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Strong photon antibunching in weakly nonlinear two-dimensional exciton-polaritons
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A deterministic and scalable array of single photon nonlinearities in the solid state holds great potential for
both fundamental physics and technological applications, but its realization has proved extremely challenging.
Despite significant advances, leading candidates such as quantum dots and group III-V quantum wells have yet
to overcome their respective bottlenecks in random positioning and weak nonlinearity. Here we consider a hybrid
light-matter platform, marrying an atomically thin two-dimensional material to a photonic crystal cavity, and
analyze its second-order coherence function. We identify several mechanisms for photon antibunching under
different system parameters, including one characterized by large dissipation and weak nonlinearity. Finally, we
show that by patterning the two-dimensional material into different sizes, we can drive our system dynamics
from a coherent state into a regime of strong antibunching with second-order coherence function g(2)(0) ∼ 10−3,
opening a possible route to scalable, on-chip quantum simulations with correlated photons.
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I. INTRODUCTION

Quantum optical nonlinearities have received growing in-
terest for their key role in quantum information science [1],
quantum simulations [2], and other quantum technologies [3].
While nonlinear effects with individual emitters have been
demonstrated across a range of platforms, including ultracold
atoms [4], superconducting qubits [5], and semiconductor
quantum dots [6,7], realizing a deterministic and scalable array
of such nonlinearities has proved a far more daunting task. For
quantum dots, which are particularly attractive due to their
versatility and on-chip compatibility [8], random positioning
and inhomogeneous broadening of the emitters have long
posed major challenges. Despite significant development in
possible solutions, including patterning a photonic crystal
defect around a randomly grown quantum dot [9] and seeding
nucleation centers for site-controlled growth of quantum dots
[10], the central goal of building a scalable, deterministic net-
work of single photon nonlinearities remains elusive [11–14].
For example, so far all demonstrations of strong coupling
and photon blockade of quantum dots and cavities involved
randomly grown self-assembled quantum dots [6–8].

An alternative solid-state candidate for quantum nonlinear
optics is the exciton-polariton, a quasiparticle made of a semi-
conductor exciton strongly coupled to a microcavity photon.
Inheriting strong interactions from the matter component and
fast dynamics and state observability from the photonic compo-
nent, exciton-polaritons are particularly well suited as building
blocks for photonic quantum simulators for studying, for
instance, quantum phase transitions [15–17]. Already, a host
of many-body correlated phenomena with exciton-polaritons
have been observed, including Bose-Einstein condensation
[18] and polariton lasing [19]. Nevertheless, there has been
no report of a strong polariton-polariton interaction at a single
quantum level. To increase the interaction strength, several
researchers tried shrinking the size of the polariton wave

function. Besga et al. decreased the cavity mode volume by em-
ploying a fiber-tip cavity [20], and recently Muñoz-Matutano
et al., using a similar setup, reported a weak nonlinearity
[21]. Researchers have also tried decreasing the effective size
of group III-V quantum wells, albeit with limited success
[22–24].

Recent advances in transition-metal dichalcogenides
(TMDCs) point to a new potential platform for scalable
quantum optical nonlinearities. TMDCs have exceptionally
large exciton binding energy [25], leading to room temperature
operation and strong photon absorption [26,27]. In addition, as
atomically thin two-dimensional (2D) materials, they possess
an unprecedented ability to be fabricated and transferred
onto other photonic structures [28]. TMDCs embedded in
microcavities have exhibited optically pumped lasing [29,30],
cavity-enhanced electroluminescence [31], second harmonic
generation [32], and strong coupling [33,34]. Finally, Wei et al.
showed that TMDCs patterned via electron beam lithography
into circular nanodots with radii down to 15 nm could still host
long-lived excitons [35].

