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A large obstacle for realizing photonic logic is the weak optical nonlinearity of available materials,
which results in large power consumption. In this paper, we present the theoretical design of all-optical
logic with second-order (χð2Þ) nonlinear bimodal cavities and their networks. Using semiclassical models
derived from the Wigner quasiprobability distribution function, we analyze the power consumption and
signal-to-noise ratio (SNR) of networks implementing an optical AND gate and an optical latch.
A comparison between the second- and third-order ðχð3ÞÞ optical logic reveals that, while the χð3Þ design
outperforms the χð2Þ design in terms of the SNR for the same input power, employing the χð3Þ nonlinearity
necessitates the use of cavities with ultrahigh-quality factors (Q ∼ 106) to achieve a gate power
consumption comparable to that of the χð2Þ design at significantly smaller quality factors (Q ∼ 104).
Using realistic estimates of the χð2Þ and χð3Þ nonlinear susceptibilities of available materials, we show that,
at achievable quality factors (Q ∼ 104), the χð2Þ design is an order of magnitude more energy efficient than
the corresponding χð3Þ design.
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I. INTRODUCTION

All-optical signal processing can potentially reduce
propagation delays across the network due to increased
speeds of signal propagation (approximately 108 m=s) as
compared to electronic signal-processing platforms which
are limited by the saturation velocity of electrons in the
circuit (approximately 105 m=s). Systems performing sig-
nal processing directly on optical signals can thus achieve
significantly higher speeds at a lower power compared to
their microelectronic counterparts [1,2].
The primary difficulty in implementing an all-optical

signal processor lies in achieving optical nonlinearity at low
energy levels. Conventional bulk optical devices operate at
very high input-power levels due to the weak optical
nonlinearities of most materials. Sustained confinement
of optical energy to small volumes using optical cavities
can reduce the optical power consumption due to increased
light-matter interaction, thereby making the devices more
energy efficient. In fact, with strong spatial and temporal
confinement of light, one can reach a truly quantum-optical
regime [3,4]. Recent advances in micro- and nanofabrica-
tion [5,6] enable the large-scale on-chip integration of
resonators and other linear optical elements (directional
couplers and phase shifters). Hence, this is an opportune
time to revisit the problem of optical logic using nonlinear
quantum-optical devices.

Recently, researchers have proposed digital optical
systems that work at intermediate photon numbers (approx-
imately 100 photons) with networks of χð3Þ cavities [7,8].
Even though it is possible to fabricate high-quality χð3Þ
nonlinear silicon cavities [9–12], significantly stronger
nonlinearity can be achieved by employing χð2Þ nonlinear
III-V systems such as gallium arsenide (GaAs) or gallium
phosphide (GaP) [13,14], with experimentally achievable
quality factors of approximately 104 [15,16]. Using this
second-order nonlinearity, one can potentially reduce the
overall energy consumption of optical circuits. We note that
the thermo-optic effect [17], carrier injection [18–20], or
optoelectronic feedback [21,22] can also be used to imple-
ment low-power optical logic. However, such systems rely
on carrier generation, and hence their response time is
ultimately limited by the carrier diffusion rate. Besides, the
generated carriers add a significant amount of noise to the
system output [23,24], making the overall signal-to-noise
ratio (SNR) low at low optical power. Employing optical
nonlinearities, such as χð2Þ or χð3Þ nonlinearity, can provide
significantly larger speeds of operation in addition to
avoiding the noise originating from the generated carriers.
In this paper, we investigate the design of optical logic

with χð2Þ cavities. By comparing the performance of the χð2Þ
and χð3Þ designs in terms of gate power consumption, we
show that the χð2Þ design is a more energy-efficient
alternative to the χð3Þ design at achievable quality factors
(Q ∼ 104). An analysis of the gate SNR shows that, while
the χð3Þ design has a better noise performance as compared
to the χð2Þ design for the same input power, operating the*arka@u.washington.edu
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χð3Þ design at an input power comparable to that required by
the χð2Þ design (with Q ∼ 104) requires ultrahigh cavity
quality factors (Q ∼ 106).
An accurate analysis of photonic circuits needs to

