the lower limits of op-
erating optical powers at which one can achieve optical bistability. Specifically, we analyze how
the required optical power scales with cavity parameters as well as examine switching speeds
by modeling the dynamics of the bistable switch.
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Fig. 1: (a) Schematic of a cavity with two modes with nonlinear interaction gnl . The losses in the cavity primarily arise
from the leak rates in the reflection (κra) and transmission (κta) ports. There can be additional absorptive loss, which
is neglected in our analysis. (b) At steady state, the output optical power is a bistable function of the input optical
power. In practice, however, one observes a hysteretic behavior, depending on whether the input power is increased or
decreased. The parameters for the simulation are: gnl/2π = 20 GHz; κta/2π = κra/2π = 3 GHz and ∆a/κa = 8. (c) and
(d) show different geometry of the nonlinear cavity: the cavity can itself be made of nonlinear material (c), or the cavity
can be linear unto second-order, i.e., no χ(2) nonlinearity, but with a nonlinear material (e.g. 2D material or topological
insulator) transferred on top of the cavity (d).

2. Theoretical model

As explained before, in this paper, we limit our focus to second-order nonlinear optical effects.
A similar model for third-order nonlinearity, where four wave mixing can give rise to optical
bistability, is outlined in the appendix. The second-order nonlinear process relates two photons
at the fundamental frequency to a photon at the second harmonic frequency. Since this device
mediates an interaction between two different frequencies, one needs to ensure phase matching
between the modes at both frequencies [15]. In a cavity structure, this equates to a non-zero
spatial overlap between the cavity modes at the fundamental and the second harmonic frequen-
cies [16,17]. However, as we show below, in the bistable device, both input and output light are
at the fundamental mode frequency, while the second harmonic mode just mediates the nonlin-
ear interaction. We emphasize that, this is fundamentally different from a third-order nonlinear
cavity, where no such phase matching is required to observe optical bistability.

The dynamics of a nonlinear cavity with multiple resonances (at the fundamental frequency
ωa and second harmonic frequency ωb) can be described by the Hamiltonian [18]:

Ĥs = h̄ωaa†a+ h̄ωbb†b+ h̄gnl [b(a†)2 +b†a2]. (1)

The coupling constant, gnl , can be expressed in terms of the classical electric fields as [18]:

gnl = Dε0

(
ωa

2ε0

)√ h̄ωb

2ε0

∫
dr

χ(2)(r)
[ε(r)]3/2 α

2
a (r)αb(r). (2)

Here, a and b are the annihilation operators for the fundamental and second harmonic modes,
respectively; D is a degeneracy factor, describing the number of terms in the χ(2) tensor that
contribute to the nonlinearity; αa and αb are the normalized field profiles of the cavity modes
such that the field-squared and integrated over the whole volume is unity, i.e.,

∫
|αa,b|2dr = 1.

The volume integration in the expression of gnl , however, should be performed only over the
space where there is a nonlinear material present. Such distinction is particularly important in
a hybrid system, where a transition metal dichalcogenide or topological insulator are placed
on top of an otherwise linear silicon or silicon nitride cavity, e.g., see Fig. 1(d). Assuming
ωb = 2ωa, D = 2 and a perfect overlap between the cavity modes (αa(r) = αb(r) = α(r)), we
find that the nonlinear interaction term reduces to

h̄gnl = ε0

( h̄ωa

ε0εr

)3/2 χ(2)
√

Vm
(3)
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where, 1/
√

Vm =
∫

NL α3(r)dr. Note that, the phase matching condition is implicit in the as-
sumption of perfect overlap between the cavity modes. The input light can be modeled as driving
the fundamental mode, a, by adding the term

√
2κraE(e−iωl ta+ eiωl ta†) to the Hamiltonian. E

denotes the amplitude of the electric field of the driving laser, ωl is the laser frequency, and κra
is the incoupling rate of the cavity mode a associated with the reflectance from the cavity. By
transforming to a rotating frame (as the optical frequencies are much larger that the cavity loss
rate or the nonlinear interaction strength) [19], we can write

Hrot = h̄∆aa†a+ h̄∆bb†b+ h̄gnl [b(a†)2 +b†a2]+
√

2κraE(a† +a). (4)

