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Tunable metasurfaces via 
subwavelength phase shifters  
with uniform amplitude
Shane Colburn1, Alan Zhan2 & Arka Majumdar1,2

Metasurfaces with tunable spatial phase functions could benefit numerous applications. Currently, 
most approaches to tuning rely on mechanical stretching which cannot control phase locally, or by 
modulating the refractive index to exploit rapid phase changes with the drawback of also modulating 
amplitude. Here, we propose a method to realize phase modulation at subwavelength length scales 
while maintaining unity amplitude. Our device is inspired by an asymmetric Fabry-Perot resonator, with 
pixels comprising a scattering nanopost on top of a distributed Bragg reflector, capable of providing 
a nearly 2π nonlinear phase shift with less than 2% refractive index modulation. Using the designed 
pixels, we simulate a tunable metasurface composed of an array of moderately coupled nanopost 
resonators, realizing axicons, vortex beam generators, and aspherical lenses with both variable 
focal length and in-plane scanning capability, achieving nearly diffraction-limited performance. The 
experimental feasibility of the proposed method is also discussed.

Spatial light modulators (SLMs) are essential for many applications, including beam steering1, holography2,3, and 
microscopy4. Most SLMs have large pixel sizes (~10–100 optical wavelengths), which inefficiently disperse light 
to higher diffraction orders, and have a low refresh rate (~100 Hz), hindering real-time modulation of dynamic 
wavefronts. This rate is limited by usage of liquid crystals (LCs), which have a slow response time5. The large spa-
tial extent of LCs also restricts downsizing devices, which hinders usage of SLMs for applications which require 
ultra-compact components, as in implantable microscopy6,7. MEMS-based modulators8,9 can provide higher 
speeds, but not only are these devices challenging to design and build10, they are also more prone to failure due 
to their moving parts, and with them it is challenging to provide analog phase control. Metasurfaces, ultrathin 
structures composed of quasiperiodic arrays of subwavelength scatterers, or optical antennas11,12, are a promising 
candidate for the realization of compact and efficient SLMs. With appropriate patterning and placement of scat-
tering elements, metasurfaces can implement arbitrary spatial transfer functions which can modify the phase, 
amplitude, and polarization of incident electromagnetic waves13–16. Recent works demonstrating static metas-
urface implementations of optical elements, such as blazed gratings17–19, lenses20–26, vortex beam generators27–32, 
holographic plates33,34, invisibility cloaks35,36, multi-wavelength diffractive optics37–43, and freeform optics44 show 
great promise for realizing compact optical systems. A dynamic structure composed of independently operat-
ing and individually tunable subwavelength phase elements is a prerequisite for metasurface-based spatial light 
modulation.

Unfortunately, most of the work regarding tunable metasurfaces thus far has relied on techniques which 
are either power-inefficient or incapable of tuning elements individually. While metasurfaces transferred onto 
stretchable substrates45–47 have demonstrated variable focal lengths, mechanical stretching cannot tune individ-
ual elements, limiting applicability to transfer functions with symmetries related to the stretch axis. With opti-
cally controlled phase-change material implementations48, the modulation speed is limited to that of another 
LC-based SLM, while electrical control of such a device is impossible because the pixels are not electrically iso-
lated. For approaches utilizing free carrier refraction49, large changes in amplitude occur over the phase mod-
ulation range, and those based on conducting oxides50 face the additional challenge of a small change in phase 
due to a small effective volume where the refractive index changes. In general, for techniques which directly 
modulate the refractive index of the scattering elements, it is challenging to achieve a full 2π  phase modulation 
range when operating in a non-resonant regime due to weak thermo-optic and electro-optic effects. By operating 
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in a resonant regime, weak light-matter interactions can be enhanced to induce large, nonlinear phase shifts by 
utilizing multiple roundtrips inside the resonator. Unfortunately, large changes in phase on resonance are often 
accompanied by large changes in amplitude. Unlike previous approaches, by exploiting a device structure inspired 
by an asymmetric Fabry-Perot resonator (also known as a Gires-Tournois etalon51), we describe a method for 
achieving tunable subwavelength scattering elements with uniform amplitude and 0 to 2π  phase with a small 
change in refractive index. We show that even when each pixel consists of a single scatterer, the effect of the opti-
cal resonator is preserved, and the effective phase change is amplified.