incorporate the effect of quantum noise on their perfor-
mance. Several exact formalisms, such as the SLH for-
malism (S, L, and H referring to scattering, collapse, and
Hamiltonian operators, respectively) [25], have been devel-
oped to analyze a large quantum network. However, a full
quantum-optical simulation of a network consisting of a
large number of cavities is computationally intractable.
For an approximate but computationally efficient analysis
of the optical networks, we use a semiclassical model based
on the Wigner quasiprobability distribution function
[26,27], wherein the operators are modeled as stochastic
processes and the quantum nature of the optical fields is
approximated by an additive noise over a mean coherent
field. The analysis that we use in this paper is similar to the
analysis in Ref. [7] with χð3Þ photonic circuits.
This paper is organized as follows: In Sec. II, we use the

Wigner quasiprobability to analyze the characteristics of a
single nonlinear cavity. The threshold power achievable
with χð2Þ nonlinearity is compared to that achieved with χð3Þ
nonlinearity for different cavity quality factors. In Sec. III,
we present the design of an optical AND gate and an optical
latch with χð2Þ nonlinearity and compare its noise perfor-
mance and power consumption with that achieved by
employing χð3Þ nonlinearity.

II. NONLINEAR CAVITY CHARACTERISTICS

A bimodal cavity with χð2Þ nonlinearity couples the
fundamental mode (at angular frequency ω1) and the
second-harmonic mode (at angular frequency ω2) through
the nonlinearity. Figure 1(a) shows the schematic of a χð2Þ
cavity (with a nonlinear coupling constant g2) coupled to an
input waveguide and an output waveguide by a coupling
constant κw. The Wigner quasiprobability distribution
[26–29] can be used to model the fundamental and
second-harmonic cavity mode with stochastic processes
a1ðtÞ and a2ðtÞ, respectively, which satisfy the following
Ito differential equations:

da1ðtÞ
dt

¼ −ðiΔ1 þ κ1Þa1ðtÞ − 2ig2a�1ðtÞa2ðtÞ −
ffiffiffiffiffi
κw

p
binðtÞ

−
ffiffiffiffiffi
κw

p
η1ðtÞ −

ffiffiffiffi
κl

p
ηlðtÞ; ð1aÞ

da2ðtÞ
dt

¼ −ðiΔ2 þ κ2Þa2ðtÞ − ig2a21ðtÞ −
ffiffiffiffiffiffiffi
2κ2

p
η2ðtÞ; ð1bÞ

whereΔ1 ¼ ω1 − ωL andΔ2 ¼ ω2 − 2ωL are the detunings
of the fundamental mode frequency and the second-
harmonic mode frequency from the input laser frequency
ωL, respectively, 2κ1 ¼ 2κw þ κl is the net loss in the
fundamental mode (κl being the intrinsic loss in the funda-
mental mode), and 2κ2 is the net loss in the second-harmonic
mode. For a coherent drive, the inputbinðtÞ ¼ b̄inðtÞ þ ηinðtÞ,

where b̄in is the deterministic input signal and ηinðtÞ is a
Gaussianwhite-noise process.The outputwaveguide and loss
ports of the cavity also act as sources of quantum noise [7],
which are modeled by independent Gaussian white-noise
processesη1ðtÞ,ηlðtÞ, andη2ðtÞ, respectively.All theGaussian
white-noise processes satisfy hη�inðtþτÞηinðtÞi¼hη�1ðtþτÞη1
ðtÞi¼hη�2ðtþτÞη2ðtÞi¼hη�l ðtþτÞηlðtÞi¼δðτÞ=2,δðτÞbeing
the Dirac-delta function [30].