In this representation, ∆a,b describes the detuning of each cavity mode from the laser frequency.
With a Hamiltonian, however, we can study only the lossless evolution of the system, whereas,
a realistic system is lossy. All the cavity losses (from mirror losses and material absorption) can
be incorporated by including the Lindblad terms in the Master equation describing the evolution
of the density matrix, ρ of the double cavity system, as [20]:

dρ

dt
=−i[Hrot ,ρ]+ ∑

i=a,b
κi[2AiρA†

i −A†
i Aiρ−ρA†

i Ai]. (5)

Here Ai represents the annihilation operators for either mode, a or b. Note that, for each of
these cavity modes, we have assumed there are three loss channels: reflection, transmission and
absorption, with field decay rates denoted as κra,rb, κta,tb and κla,lb, respectively (Fig. 1(a)). The
total photon-loss rate for each cavity mode is then given by κa,b = κta,tb +κra,rb +κla,lb. Using
the relation d〈Ai〉

dt = Tr[Ai
dρ

dt ], we derive the mean-field equations for the cavity fields:

d〈a〉
dt

= i∆a〈a〉− (κra +κta +κla)〈a〉−2ignl〈ba†〉+ i
√

2κraE, (6)

d〈b〉
dt

= i∆b〈b〉− (κrb +κtb +κlb)〈b〉− ignl〈a2〉. (7)

Where 〈Ai〉 is a complex number denoting the expectation value of the operator Ai. One can
numerically solve these mean-field equations to analyze the behavior of the nonlinear cavity.
We however want to first understand the condition for optical bistability in the nonlinear system
at the steady state. If ωb = 2ωa, then the rotating frame implies that ∆b = 2∆a [18]. Further-
more, for the sake of simplicity we also assume that the quality factors of our cavity modes
are identical at frequencies ωa and ωb leading to κb = 2κa. Therefore, in the steady state, by
eliminating the mode b (from Eqn. 6 we can derive:

η
2P3

trans +2η(κ2
a −∆

2
a)P

2
trans +(∆2

a +κ
2
a )

2Ptrans = 4κtaκra(∆
2
a +κ

2
a )Pin, (8)

where η = g2
nl/2κta, Ptrans = 2κta〈a†a〉 is the transmitted power from the fundamental cav-

ity mode, Pin = E2 is the input optical power and the intra-cavity photon number is given by
Nc = 〈a†a〉. The assumption of ∆b− iκb = 2(∆a− iκa) is however difficult to achieve in the
current technology and the effect of mismatch is analyzed in the appendix. However, the overall
behavior of the bistable system does not change significantly when this condition is not satisfied.
Note that Ptrans, as mentioned so far, does not have units of power, but rather photons per second.
To obtain the actual power, we need to multiply Ptrans and Pin by the corresponding photon en-
ergy h̄ωa. Eq. (8), which describes the steady state behavior of the fundamental cavity mode, is
a cubic equation (when η 6= 0) and exhibits bistable behavior as long as |∆a| ≥ (2+

√
3)κa (see

Appendix), irrespective of the magnitude of η determined by the nonlinear interaction strength.
However, η determines the input power at which the bistability appears. Simple inspection of
Eq. (8) shows that by increasing η (e.g. by increasing the nonlinear coupling strength or by
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decreasing the transmission of the fundamental mode), one can decrease the required optical
power by several orders of magnitude. We emphasize that η can also be interpreted as the
strength of the positive feedback to observe the bistability, as explained in Ref. [8].

In a realistic dielectric cavity, the cavity loss primarily arises from loss in the transmission
and reflection ports and one can neglect the absorptive loss. Moreover, the transmission and
reflection ports are generally equivalent leading to κta = κra = κa/2. Under these assumptions
we can simplify Eq. (8) to

η
2P3

trans +2η(κ2
a −∆

2
a)P

2
trans +(∆2

a +κ
2
a )

2Ptrans = κ
2
a (∆

2
a +κ

2
a )Pin. (9)

This assumption is used for all the numerical simulations present in the paper.
As previously discussed, optically bistable devices allow for large swings in the output power

with slight changes to the input power. The steady state behavior of the input and output power
as predicted by Eq. (8) shows two different values of Ptrans for the same Pin over a range of
inout powers. In practice, however, such steady-state behavior is never observed. The bistable
behavior manifests itself by a sudden jump of Ptrans between the two steady-state values, with
slight changes in Pin. Depending on whether Pin is increasing or decreasing, we observe different
behavior in the output power, characteristic of hysteretic behavior and a bistable system (see
Fig. 1(b)). The critical points of the bistable system, where we observe sudden changes in output
power from slight changes in the input power can be found by solving dPin/dPtrans = 0. These
critical points are important to qualitatively understand the scaling of the optical power for
the bistable system. To observe optical bistability, one typically requires a large laser detuning,
relative to the loss rate. Thus, when ∆a� κa, we yield critical points at Ptrans =∆2