Asymmetric Fabry-Perot-inspired modulators and phased-arrays have been explored previously10,52,53, 
but have consisted of an array of grating elements per pixel or stacked high contrast gratings54. Both of these 
approaches fail to provide subwavelength spatial resolution, which is necessary for micron-scale focal lengths and 
high phase curvatures. Similarly, RF-inspired optical phased-arrays55 based on Mach-Zehnder interferometers 
and waveguides with polysilicon heaters have also shown simultaneous amplitude and phase tunability, but with 
the requirement of large pixel area. Instead, we design subwavelength pixels which consist of a single scattering 
nanopost atop a distributed Bragg reflector (DBR). We apply this analysis to design a compact and tunable reflec-
tive metasurface and report nearly diffraction-limited focal scanning via electromagnetic simulation.

Results
Design of Scatterers. An asymmetric Fabry-Perot cavity is a resonator consisting of a medium bound by 
two mirrors with different values of reflectivity (Fig. 1a). In the case of a lossless medium between the two mirrors 
and with a perfectly reflecting bottom mirror, a top mirror reflectivity r, an input E-field amplitude A, and a cavity 
roundtrip phase accumulation of δ, the complex output E-field Eout and its phase are given by (see Supplementary 
Equations 1–11 for detailed derivation):
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We can easily verify that for all possible values of r and δ, we have |Eout| =  A, the input E-field amplitude. As 
δ is a function of wavelength, this relationship also holds for all input frequencies, producing a uniform output 

Figure 1. Ideal asymmetric Fabry-Perot cavity-based phase shifter: (a) Schematic of the device with 
corresponding phase characteristics in (b) for different values of the top mirror reflectivity r. (c) Schematic of a 
realizable device with a DBR-based bottom mirror and high contrast grating top reflector. (d) RCWA-simulated 
phase characteristics for an example structure like that in (c) with parameters found in the text.
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amplitude spectrum; all energy incident upon the top mirror eventually reflects off and out of the cavity. While 
the amplitude spectrum is flat, the phase depends strongly on both r and δ. For different fixed values of r, the 
phase of Eout, denoted ϕ, is plotted as a function of δ in Fig. 1b. The output phase ϕ changes rapidly around 
δ =  π. As r increases, the change in ϕ near δ =  π also increases, and with r close to unity we find that ϕ changes 
very abruptly by nearly 2π . This region of nonlinear output phase shift arises from tuning the cavity on and off 
resonance. With higher values of r, the width of the resonance narrows with more roundtrips in the medium. In 
certain regimes, cavities with lossy media can also reduce the required change in cavity phase to achieve nearly 2π 
output phase shifts, but for a practical device the benefit of this narrowing would likely be offset by the reduction 
in amplitude efficiency from material absorption (see Supplementary Equations 16–19 and Figs S2–S4). The 
degraded performance of such a lossy cavity can also be characterized in terms of its quality factor, which decays 
rapidly as the attenuation increases (see Supplementary Equations 12–15 and Fig. S1).

To realize a phase shifter, we exploit this regime of lossless nonlinear phase change. With a high r, we can 
choose an appropriate L to put δ in this nonlinear regime, and tune the value of n over a small range in order to 
achieve 0 to 2π  phase shifts. To verify this technique, we used rigorous coupled-wave analysis56 (RCWA) to sim-
ulate a cavity at 1550 nm consisting of a 2D grating of identical cylindrical posts patterned on a slab of silicon, on 
top of a distributed Bragg reflector (DBR) of 10 paired layers of silicon and silicon dioxide with high reflectivity 
(R ≅  1) (Fig. 1c). The posts were of height 324 nm, diameter 750 nm, and lattice constant 850 nm, while the silicon 
slab had a thickness of 180 nm. Figure 1d shows the reflection coefficient of the cavity as a function of the silicon 
slab’s refractive index n. The simulated structure provides uniform amplitude and a nonlinear phase shift, corre-
sponding well with the expected behavior from the ideal model.