In this paper we analyze the quantum optical nonlinearity
of a 2D-material monolayer coupled to a low mode-volume
photonic crystal defect cavity. We identify different mecha-
nisms that give rise to nonclassical photon distributions and
arrive at a robust regime, characterized by large dissipation
and weak nonlinearity, whose second-order coherence function
at zero time delay g(2)(0) is much less than unity. Finally,
we consider the effect of the size of the monolayer on the
system parameters. We numerically show that by physically
patterning the monolayer into different sizes, it is possible to
drive its dynamics from a coherent state into a nonclassical
regime with g(2)(0) ∼ 10−3. An observation of such strong
photon antibunching in this hybrid platform would open the
door to further experiments in coupled nonlinear cavities and
scalable quantum simulators.
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FIG. 1. Patterned 2D material-embedded cavity. (a) Schematic
illustration of the proposed experimental platform. A patterned 2D-
material (tungsten diselenide, WSe2) monolayer is placed on top of
a photonic crystal nanobeam cavity. The radius of the monolayer
is on the order of tens of nanometers, and the cavity periodicity is
240 nm. The top view of the cavity with a simulated field profile
of the fundamental mode is shown below. The calculated mode
volume is about 2.5(λ/n)3. (b) Energy level diagram. The dressed
states are labeled by the number of energy quanta, or Fock manifold,
followed by a symbol: |1,−〉 and |1,+〉 are the first-manifold states
representing the lower and upper polaritons; |2,e1〉, |2,e2〉, and
|2,e3〉 are the second-manifold states. The solid lines represent the
eigenenergies of the Hamiltonian with nonzero nonlinearity, whereas
the dotted lines represent the eigenenergies with zero nonlinearity.
The arrows represent the pump laser frequency that is resonant
with either |1,+〉 (blue) or |2,e3〉 (red). (c) Eigenenergies as a
function of the nonlinearity U , calculated via exact matrix diagonal-
ization. All parameters are normalized by the exciton-photon coupling
strength g.

II. SYSTEM DESCRIPTION

Our system consists of a patterned 2D-material monolayer
placed on top of a photonic crystal nanobeam cavity [see
Fig. 1(a)] [36]. The choice of a nanobeam has been motivated
by its small cavity mode volume. The simulated field profile
of the fundamental mode of the cavity is shown below the
schematic. Unlike the conventional semiconductor-embedded
distributed Bragg reflector cavity, whose excitons couple to
a continuum of in-plane momenta, the monolayer-embedded
photonic crystal cavity only supports a narrow band in the
momentum space. Thus, in our model we consider only
those excitons whose momenta match that of the funda-
mental cavity mode given by the spatial Fourier transform
[21].

In a frame rotating at the frequency of an external pump
laser, the Hamiltonian of a strongly coupled exciton-polariton

system is given by (setting h̄ = 1)

H = (ωc − ωpump)a†a + (ωe − ωpump)b†b

+ g(a†b + ab†) + Ub†b†bb + E(a† + a), (2.1)

where a†(a) and b†(b) are the creation (annihilation) operators
for the cavity photon and the monolayer exciton, respectively;
ωc, ωe, and ωpump are the frequencies of the cavity resonance,
the excitonic transition, and the pump laser, respectively; g

is the exciton-photon coupling strength; U is the on-site Kerr
nonlinearity representing the exciton-exciton repulsion [37];
and E denotes the strength of the pump laser. The system
dynamics is given by the evolution of the density matrix
according to the master equation [38]:

dρ

dt
= −i[H,ρ] + κ

2
(2aρa† − a†aρ − ρa†a)

+ �

2
(2bρb† − b†bρ − ρb†b), (2.2)

where κ and � are the cavity photon and the exciton decay
rates, respectively.

The energy level diagram of the system containing up to
two energy quanta is shown in Fig. 1(b), where we have taken
ωc = ωe. The degeneracy of the bare states is lifted by the
exciton-photon coupling. The dressed states |1,−〉 and |1,+〉,
containing one energy quantum and collectively known as the
first Fock manifold of the Hamiltonian, represent the lower and
upper polaritons, respectively. Similarly, the second-manifold
states, |2,e1〉, |2,e2〉, |2,e3〉, containing two energy quanta,
become nondegenerate. For zero exciton-exciton repulsion
(U = 0), their eigenenergies are −2g, 0, and 2g (dotted lines),
forming a harmonic energy ladder for two coupled oscillators.
For U > 0, however, the eigenenergies shift (solid lines). The
eigenenergies of the first (blue) and the second (red) manifold
as a function of U are plotted in the rotating frame in Fig. 1(c).