FIG. 1. (a) Schematic of a single bimodal cavity coupled to two
waveguides that serve as the input and output ports. The two
modes (fundamental mode at ω1 and second-harmonic mode at
ω2) are coupled via the χð2Þ nonlinearity with an effective
coupling constant g2. (b) Steady-state characteristics of a single
cavity with χð2Þ nonlinearity for Q ∼ 104. (c) Variation of the
input threshold power with the cavity quality factor for both
χð2Þ and χð3Þ cavities. Resonant wavelength λ0 ¼ 2πc=ω1 ¼
1550 nm, ℏg2 ∼ 0.5 μeV, and ℏg3 ∼ 30 peV is assumed in all
the simulations.
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The stochastic differential equations [Eqs. (1a) and (1b)]
can be numerically solved by using the Euler-Maruyama
scheme [31,32], wherein the Gaussian white-noise proc-
esses are modeled by adding a complex Gaussian random
variable with mean 0 and variance ð2δtÞ−1 at every update
[δt is the sampling interval used to discretize the stochastic
processes a1ðtÞ and a2ðtÞ]. Moreover, a consequence of
approximating the input quantum noise by Gaussian white-
noise processes is the presence of nonzero noise at all
frequencies—so as to obtain realistic estimates for the SNR,
it is necessary to consider only the noise within the detector
bandwidth. In all our calculations, we model the detector by
an ideal low-pass filter with an approximately 5-GHz
bandwidth.
The nonlinear coupling constant g2 is a function of the

field profiles of the fundamental and second-harmonic
mode and can be estimated via [4]

ℏg2 ∼ ϵ0

�
ℏω1

ϵ0n20

�
1.5
χð2Þ

Z
e21ðrÞe�2ðrÞd3r; ð2Þ

where e1ðrÞ and e2ðrÞ are the approximate normalized scalar
modal field profiles of the fundamental and second-harmonic
mode, respectively, and n0 is the cavity refractive index.
Under the assumption of perfect phase matching between the
two cavity modes, ℏg2 ∼ ϵ0ðℏω1=ϵ0n20Þ1.5χð2Þ=

ffiffiffiffiffiffi
V2

p
, with

V2 ¼ ½R je1ðrÞj3d3r�−2 being the effective modal volume of
the cavity. The steady-state characteristics of this system, i.e.,
the variation of the output power Pout ¼ ℏω1κwhja1j2i
with the input power Pin ¼ ℏω1jbinj2, shows a nonlinear
transition from a small output power to a large output power
near an input threshold [Fig. 1(b)] [33]. For perfectly matched
detunings and quality factors, i.e., Δ2¼ 2Δ1 and κ2¼ 2κ1,
the sharpest possible nonlinear transition in the output power
is obtained at Δ1 ¼ ð2þ ffiffiffi

3
p Þκ1, and the input threshold

power Pth;2 at this detuning is given by (refer to Appendix A
for a detailed derivation)

Pth;2 ¼
16ð12þ 7

ffiffiffi
3

p Þ
9

ℏω1κ
4
1

g22κw
∼
V2

Q3
ð3Þ

with Q ¼ ω1=4πκ1 being the quality factor of the funda-
mental cavity mode. Since κ1 ¼ κw þ κl=2, it can be deduced
from Eq. (3) that the input threshold is minimum when
κw ¼ κl=6—this relationship between the intrinsic loss κl and
the optimum cavity-waveguide coupling constant κw is
assumed in all the designs throughout this paper. Similar
nonlinear input-output characteristics can also be obtained by
employing a cavity with χð3Þ nonlinearity. The corresponding
nonlinear coupling constant for the χð3Þ nonlinearity is given
by ℏg3 ¼ 3ℏ2ω2