To implement arbitrary spatial phase profiles, a configuration of such cavities could be patterned across a 
substrate, assigning the refractive index of each cavity such that the corresponding phase shift in Fig. 1d matches 
the desired local phase shift. With this technique, each unit cell of the device is composed of a single asymmetric 
Fabry-Perot resonator. This approach has been well-explored previously, in which such structures have been 
patterned to form beam-steering arrays and phase-only modulation of spatial light distributions10,52–54. While 
this methodology may enable implementation of arbitrary phase profiles up to the limit of the Nyquist-Shannon 
sampling theorem, it would not provide subwavelength resolution due to the required lateral spatial extent of the 
cavity. Even though the cavity design only explicitly specifies a spatial extent in the normal direction (i.e. paral-
lel to the propagation direction) in terms of the cavity length, the lateral extent is assumed to be infinite when 
simulating in RCWA, as a periodic boundary condition is applied which forms a grating of infinite extent. As the 
grating on top of the cavity affects the reflectivity, changes in its design will alter the characteristics of the resona-
tor. In practice, such infinite gratings can be approximated by a finite number of elements, but the lateral extent 
and the number of grating elements must still be sufficiently large for the scattering behavior to be similar to that 
of the infinite grating. As such, the lateral extent would still greatly exceed the lattice constant and would prevent 
implementation of phase profiles with subwavelength pixels. While we could continue to reduce the lateral extent 
by decreasing the number of grating elements, the performance would deviate further from the ideal behavior; 
however, recent works23,57 show that when there are weak interactions between adjacent elements and when there 
is a dependence on the global phase distribution, a metasurface can operate even when a grating is approximated 
with a single element. Motivated by this observation, we explore the characteristics of a device in the limit where 
there is a single grating post per pixel, shown schematically in Fig. 2a. In this limit, the slab of silicon which previ-
ously formed the cavity and extended to infinity is reduced to a circular slab of silicon with diameter equal to that 
of one of the posts, such that the grating post and cavity are one in the same, forming their own isolated resonator. 
When this pixel design consisting of a single grating post on top of a DBR is incorporated into a lattice of such 
pixels, the result is a grating patterned directly on top of the DBR. As these pixels are of subwavelength lateral 
extent, metasurfaces synthesized using these pixels would provide subwavelength resolution, unlike the structure 
of Fig. 1c which requires an array of many grating elements for a single pixel.

The efficacy of the reduction of an infinite grating to a single post depends on the coupling between the 
grating elements. For high contrast metasurfaces, previous designs found weakly coupled elements by determin-
ing parameter regimes in which the phase characteristics are invariant under changes in the lattice constant. In 
this regime, each scatterer could be modelled as a truncated waveguide supporting multiple low quality factor 
Fabry-Perot resonances23. With our scatterers, the high reflectivity DBR mirror enhances the light-matter inter-
actions and increases the finesse of these resonances, making it challenging to find parameter regimes where there 
is negligible variation in phase under changes in the lattice constant. As such, we compromised and strove for 
resonators that are moderately coupled (i.e. scatterers with slightly increased resonance width which still provide 
an abrupt phase shift, but are sufficiently weakly coupled such that we can accurately implement phase profiles for 
aspherical lenses, axicons, and vortex generators).