a/η and ∆2
a/3η

corresponding to the input powers Pin = 0 and 4∆4
a/27ηκ2

a . This indicates that the signal swing
is ∼ κ2

a/∆2
a. From the expression of the critical input power Pin = 4∆4

a/27ηκ2
a , we can clearly

see that with an increasing η , the required power to observe bistability decreases, as pointed
out earlier in the paper. The critical input power also scales with the detuning and cavity loss
as ∼ ∆4

a/κ2
a . From our previous analysis, we also found out that to observe the bistability, the

condition |∆a| > (2+
√

3)κa needs to be satisfied. Hence, the input optical power where one
can observe optical bistability scales as ∼ κ3

a/g2
nl ∼ Vm/Q3. We emphasize that, such scaling

is more favorable for lowering the optical power by using a high-Q cavity, compared to other
cavity-based bistable devices employing photo-refractive or thermo-optic effects, where the
input power typically scales as ∼Vm/Q [6].

3. Performance of the switch

Using this model, we now analyze the performance of an optical switch based on the bistable
device. The input signal consists of a fixed bias power Pbias and a modulated optical signal. For
the best operation, Pbias should be in the grey region in Fig. 2(a). The modulated input signal
is changed sinusoidally with a frequency Ω and amplitude, Pamp. This will modulate the output
power with the same frequency, but a different amplitude. We define the ratio of the output and
input power amplitude as the gain, G, of the switch. As discussed earlier, the output signal swing
is proportional to κ2

a/∆2
a, and for all subsequent analysis, we will let ∆a/κa = 8. We analyze G

as a function of Pbias and Pamp for a modulation frequency of Ω/2π = 500 MHz and find that
the gain increases with decreasing Pamp (Fig. 2(b)). A bistable system can only swing between
its two steady states, and by increasing Pamp, the output swing cannot be increased indefinitely.
Hence a reduced Pamp increases the gain. At a very low value of Pamp, however, the system
cannot switch, and the output becomes distorted (not shown here). Although, a large gain is
desired for a good optical switch, we also want to have a large range of bias-points, i.e. absence
of critical biasing [3]. This means we should have a range of Pbias, where a high gain can be
achieved. Figure 2(b) clearly shows that this range decreases with decreasing Pamp. Hence to
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Fig. 2: (a) The steady state bistability plot is used to identify the bias-points, around which one can modulate the input
power to observe the change in the output power. (b) The ratio between the output power amplitude and input power
amplitude as a function of Pbias and Pamp. (c) The frequency response for two different Pamp, showing the bandwidth
changes depending on the amplitude. (d) Gain, defined as the switching ratio at a low frequency, (e) Bandwidth, defined
at the 3 dB point, is plotted as a function of the Pamp. The parameters for the simulation are: gnl/2π = 20 GHz;
κta/2π = κra/2π = 3 GHz and ∆a/κa = 8.
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(d) Bandwidth as a function of κ for different gnl .

avoid critical biasing, one needs a Pamp that is significantly larger than the absolute minimum
Pamp needed to switch between the two states.

By changing the modulation frequency, Ω, we find that the switch behaves as a low-pass
filter (Fig. 2(c)). However, the frequency response depends on the input amplitude Pamp. To
understand such dependency, we analyze the frequency response of the switch as a function of
the input amplitude Pamp keeping all other system parameters fixed (Figs. 2(d), and 2(e)). We
find that with increasing Pamp, the gain decreases while the bandwidth increases. The change in
bandwidth can be explained qualitatively via the constancy of the gain-bandwidth product. Next,
we analyze the dependence of the input optical power on the cavity loss rate κa and nonlinear
interaction strength gnl . For different system parameters, we calculate the input optical power
Pbias where we observe the optical bistability. Figures 3(a) and 3(b) show the average Pbias and
intra-cavity photon number N = 〈a†a〉, respectively, as a function of κa and gnl . As previously
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derived, the scaling of input optical power should follow Vm/Q3 ∼ κ3
a/g2