1χ
ð3Þ=4ϵ0n40V3 with V3 ¼ ½R je1ðrÞj4d3r�−1

being the effective modal volume [34]. The sharpest possible
transition in the steady-state characteristics is obtained for
Δ1 ¼ 2g3 −

ffiffiffi
3

p
κ1, and the input threshold is given by

Pth;3 ¼ 4ℏω1κ
3
1=3

ffiffiffi
3

p
g3κw ∼ V3=Q2, which is minimum

for κw ¼ κl=4. For available optically nonlinear materials
(χð2Þ ∼ 2 × 10−10 m=V for GaP [15,16] and χð3Þ ∼ 5 ×
10−19 m2=V2 for Si [9–12]) and assuming a ring-resonator
cavity structure, the nonlinear coupling constants approx-
imately evaluate to ℏg2 ∼ 0.5 μeV and ℏg3 ∼ 30 peV at
telecom wavelengths (λ0 ¼ 2πc=ω1 ¼ 1550 nm). It can also
be noted that the modal volumes V2 and V3 appearing in
Eq. (2) are different for the two nonlinearities (refer to
Appendix B for their definitions and estimates for the ring-
resonator structure), but this difference does not significantly
effect the relative order of magnitudes of g2 and g3.
Figure 1(c) shows the variation of the input threshold

Pth;2 and Pth;3 with the fundamental mode quality factor Q.
We emphasize the fact that, while the coupling constant g2
of the second-order nonlinear cavity is approximately 4
orders of magnitude larger than the coupling constant g3 of
the third-order nonlinear cavity, the relative magnitudes of
the input thresholds also depend on the quality factor of the
cavity under consideration. At very small quality factors
(Q < 600), the third-order cavity consumes less power than
the second-order cavity—the threshold scales as Q−2 as
opposed to the Q−3 scaling for the latter. Beyond Q ¼
4ð7þ 4

ffiffiffi
3

p Þω1g3=3πg22 ∼ 600 (derived in Appendix A), the
χð2Þ nonlinearity has an input threshold which becomes
increasingly smaller with Q as compared to the χð3Þ
nonlinearity—therefore, increasing the cavity quality factor
to reduce the power consumption of the optical cavity
simultaneously results in χð2Þ nonlinearity becoming more
power efficient in comparison to the χð3Þ nonlinearity.
However, fabricating cavities in III-V systems with quality
factors higher than 105 is experimentally difficult (e.g., in
Refs. [35,36], the highest quality factor reported with a
GaAs cavity is approximately 62000). Moreover, increas-
ing the cavity quality factor also reduces the overall speed
of the optical circuit under consideration—there is a trade-
off between the speed and power consumption of the
system. Optical cavities with Q ∼ 104 are experimentally
achievable and also allow the optical circuit to operate at
approximately 10 GHz—we therefore choose this quality
factor to quantify the gain in energy efficiency achieved by
employing χð2Þ nonlinearity instead of χð3Þ nonlinearity. At
quality factors of this order of magnitude, the cavity with
χð2Þ nonlinearity is approximately 20 times more power
efficient as compared to the cavity with χð3Þ nonlinearity.
Employing the χð2Þ nonlinearity can potentially achieve

low-power operation compared to the χð3Þ nonlinearity;
however, a significant disadvantage of using the χð2Þ
nonlinear cavity is the input threshold’s sensitivity to
mismatch between the fundamental and second-harmonic
modes. Phase mismatch between the two cavity modes is
the most important—to estimate its impact, we consider
a ring-resonator cavity with radius R and modal field
profiles approximated by e1ðrÞ ≈ αðr; zÞ expðiβ1RϕÞ and
e2ðrÞ ≈ αðr; zÞ expðiβ2RϕÞ. The nonlinear coupling con-
stant ℏg2 can then be evaluated by using Eq. (2) to obtain
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ℏg2 ¼ ϵ0

�
ℏω1

ϵ0n20

�
1.5 χð2Þffiffiffiffiffiffi

V2

p
�
sinΔΦ
ΔΦ

�
; ð4Þ

where V2 ¼ ½2π R∞
r¼0

R∞
z¼−∞ α3ðr; zÞrdrdz�−2 is the effec-

tive modal volume and ΔΦ ¼ πRð2β1 − β2Þ is the phase
mismatch. Figure 2(a) shows the variation of the cavity
input threshold as a function of the phase mismatch, and it
can be seen that the input threshold for a cavity with
nonzero phase mismatch is significantly larger than the
input threshold for a perfectly matched cavity due to the
reduced nonlinear coupling constant g2. Moreover, for ΔΦ
close to π or 2π, the input threshold can increase by
several orders of magnitude as compared to ΔΦ ¼ 0.
While our analysis assumes a ring-resonator geometry and
a simple approximation to the modal field profiles, a
qualitatively similar increase in the threshold power with
phase mismatch is expected even for more complex cavity
structures.
In addition to phase mismatch, it is also difficult to