The shifting of the second-manifold eigenenergies due to
the exciton-exciton repulsion is the source of the quantum
optical nonlinearity. Consider tuning the pump laser so that
it resonantly excites the upper polariton |1,+〉 [blue arrows in
Fig. 1(a)]. Whereas the first photon from the laser drives the
system from |0〉 to |1,+〉, a second photon cannot subsequently
drive the system from |1,+〉 to |2,e3〉 because the eigenenergy
of |2,e3〉 has shifted out of resonance. On the other hand, if the
pump laser is tuned to half the energy of |2,e3〉 (red arrows),
it can no longer excite |1,+〉, while at the same time, it can
excite |2,e3〉 via two-photon resonance. Thus, by measuring the
photonic content of the state of the system, we can determine
the strength of the nonlinearity.

The photonic content, in turn, can be measured by detecting
the light that leaks out of the cavity and analyzing its temporal
distribution. If the photons arriving at the detector are more
antibunched in time compared to their Poissonian average, it
points to the presence of a strong polariton-polariton interac-
tion. The second-order coherence function g(2)(τ ) yields the
ratio of the detection rate of photon pairs separated by a delay
τ to that of single photons:

g(2)(τ ) = 〈a†(0)a†(τ )a(τ )a(0)〉
〈a†(0)a(0)〉2 . (2.3)

235307-2



STRONG PHOTON ANTIBUNCHING IN WEAKLY … PHYSICAL REVIEW B 97, 235307 (2018)

FIG. 2. g(2)(0) vs pump laser frequency for different U . (a) A 2D plot of g(2)(0) versus pump laser frequency (x axis) relative to the exciton
resonance for different values of U (y axis). The color corresponds to the base-10 logarithm of g(2)(0). Four strong bunching peaks (red) are
observed, three of which come from the second-manifold eigenstates. The remaining bunching peak at ωpump = 0 is due to photon-induced
tunneling [7]. Also observed are three strong antibunching dips (blue): the first-manifold eigenstates (lower and upper polaritons) and a
quantum-interference dip. The other parameters are ωc = ωe and κ = � = 0.01g. (b) Horizontal cross sections of (a) for U/g = 0.3, 0.67, and
1.5. When U/g is near 2/3, the location of the quantum interference dip overlaps with that of the upper polariton at ωpump = g, yielding an
extremely strong antibunching with g(2)(0) ∼ 10−7.

In particular, for zero time delay, g(2)(0) = 1 indicates a Poisso-
nian distribution typical of coherent light, whereas g(2)(0) < 1
is a sub-Poissonian distribution and an experimental smoking
gun of a distinctly quantum process. In the following section
we will investigate g(2)(0) in various parameter spaces.

III. PARAMETER STUDY OF g(2)(0)

We first consider g(2)(0) for � � g � U . We assume κ

is equal to �. The second-manifold eigenenergies approach
±√

2g and 2U , the former pair resembling the well-known
anharmonic Jaynes-Cummings ladder for a two-level qubit.
The observation of photon antibunching dips [g(2)(0) < 1]
at the polariton resonances as well as the bunching peaks
[g(2)(0) > 1] at the energies of the two second-manifold states
has been extensively explored in atomic [39] and solid-state
systems [7].