nl . However, the intra-
cavity photon number N scales κ2

a/g2
nl , as the photon number depends on the cavity loss rate

κa. From these figures, we identify the parameter range (the region under the white line in
Fig. 3(b)) where the photon number, N, is less than 10. With a nonlinear interaction strength of
gnl/2π = 20 GHz, and loss rate κa/2π = 10 GHz, one can reach the N ∼ 10 photons regime.
For a target wavelength of ∼ 1.5µm, this entails a quality factor of ∼ 20,000, which is readily
achievable in state-of-the-art cavities. To achieve gnl/2π = 20 GHz using a dielectric cavity
with mode-volume Vm ∼ (λ/n)3, n being the refractive index of the cavity material, at a typical
wavelength of λ ∼ 1.5µm, the nonlinear second-order coefficient χ(2) would need to be ∼ 5
nm/V. This is more than one order of magnitude larger than available bulk materials. To reach
the necessary nonlinearity one either needs to use a material with larger optical nonlinearity
or use a cavity with small mode volume. Although metallic structures can provide a small
mode volume, the excess loss due to the metal is detrimental for the ultimate performance.
Hence, a better avenue will be to use new materials, like 2D materials [21], perovskites [22], or
topological insulators [14] instead. Another approach could be to compensate for the reduced
nonlinear interaction strength by using a high-quality factor cavity. For example, one can reach
the ten-photon regime with gnl/2π = 1 GHz and a cavity quality factor of ∼ 200000. Such
a high quality factor is difficult to achieve in III-V materials, but can be reached in silicon
cavities. This emphasizes the necessity of building the second-order nonlinear hybrid platform,
as previously discussed.

Using these bias-points, we calculate the frequency response of the bistable system. Specifi-
cally, we analyze the gain at low modulation frequency as well as the bandwidth of the switch.
Figure 3(c) shows the gain as a function of the linewidth 2κa for different gnl values. A clear
increase in the gain is observed with κa as can be explained from the simple model of gain
∼ κ2

a . From the constancy of the gain-bandwidth product, we expect the bandwidth to decrease
with increasing κa (Fig. 3(d)). Note that such behavior is unusual for cavity based devices,
where the speed is largely limited by the cavity lifetime. In those devices the speed generally
increases with κa. Such observation is critical, as high-Q cavities are generally considered bad
for high speed operation even though they are beneficial from the stand-point of power. How-
ever, for optically bistable devices, we find that increased quality factors improve the power
consumption while maintaining high speed operation. The use of high-Q cavities is, however,
not without drawbacks as it still poses problems for thermal stability, as well as limiting gain in
the switching operation.

4. Conclusion

We have analyzed the performance of an optically bistable system based on second-order non-
linearity in terms of the power and the speed of operation via a simple dynamic classical model.
We found that with high quality-factor and low mode volume Vm, one can push the energy re-
quired to observe bistability to the few photon level. The energy scales as Vm/Q3. Temporal
analysis of the bistable switch also reveals that the speed of operation decreases with an in-
crease in cavity linewidth, in contrast to other cavity-based devices. Such low power nonlinear
operation will be useful to implement optical computing systems.

Appendix

4.1. Detailed derivation of the bistable system with χ(2) nonlinearity:

Starting from the dynamic equations in the main text

d〈a〉
dt

= i∆a〈a〉− (κra +κta +κla)〈a〉−2ignl〈b〉〈a〉† + i
√

2κraE,
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d〈b〉
dt

= i∆b〈b〉− (κrb +κtb +κlb)〈b〉− ignl〈a〉2.

we find that at the steady-state,

〈b〉= ignl〈a〉2

i∆b− (κrb +κtb +κlb)

Using this we can write the equation for operator a (at steady state) as:

i∆a〈a〉− (κra +κta +κla)〈a〉+
2g2

nl
i∆b− (κrb +κtb +κlb)

〈a〉†〈a〉2 + i
√

2κraE = 0

This can be rewritten as

i∆a〈a〉−κa〈a〉+
2g2

nl
i∆b−κb

Ptrans

2κta
〈a〉+ i

√
2κraE = 0

Assuming 2(i∆a−κa) = i∆b−κb, we can write

η
2P3

trans +2η(κ2
a −∆

2
a)P

2
trans +(∆2

a +κ
2
a )

2Ptrans = 4κtaκra(∆
2
a +κ

2
a )Pin,

The critical points are given by

dPin

dPtrans
= 3η

2P2
trans +4η(κ2

a −∆
2
a)Ptrans +(κ2

a +∆
2
a)

2 = 0

The system is bistable as long as 16η2(κ2
a − ∆2

a)
2 − 12η2(κ2

a + ∆2
a)