experimentally achieve perfectly matched detuning and
quality factor between the two cavity modes (Δ2 ¼ 2Δ1

and κ2 ¼ 2κ1). Figure 2(b) shows the variation of the

cavity input threshold with mismatch in the detunings and
quality factors (calculations outlined in Appendix A), and
it can be seen that the input threshold varies significantly
(approximately 30%) for a �10% mismatch between the
two modes. This problem of mismatch between the cavity
modes does not arise in the case of χð3Þ nonlinearity, since
it depends only on the fundamental cavity mode instead of
relying on nonlinearly coupling different cavity modes.
We note that the requirement of two cavity modes with
good overlap is an important and stringent trade-off while
adopting the χð2Þ nonlinearity for reducing power con-
sumption. However, there are several recent reports on
achieving significant overlap between the two cavity
modes, thereby greatly enhancing the χð2Þ nonlinear
process. For instance, in Refs. [37,38], the authors show
how to design cavities which satisfy the mode-matching
requirements. Our choice of a ring-resonator geometry
for the optical cavity is inspired from Refs. [39,40], where
it is shown that it is possible to achieve equal effective
indices at the fundamental and second-harmonic frequen-
cies. Moreover, the reported ring resonators are more
robust to fabrication imperfections as compared to
photonic-crystal-based resonators—a slight change in
the thickness of the slab does not result in a considerable
change in the mode profile.

III. OPTICAL LOGIC GATES

Figure 3(a) shows the photonic circuit implementing an
optical AND gate [7,8]. By using a directional coupler and a
phase shifter, ðb1 þ b2Þ=

ffiffiffi
2

p
is fed into the cavity, where b1

and b2 are the inputs of the AND gate. This itself ensures
that the output bout is low when both the inputs are low,
thereby trivially satisfying one line in the AND gate truth
table. The input-high level b0 (i.e., the magnitude of b1 or
b2 when the signal represents a high input) is designed so as
to ensure that the cavity input is larger than the cavity
threshold when both inputs are high and smaller than the
cavity threshold otherwise. The parameters (θ, ϕ) of the
directional coupler and phase shifter producing the output
are chosen so as to achieve a nearly zero output for
ðb1; b2Þ≡ (high, low). For the output of the AND gate to
be cascadable, the output-high level should be as close to
the input-high level as possible. This avoids the need of
cascading high-gain amplifiers with the logic gate to restore
the output-high level to the input-high level. The input-high
level is thus designed to maximize the ratio of the output-
high level to the input-high level.
For Q ∼ 104, the transient response of an AND gate

implemented with both χð2Þ and χð3Þ nonlinearities is shown
in Fig. 3(b). Clearly, at quality factors of this order of
magnitude, the input power (Pin ∼ ℏω1b20) required for a
χð3Þ-based design is approximately 20 times larger than that
required for a χð2Þ-based design. However, we also note
from Fig. 3(c) that, for designs operating at the same input
power, the χð3Þ AND gate shows a larger SNR as compared