When U becomes comparable to g, there appears another
energy, separate from the polaritons, that produces antibunch-
ing. As explained by Bamba et al. [40], this antibunching dip

is a result of destructive quantum interference between the first
and the second manifolds, and its energy is given by

2ω′3 + 2Uω′2 + g2U = 0, (3.1)

where ω′ = ω − i�/2.
Figure 2 shows a plot of g(2)(0) versus the pump laser

frequency relative to the exciton resonance at multiple val-
ues of U . In addition to the first- and the second-manifold
eigenenergies plotted in Fig. 1(c), the interference-induced
antibunching is clearly observed in Fig. 2(a) [the color rep-
resents the base-10 logarithm of g(2)(0)]. As U increases,
the interference dip passes through the upper polariton dip at
ωpump = g. Figure 2(b) shows the cross sections of Fig. 2(a) for
U/g = 0.3, 0.67, and 1.5. For U/g = 0.67 (shown in green),
the interference dip coincides with the upper polariton dip,
yielding an extremely strong antibunching [g(2)(0) ∼ 10−7].

Having explored � � g ∼ U , we increase the dissipation
in our system until it becomes comparable to g, which is more
representative of typical solid-state environments. In Fig. 3 we
explore three separate values of �/g: 0.1, 0.5, and 1.0. For

FIG. 3. g(2)(0) vs pump laser frequency for different � and U . (a)–(c) �/g = 0.1, 0.5, and 1.0, with U/g ranging from 0.1 to 0.5. The pump
laser frequency is relative to the exciton resonance, and ωc = ωe. (a) For small �, g(2)(0) resembles that in Fig. 2(b), with the strong quantum
interference-induced antibunching appearing near ωpump = g. (b) For intermediate �, the antibunching dip at ωpump = g becomes shallow while
a new antibunching dip appears at a slightly negative ωpump. (c) This new antibunching dip, also due to the destructive quantum interference,
can be significantly large with g(2)(0) ∼ 10−2.
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FIG. 4. Minimum g(2)(0) for different � and U . A 2D plot of the
minimum value of the g(2)(0) that appears at negative ωpump (see Fig. 3)
versus U (x axis) and � (y axis). The color represents the base-10
logarithm of g(2)(0). For a given value of �, strong antibunching is
observed for a range of U . As � increases, the optimal value of U as
well as its width increases. White dashed lines mark where g(2)(0) =
0.1. For this simulation, κ is set at 0.5g. The dotted appearance for
strong antibunching is a numerical artifact.

each one we plot g(2)(0) versus the pump laser frequency for
a range of U values. As � increases, previously sharp features
become rounded, and what used to be a strong antibunching
dip at ωpump = g becomes gradually shallower [Fig. 3(a)].

For large �, on the other hand, an additional antibunching
dip appears. As seen in Figs. 3(b) and 3(c), this dip only appears
for U < �, and the value of U at which it appears depends on
how close �/g is to unity. The origin of this antibunching is
once again the destructive quantum interference [40], which
has been extensively investigated by others [41–43]. For a
given �, Eq. (3.1) gives the optimum U and ω that produce
the smallest g(2)(0).

Figure 4 displays a two-dimensional color plot of minimum
g(2)(0) as a function of � and U . Here we set κ = 0.5g. The
color represents the base-10 logarithm of g(2)(0), ranging from
red [g(2)(0) ≈ 1] to blue [g(2)(0) ≈ 10−6]. We have indicated
on the plot with white dotted lines where g(2)(0) = 0.1, show-
ing that the domain of U that produces strong antibunching
increases with �.

IV. PROPOSED EXPERIMENTAL DESIGN

To observe the strong, interference-induced antibunching,
we propose to pattern a 2D-material monolayer into a circular
island with radius R and place it on a thin photonic crystal
cavity [see Fig. 1(a)]. We assume that the area of the patterned
monolayer is much smaller than that of the cavity mode, i.e.,
R � Rmode. We also assume that the monolayer is free of any
defect such that the excitons are delocalized over the entire
monolayer area. Hence, the spatial extent of the exciton wave
function is equal to the physical size of the monolayer.