2 = 4η2(κ4
a + ∆4

a −
14κ2

a ∆2
a) > 0. This condition can be simplified to the criteria: |∆a| < (2+

√
3)κa. The criti-

cal points are given by

Pcr
trans =

2(∆2
a−κ2

a )±
√

κ4
a +∆4

a−14κ2
a ∆2

a

3η

These critical points are involved and provide little intuition. To qualitatively understand the
system behavior, we assume lossless cavity with κta = κra = κa/2and ∆a >> κa and simplify
the equation as:

η
2P3

trans−2η∆
2
aP2

trans +∆
4
aPtrans = κ

2
a ∆

2
aPin

Here the critical points are the roots of

3η
2P2

trans−4η∆
2
aPtrans +∆

4
a = 0

From this we calculate the critical points as previously reported.

4.2. Optical bistability in a cavity with third order nonlinear material:

We assume a third order nonlinear cavity driven by an external laser. The Hamiltonian of the
driven system is given by

H = ∆a†a+χa†aa+
√

2κrE(a+a†)

From the master equation (with losses added via the Lindblad formalism), the mean-field equa-
tions for the cavity annihilation operator a as:

da
dt

= Tr
[

a
dρ

dt

]
= i∆a− (κr +κt +κl)a+2iχa†aa+ i

√
2κrE
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The different output powers are given by Ptrans = 2κta†a; Ploss = 2κla†a and Pre f l = 2κra†a. At
steady state we can write

i∆a− (κr +κt +κl)a+2iχa†aa+ i
√

2κrE = 0

This can be simplified to

a =− i
√

2κrE

i
(

∆+ χPtrans
κt

)
− (κr +κt +κl)

The transmitted power at steady state becomes:

Ptrans =
4κtκr|E|2(

∆+ χPtrans
κt

)2
+(κr +κt +κl)2

Denoting η = χ/κt , the equation can be written as

η
2P3

trans +2∆ηP2
trans +Ptrans

(
∆

2 +(κr +κt +κl)
2)−4κrκtPin = 0

The critical points can be found out by solving

dPin

dPtrans
= 3η

2P2
trans +4∆ηPtrans +∆

2 +(κr +κt +κl)
2 = 0

and critical points are

Pcr
trans =

−2∆±
√

∆2−3κ2

3η

Pcr
in =

−2∆(∆2 +9κ2)∓2(∆2−3κ2)3

108ηκtκr

4.3. Effect of different quality factors in χ(2) nonlinear cavities:

In the main text of the paper we assumed that ∆b− iκb = 2(∆a− iκa), which is based on the
assumptions that the mode near second harmonic frequency is exactly twice the fundamental
frequency and the Q-factor of both cavities are exactly same. However, such assumptions do
not always hold true. Without such an assumption the governing equation looks like:

4η
2P3

trans +4η(κaκb−∆a∆b)P2
trans +(κ2

a +∆
2
a)(κ

2
b +∆

2
b)Ptrans = 4κtaκra(∆

2
b +κ

2
b )Pin (10)

Using similar procedures as explained before, the critical points are given by

Pcr
trans =

κaκb

6η

(∆a

κa

∆b

κb
−1
)
±

√(
1− ∆a

κa

∆b

κb

)2

−3
(

∆a

κa
+

∆b

κb

)2
 (11)

We note that, to observe the bistability, one needs to satisfy the condition,∣∣∣∣∆a

κa

∆b

κb
−1
∣∣∣∣≥√3

∣∣∣∣∆a

κa
+

∆b

κb

∣∣∣∣ (12)

Note that, even if a condition ∆b− iκb = 2(∆a− iκa) is difficult to satisfy one can easily achieve
∆a
κa
≈ ∆b

κb
. This means, the bistability condition becomes

∆a

κa
≈ ∆b

κb
≥ 2+

√
3 (13)
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Hence, we find that even if the quality factor of the second harmonic mode can be worse than
the fundamental mode, as long as similar ratio between the detuning and the linewidth for
the two modes. Under the assumptions ∆a � κa, ∆b � κb and κra = κta = κa/2, the critical
points are Ptrans = ∆a∆b/6η and ∆a∆b/2η corresponding to the input powers of Pin = 0 and
2∆3

a∆b/27ηκ2
a . Hence the input power scales as Pin ∼ ∆3

a∆b/ηκ2
a . This shows that, the input

power increases with a lower quality factor of the second harmonic mode, as it depends on ∆b.
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