We varied both the refractive index and lattice constant to find that depending on the geometric parameters, 
diverse phase characteristics are achievable. For example, in the case of Fig. 2b, with the same DBR design as 
before, posts of height 680 nm, diameter 550 nm, and a 1550 nm input, the reflection coefficient was calculated 
by RCWA as the lattice constant was swept from 675 to 975 nm while the refractive index was varied from 3.4 to 
3.6. With this design, rapid phase transitions occur as the post refractive index is swept, whereas in the case of 
Fig. 2c with posts of height 504 nm and diameter 750 nm, a more moderate transition occurs at a lattice constant 
of 850 nm, indicated by the dashed white line. In both cases, the phase exhibits a strong dependence on the lattice 
constant; however, for the design of Fig. 2c the broad width of the resonance indicates a weaker dependence rela-
tive to the narrow and highly resonant nature of the transitions in Fig. 2b. While even broader resonances with far 
less dependence on the lattice constant are achievable, such regimes are of little interest as they would offer little 
benefit in terms of providing a small refractive index range to achieve a full 2π  phase shift. This presents a tradeoff 
between achieving a very narrow resonance which can very rapidly achieve a full 2π  shift and having weakly 
coupled scatterers which allow implementation of high resolution phase profiles—a highly resonant scatterer 
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would be very sensitive to perturbations to adjacent scatterers and would prevent realization of high gradient 
profiles, whereas a broad resonance would provide weak coupling and high resolution at the cost of having to 
change the refractive index over a wider range. As such, we compromise to achieve a wider, though still small, 
change in refractive index with reduced spatial resolution and select the moderate transition of Fig. 2c at a period 
of 850 nm and show a 1D slice of the phase as a function of refractive index in Fig. 2d, with the phase corrected 
so that it does not wrap modulo 2π . This regime provides an exploitable nonlinear phase shift of nearly 2π  for a 
small change in refractive index from 3.476 to 3.535 (< 2% change). Furthermore, over the full modulation range 
we achieve unity amplitude. To show the moderate nature of the coupling between the scattering posts, we calcu-
lated the magnetic energy density for off (Fig. 2e) and on (Fig. 2f) resonance cases of a periodic array of scattering 
elements with the parameters used in generating Fig. 2d. The incident plane wave has a magnetic energy density 
of unity and we see high confinement of energy within the resonators, with smaller but nontrivial energy densi-
ties between pillars, indicating a moderate level of coupling. Our reported energy densities are on the order of a 
magnitude higher than those found by similar methods in the design of high contrast transmitarrays of silicon 
nanoposts23, indicating greater energy confinement within the grating layer and higher finesse.

Figure 2. Design of scattering nanoposts: (a) Top view schematic of a metasurface composed of nanoposts 
atop a DBR with the unit cell shown, RCWA-calculated reflection coefficients as a function of index and lattice 
constant for rapid (b) and moderate (c) phase change regimes, (d) reflection coefficient for a fixed period 
corresponding to the white dashed line in (c) with phase adjusted to not wrap modulo 2π , and magnetic 
energy density profiles for when the incident wave has a density of unity for off (e) and on (f) resonance cases, 
corresponding to refractive indices indicated by the *and X in (d) respectively.
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Tunable Metasurface Simulation Results. With the scattering post parameters of Fig. 2d, we designed 
an 80 μm ×  80 μm structure consisting of an array of posts and implemented phase profiles for aspherical lenses 
defined by:

ϕ π
λ

= − + − + −( )x y x x y y f f( , ) 2 ( ) ( ) ,
(3)0

2
0

2 2

where f is the focal length, x and y are the coordinates in the plane of the metasurface, λ is the operating wave-
length, and x0 and y0 are the in-plane shift amounts for the position of the focal spot. The phase profiles are imple-
mented by mapping the desired phase at each point to one of ten possible refractive indices from Fig. 2d which 
correspond to phase points which span 0 to 2π . By modulating the refractive index of each scattering element in 
this way, we demonstrate a device with both adjustable focal length and in-plane scanning capability (Fig. 3a) by 
finite-difference time-domain (FDTD) simulation near the surface and subsequent propagation to further planes 
using the angular spectrum method (see Supplementary Equations 25–27). For focal length adjustment, f is swept 
from 50 μm to 300 μm with everything else fixed, whereas for focal scanning x0 is swept from + 30 μm to − 30 μm 
in the 100 μm focal plane. Tuning with such a small focal length is not possible in existing phase modulators as 
the large pixel area limits the spatial resolution and curvature of the achievable phase profiles, necessitating the 
use of subwavelength tunable pixels.