Both the exciton-photon coupling g and the nonlinearity U

depend on the size of the monolayer. The former is given by
[44]

h̄g = dcv|φ(0)|√h̄ωc√
2ε0Lc

√
πR2

πR2
mode

, (4.1)

where dcv is the interband dipole matrix element, |φ(0)| =√
2/(πaB)2 is the amplitude of the exciton wave function (aB is

the exciton Bohr radius), ωc is the cavity resonance frequency,
ε0 is the permittivity of free space, and Lc is the effective length
of the cavity mode. The nonlinear interaction strength is given
by U = 6Eba

2
B/(πR2), where Eb is the exciton binding energy

[45,46].
Thus, g ∼ R and U ∼ 1/R2, allowing us to tune the system

dynamics by patterning the monolayer into different areas
via, for instance, electron beam lithography. For a WSe2

monolayer with R = 5 nm coupled to a SiN nanobeam cavity
with Rmode = 1 μm, g ≈ 2π × 700 GHz, and U ≈ 2π × 30
GHz [44].

While the cavity loss for a typical nanobeam is fixed
(κ = 2π × 150 GHz) [36], the exact dependence of � on R

is unknown and remains an open problem. It has been reported
that patterned monolayers on the order of tens of nanometers in
radii can suffer from linewidth broadening due to the presence
of edge states. Since the length of the edge scales linearly with
R and the loss has been seen to increase for smaller monolayers,
for our simulations, we have chosen to fix � = 2π × 300 GHz
at R = 50 nm, an experimentally measured value, and vary it
as 1/R [36].

Figure 5 shows the effect of changing R on g(2)(0). As
R increases from 30 to 60 nm, an antibunching dip appears,
becomes sharper, and then recedes. The strongest antibunching
occurs at R = 42 nm with g(2)(0) ∼ 10−3. In addition to the
zero time delay, the inset shows g(2)(τ ) for the parameters
corresponding to R = 42 nm. The rise time to unity is on

FIG. 5. g(2)(0) vs pump laser frequency for different R. A plot of
g(2)(0) versus pump laser frequency relative to the exciton resonance
for different monolayer areas, with radius R ranging from 30 to 60
nm. The strong antibunching appears for R = 42 nm. Inset: A plot of
g(2)(τ ) vs τ for R = 42 nm. The rise time to unity is on the order of
1 ps.
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FIG. 6. g(2)(0) vs ωe and ωc. A 2D plot of g(2)(0) versus the
exciton resonance (x axis) and the cavity resonance (y axis) relative
to the pump laser frequency for monolayer radius R = 42 nm.
The color represents the base-10 logarithm of g(2)(0). As can be seen,
the antibunching is robust against the change in the cavity frequency.

the order of 1 ps, which is expected since the timescale of
the dynamics is set by the loss rates that are on the order of
hundreds of gigahertz. A direct experimental measurement of
this correlation would require a fast pulsed laser source [47].
The width of the pulse is limited by that of the antibunching
dip. For g(2)(0) < 0.5, the width of the dip in the frequency
domain is about ∼600 GHz (Fig. 5); thus, the pulse width

of the pump laser is limited to 1.7 ps. A further tradeoff, for
R = 30 nm, would allow the measurement of g(2)(0) ∼ 0.8
using a subpicosecond pulse width.

Finally, we explore the robustness of the antibunching
dip for unequal cavity and exciton detunings, i.e., ωc 	= ωe.
Figure 6 shows a plot of g(2)(0) as a function of ωc and ωe

relative to the pump laser frequency for the optimal parameters
(R = 42 nm, g = 2π × 560 GHz, � = 2π × 360 GHz, κ =
2π × 150 GHz, U = 2π × 40 GHz), where the color repre-
sents the base-10 logarithm of g(2)(0). While the antibunching
behavior is observed only for a narrow range of the exciton
detuning (x axis), it survives for a much larger range of the
cavity detuning (y axis), giving us substantial leeway in the
fabrication precision of the nanobeam cavity.

V. CONCLUSION

We have explored the second-order coherence of a 2D-
material monolayer embedded in a photonic crystal cavity and
identified a range of system parameters that yield strong photon
antibunching. We have shown that by patterning the monolayer
into different sizes, we can tune the system dynamics, driving
it from a weak to a strong photon antibunching regime. The
successful implementation of the experimental design opens
the door to a new regime of quantum interference-based
quantum simulations on a scalable, on-chip platform [16].
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