FIG. 2. (a) Variation of the input threshold power with the phase
mismatch ΔΦ for χð2Þ nonlinearity. (c) Variation of the input
threshold power with the detuning and quality factor mismatch
for χð2Þ nonlinearity with Q ∼ 104. Resonant wavelength λ0 ¼
2πc=ω1 ¼ 1550 nm and ℏg2 ∼ 0.5 μeV (for ΔΦ ¼ 0) is assumed
in all the simulations.
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to the χð2Þ AND gate. This can be attributed to the noise
being added to the second-harmonic mode in the χð2Þ
nonlinear cavity [

ffiffiffiffiffiffiffi
2κ2

p
η2ðtÞ in Eq. (1b)]. On the other

hand, the cavity quality factor required to design a χð3Þ AND
gate operating at low input power is significantly higher as
compared to those required by the χð2Þ AND gate. For
instance, it can be seen from Fig. 3(d) that the χð2Þ AND gate
designed with Q ∼ 104 can operate at an input power of
approximately 10 μWwith a SNR of approximately 20 dB,
whereas the χð3Þ AND gate requires Q ∼ 105 to operate at
similar input powers even though it offers a significantly
higher SNR (approximately 30 dB).
A bistable latch can be designed by combining two

cavities in feedback [Fig. 4(a)] [7,8]. The latch state is
governed by two inputs bset and breset—if ðbset; bresetÞ≡
ðhigh; lowÞ, the latch output is pulled up to high; if
ðbset; bresetÞ≡ ðlow; highÞ, the latch output is pulled down
to low; and when ðbset; bresetÞ≡ ðhigh; highÞ, the output is
held at its previous value. The parameters θ and ϕ of the
final directional coupler and phase shifter can be chosen so
as to achieve equal output amplitudes during both a latch
set and the following hold and a latch reset and the
following hold. Additionally, the circuit parameters θ1,
θ2, ϕb, and ϕf and the field bc; b0 (b0 being the input-high
level) need to be chosen so as to ensure that the overall
circuit exhibits bistability during the hold condition
[ðbset; bresetÞ≡ ðhigh; highÞ]—this is desired, since the
circuit output during a hold is a function of the previous
state of the latch and not dependent solely on the circuit
inputs (bset, breset). To achieve this, we numerically maxi-
mize the ratio of the output magnitude when the latch
holds a high value to the output magnitude when the latch
holds a low value as a function of ðθ1; θ2;ϕb;ϕf; bc; b0Þ.
The cascadability of the output signal also requires the
phase of the output to be equal both when the latch is set
and when it holds high data and when the latch is reset and
when it holds low data. This is an additional constraint that
we impose while optimizing the circuit parameters so as to
achieve a bistable latch circuit.
Figure 4(b) shows a transient simulation of the latch

circuit designed with both χð2Þ and χð3Þ nonlinearities at
Q ∼ 104. At quality factors of this order of magnitude,
the χð2Þ-based design operates at an input power
[Pin ∼ ℏω1ðb20 þ b2cÞ] which is approximately 20 times
smaller than that of the χð3Þ-based design. As with the AND

gate, we observe that the latch implemented with χð3Þ
nonlinearity offers better noise performance compared to
the latch implemented with χð2Þ nonlinearity [Fig. 4(c)] for
the same input power with the trade-off being the require-
ment of significantly larger quality factors [Fig. 4(d)]—
the latch designed with χð3Þ nonlinearity requires Q ∼
105–106 to operate at input powers of approximately
10 μW, whereas the corresponding design with χð2Þ
nonlinearity requires Q ∼ 104 to operate at similar input
powers.

FIG. 3. (a) Photonic circuit to implement the AND gate. (b) Tran-
sient response of an AND gate implemented with both χð2Þ and χð3Þ

nonlinear cavities (Q ∼ 104). (c) Output SNR of the AND gate as a
function of the input power. (d) Cavity quality factor required to
operate the AND gate as a function of the input power. For SNR
calculations, it is assumed that the gate output is measured with a
detector of approximately 5-GHz bandwidth. Other parameters:
ℏg2 ∼ 0.5 μeV, ℏg3 ∼ 30 peV, and resonant wavelength λ0 ¼
2πc=ω1 ¼ 1550 nm.
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IV. CONCLUSION