To characterize the metasurface lenses, we found the beam spot sizes in terms of their full width at half  
maximum57 (FWHM) and compared to the diffraction-limited FWHM. For this calculation, a 1-D slice of the 
intensity profile in the focal plane for each focal spot was fit to a Gaussian function, from which the FWHM was 
extracted. The beam spot sizes are plotted for the focal length sweep and scanning cases in Fig. 3b and c respec-
tively, and we observe that the focal spots are close to diffraction-limited. We also characterized the metasurfaces 
in terms of focusing efficiency and found a trend of efficiency increasing with focal length, with up to 41% effi-
ciency at 280 μm focal length (see Supplementary Fig. S5).

Figure 3. Tunable aspherical lenses: (a) FDTD-simulated intensity profiles for focal scanning on-axis (left) 
and in-plane (right) (b) Spot size as a function of focal length (c) Spot size as a function of in-plane shift. The 
magenta lines are eye guides and the error bars give the 95% confidence interval derived from fitting error.
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With the same metasurface used for realizing the lenses of Fig. 3, we also generated approximate Bessel beams 
by implementing axicons of the form:

ϕ π
λ

β= +x y x y sin( , ) 2 ,
(4)

2 2

where β gives the axicon angle26. We designed and simulated axicons with β =  4° and β =  5° (Fig. 4a) and find 
substantially reduced diffraction over a large range when we excite the structure with a 30 μm waist radius 
Gaussian beam. We also implemented vortex beam generators with tunable topological charge (Fig. 4b), obeying 
the phase profile:

ϕ π
λ

θ= + + − +x y x y f f l( , ) 2 ( ) ,
(5)

2 2 2

Discussion
While we report nearly diffraction-limited focal spots with the designed tunable metasurface, such performance 
is limited to profiles with phase gradients that can be accurately sampled by the subwavelength lattice. Assuming 
the Nyquist-Shannon sampling criterion is already met, accurate phase sampling requires minimal coupling 
between adjacent nanoposts, such that the desired local phase shifts can be imparted without distorting the sur-
rounding wavefront. As indicated previously, our structures do have moderate coupling between scatterers, and 
have limitations in terms of implementing arbitrary phase profiles. For example, our heuristically determined 
nanopost parameters lend themselves well to implementing lens and axicon phase profiles, but for more exotic 
designs with high phase gradients, such as those for holograms or higher order polynomial freeform optical sur-
faces58, parameter regimes with even less element coupling may yield superior results. This behavior is evident 
in the degraded shape of our generated vortices (Fig. 4b), indicating phase modulation error introduced by the 
designed scatterers. By utilizing the nanopost designs of Fig. 2d to make unit cells comprising an arrangement of 
multiple identical nanoposts instead of a single scatterer, a broader range of achievable phase profiles is possible, 
including those for generating holograms (see Supplementary Fig. S8). This is an indication that lower phase 
gradients can reduce pixel-to-pixel coupling and improve phase modulation accuracy.

There are several possible routes for implementing the proposed tunable metasurfaces. By exploiting 
the thermo-optic effect, we could heat the nanoposts electrically or optically, and for the required change in 
refractive index, a temperature change of ~317 K would be necessary (see Supplementary Equation 20). This 
is slightly higher than the temperature generally used in silicon photonics, but could be achieved using sili-
con microheaters59. Alternatively, neglecting thermo-optic effects, we could also achieve tuning by injecting 
free carriers through photogeneration or forward biasing if we fabricate our nanoposts as p-i-n junctions (see 
Supplementary Equations 21–24 and Fig. S7). To achieve the necessary index modulation for the posts by free 
carrier refraction alone, we use a Drude model and calculate a required incident laser intensity of 1.26MW/cm2 