We analyze and compare the power consumption and
noise performance of all-optical logic gates (AND gate and
latch) implemented by using networks of optical cavities
with χð2Þ and χð3Þ nonlinearities. Using realistic estimates
for the achievable nonlinear coupling constants, it is shown
that the χð2Þ-based photonic circuits are orders of magnitude
more energy efficient as compared to the χð3Þ-based
photonic circuits at achievable quality factors (Q ∼ 104).
This is verified by simulating an optical AND gate and an
optical latch implemented by using both the nonlinearities.
The quantum noise in the implemented circuits is simulated
by using stochastic models derived from the Wigner
quasiprobability distribution function. We observe that,
for the same input power, optical gates implemented with
χð3Þ nonlinearity have a larger output SNR as compared to
the optical gates implemented with χð2Þ nonlinearity.
However, optical logic gates with χð2Þ nonlinearity can
achieve low-power operation at significantly smaller qual-
ity factors as compared to optical logic gates with χð3Þ
nonlinearity, thereby making them a more suitable candi-
date to reduce the overall power consumption of photonic
logic circuits.
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APPENDIX A: DERIVATION OF THRESHOLD
POWER FOR A NONLINEAR CAVITY

The input power Pin ¼ ℏω1jbinj2 is related to the output
power Pout ¼ ℏω1κwhja1j2i for a cavity with either χð2Þ or
χð3Þ nonlinearity by a cubic equation [33]:

Pin ¼ γ1Pout þ γ2P2
out þ γ3P3

out; ðA1Þ
where, for χð3Þ nonlinearity,

γ1 ¼
ðΔ1 − 2g3Þ2 þ κ21

κ2w
; γ2 ¼

4g3ðΔ1 − 2g3Þ
ℏω1κ

3
w

;

γ3 ¼
4g23

ℏ2ω2
1κ

4
w

ðA2Þ

and, for χð2Þ nonlinearity,

γ1 ¼
Δ2

1 þ κ21
κ2w

; γ2 ¼
4g22ðκ1κ2 − Δ1Δ2Þ
ℏω1κ

3
wðΔ2

2 þ κ22Þ
;

γ3 ¼
4g42

ℏ2ω2
1κ

4
wðΔ2

2 þ κ22Þ
; ðA3Þ

where 2κ1 ¼ 2κw þ κl is the total loss in the cavity and is a
sum of the loss through the waveguides coupled to it (2κw)

FIG. 4. (a) Photonic circuit for implementing the latch.
(b) Transient response of the latch implemented with both χð2Þ

and χð3Þ nonlinearity (Q ∼ 104). (c) Output SNR of the latch as a
function of the input power. (d) Cavity quality factor required to
operate the latch gate as a function of the input power. For SNR
calculations, it is assumed that the circuit output is measured with
a detector of approximately 5-GHz bandwidth. Other parameters:
ℏg2 ∼ 0.5 μeV, ℏg3 ∼ 30 peV, and resonant wavelength λ0 ¼
2πc=ω1 ¼ 1550 nm.
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and the intrinsic cavity loss (κl). It is shown that the cavity
with either nonlinearity can behave like a bistable system
[33] for sufficiently large detuning. Since the output of a
bistable cavity would depend upon its previous states, it is
desirable to operate the cavity in the monostable regime.
Therefore,

dPin

dPout
¼ γ1 þ 2γ2Pout þ 3γ3P2

out > 0 ∀ Pin;

Pout > 0; ðA4Þ

which would hold only if γ22 < 3γ3γ1. Moreover, for the
sharpest possible nonlinear transition in the cavity’s steady-
state characteristics, dPin=dPout ¼ 0 at the input threshold
Pth, which yields

γ22 ¼ 3γ3γ1; Pth ¼ −
γ32
27γ23

: ðA5Þ

Also note from Eq. (A5) that for Pth > 0, γ2 < 0.
Equation (A5) can be specialized for the χð2Þ and χð3Þ
nonlinearity by using Eqs. (A3) and (A2). For χð3Þ non-
linearity, we obtain

Δ1 ¼ −
ffiffiffi
3

p
κ1 þ 2g3; Pth;3 ¼

4ℏω1

3
ffiffiffi
3

p κ31
κwg3

ðA6Þ

and, for χð2Þ nonlinearity,

Δ1Δ2

κ1κ2
− 1 ¼

ffiffiffi
3

p �
Δ1

κ1
þ Δ2

κ2

�
;