Figure 4. Tunable metasurface axicons and vortex beam generators: (a) Intensity profiles for axicons with 
β =  4° (left) and β =  5° (right) (b) Intensity profiles for a vortex beam generator with l =  1 (left) and l =  2 (right).
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at a pump wavelength of 500 nm. If structured as a p-i-n junction, with posts as scatterers, individually address-
ing each element would be challenging as routing electrical traces to each pillar would be difficult due to the 
subwavelength lattice constant; however, our asymmetric device structure can be generalized to other scatter-
ing element geometries for which electrical routing would be simpler, such as 1-D unit cells of rectangles (see 
Supplementary Fig. S6). Another implementation route is to extend the design to other material platforms, such as 
phase-change materials, which can achieve unity-order changes in the refractive index via electrical60 or optical48  
heating. Unlike previous implementations, one can pattern phase-change materials to create a tunable metas-
urface and also ensure electrical isolation between different scatterers. With phase-change material platforms, 
loss can be substantial depending on the operating wavelength, which requires careful design to ensure good 
performance (see Supplementary Equations 1–19 for the asymmetric Fabry-Perot equations incorporating loss).

For tuning methods based on optical excitation of the scatterers, we would need a spatially variant intensity 
function which could appropriately modulate refractive index as a function of position. For our Drude model 
calculated carrier density change at 500 nm excitation, a conventional liquid crystal (LC) spatial light modulator 
(SLM) could be used to produce a structured wavefront that could impinge on the metasurface, inducing refrac-
tive index changes related to the local intensity. This approach however would be speed-limited by the refresh rate 
of the LC SLM and would require an optical setup with macroscopic refractive optics, which would counter the 
benefit of compactness provided by the metasurface. As such, solutions based on electrically exciting the scat-
terers are more promising in terms of delivering benefits in size, weight, power, and speed. Fabrication of such a 
device would be extensive, requiring cointegration of electronics and photonics, with a high density of electrical 
traces required for individually addressing scatterers to achieve arbitrary pixel-by-pixel phase control. For an 
M ×  N pixel array, the complexity of the required control circuit would be O(M ×  N) as each scatterer would need 
a separate control line. If instead a memory element were incorporated with each pixel and the control lines were 
assembled as a conventional crossbar architecture61, then we could reduce the control complexity substantially 
to O(M +  N) as we could address pixels by the intersection of their row and column traces. With this approach, 
pixel columns would be updated in a time-sequential fashion, limiting the speed of the device relative to simulta-
neously addressing all pixels in parallel with separate control signals, although the speed could still greatly exceed 
that of an approach based on tuning with another SLM. While the CMOS compatibility of the silicon-based scat-
terers would facilitate cointegration of the photonics with control circuitry and conventional electronic memory 
cells, scatterers with our device structure based on phase-change memory media could also deliver their own 
unique benefits, with the possibility of achieving both the desired optical properties and memory storage capa-
bilities simultaneously. With recent work48 demonstrating grayscale changes in the optical properties of GeSbTe, 
phase-change materials could deliver analog refractive index control for inducing nonlinear phase shifts without 
having to constantly apply an external perturbation to maintain a scatterer’s optical properties as the material 
would exist in a stable amorphous, crystalline, or intermediate state.

Conclusion
We reported an asymmetric Fabry-Perot-inspired tunable metasurface consisting of a high reflectivity bottom 
mirror with scattering nanoposts on top. While several implementations of such phase shifters exist, we report 
preserved cavity functionality even when our pixels consist of individual nanoposts, due to limited coupling 
between the elements. This enables subwavelength spatial resolution, and on-axis and in-plane focal scanning 
are possible even with phase curvatures high enough to achieve nearly diffraction-limited focusing at 100 μm; 
however, the element coupling is not weak enough to accurately realize higher gradient phase profiles includ-
ing those of holograms or high order polynomial surfaces using the tunable metasurface. With the small index 
modulation range required, experimental implementation of tunable asymmetric elements is possible via either 
electrical biasing or optical excitation, the selection of which may depend on the designer’s choice of scattering 
element geometry.
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