Pth;2 ¼
4ℏω1

27g22

ðΔ1Δ2 − κ1κ2Þ3
κwðΔ2

2 þ κ22Þ
: ðA7Þ

In our analysis of the optical logic gates, we assume the
fundamental and the second-harmonic mode of the bimodal
cavity to be perfectly matched in both detuning and
modal linewidth, i.e., Δ2 ¼ 2Δ1 and κ2 ¼ 2κ1. Under this
assumption, Eq. (A7) can be simplified to obtain Δ1 ¼
ð2þ ffiffiffi

3
p Þκ1 and Pth;2 ¼ 16ð12þ 7

ffiffiffi
3

p Þℏω1κ
4
1=9κwg

2
2. For a

given intrinsic cavity loss κl, it can be seen that the Pth;2 is
minimum for κw ¼ κl=6 ¼ κ1=4 and Pth;3 is minimized for
κw ¼ κl=4 ¼ κ1=3. This along with the expressions for the
input thresholds Pth;2 and Pth;3 allows the calculation of the
quality factor at which the χð2Þ and χð3Þ have the same
threshold power which evaluates to Q ¼ 4ð7þ 4

ffiffiffi
3

p Þ
ω1g3=3πg22. It can be noted that Eq. (A7) is valid even
for the case when the detuning and quality factor of the two
cavity modes are not perfectly matched and can be used to
compute the input threshold for a given percentage mis-
match between the two modes.

APPENDIX B: MODAL VOLUME CALCULATION

For calculating the modal volumes V2 and V3 for a ring-
resonator structure, we assume scalar Gaussian approx-
imations e1ðrÞ and e2ðrÞ to the modal fields at frequency
ω1 and ω2, respectively (p ∈ f1; 2gÞ:

epðrÞ ¼
expðiβpRϕÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π2σrσzR

p exp

�
−
1

2

�ðr − RÞ2
σ2r

þ z2

σ2z

��
; ðB1Þ

where R is the mean radius of the ring resonator,
βp ¼ ωpn0=c, and σr and σz are measures of the modal
confinement in the radial and z direction, respectively. For
simplicity, we also assume the intensity profile jepðrÞj2 to
be independent of the modal frequency. Since epðrÞ is a
periodic function of ϕ, the constants βp satisfy

βp ≈
ωpn0
c

¼ mp

R
∀ p ∈ f1; 2g; for some mp ∈ N;

ðB2Þ
where n0 is the refractive index of the material used in the
cavity. This is equivalent to R ¼ m1c=ω1n0 ¼ m2c=ω2n0.
With available fabrication facilities, the smallest possible
σr and σz that can be achieved are of the order of
λ0=2n0 ¼ πc=n0ω1. The physical structure of the ring-
resonator constrains R to be greater than 2σr ∼ 2πc=ω1n0
which, with Eq. (B2), implies R ∼ 7c=ω1n0. For a χð2Þ
nonlinearity, the modal volume is given by [4]

V2 ¼
�Z

∞

r¼0

Z
2π

ϕ¼0

Z
∞

z¼−∞
je1ðrÞj3rdrdϕdz

�
−2
: ðB3Þ

Using Eq. (B1), the modal volume evaluates to V2 ≈
9π2σzσrR=2 ∼ 63πλ30=16n

3
0. For a χð3Þ nonlinearity, the

modal volume can be calculated from [34]

V3 ¼
�Z

∞

r¼0

Z
2π

ϕ¼0

Z
∞

z¼−∞
je1ðrÞj4rdrdϕdz

�
−1
; ðB4Þ

which approximately evaluates to V3 ≈ 4π2σzσrR ∼ 7πλ30=
2n30. It is to be noted that these estimates for modal volumes
are lower bounds on the volumes that can be achieved
experimentally and are approximately of the same order of
magnitude for both the nonlinearities.
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