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ABSTRACT: Two-dimensional, atomically thin materials offer unique physical
properties, such as a large second-order optical nonlinearity. Integrating these materials
into a scalable and silicon-compatible platform could provide a pathway toward realizing
low-power nonlinear optics. We have presented a formalism to calculate the effective
nonlinear optical coefficient for a cavity integrated 2D material system as well as the
cavity enhanced absorptive loss, which can be used to guide future experiments. We
have also shown that the few-photon regime of cavity QED is within reach with a cavity
quality factor of ∼105−106, provided the loss at the second harmonic mode is
minimized. As test applications, we have simulated the performances of (a) an optically
bistable device and (b) a nanostructured device exhibiting single-photon blockade.
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Realizing nonlinear photon−photon interactions in a low
power and scalable platform is important for both

fundamental sciences as well as optical computing-based
technologies, for example, exploring the utility of coherence
in optical computing1 or realizing quantum simulation using
interacting photonic systems.2,3 Unfortunately, direct photon−
photon coupling is weak, so any such coupling must be
enhanced through an interaction with material excitations. In
fact, such light−matter interactions can be enhanced by spatial
and temporal confinement of light by using a nanophotonic
cavity in combination with a strongly nonlinear material.
However, for practical applications, there must also be a
scalable fabrication process for the cavity-material system.
Overcoming these limitations on scalability and low-power
operation would help facilitate advances in optical computing as
well as expand our understanding of fundamental quantum
properties.
Unfortunately, these two requirements of scalability and

strong nonlinearity are often contradictory for available solid-
state material systems. For example, single photon nonlinearity
can be readily achieved using single quantum emitters, for
example, quantum dots or defect centers.4−7 Although this is
indeed the strongest optical nonlinearity that can be achieved in
solid-state quantum optics, the scalability of these emitters is
limited due to their spatial and spectral inhomogeneity.
Strongly nonlinear materials that could be selectively grown
or easily positioned at a specific location would allow a more
scalable fabrication process. Among the alternatives, semi-
conductor quantum wells possess a stronger nonlinearity than

bulk materials, which has led to the demonstrations of quantum
simulators8,9 and optical switching devices10 using quantum
wells coupled to distributed Bragg reflectors with moderate
mode volume. Unfortunately, further enhancement of the
nonlinear effect using smaller mode-volume cavities is difficult
in these geometries due to an increase in surface roughness and
electronic surface states during the etching process. Another
candidate would be a bulk material possessing χ(2) nonlinearity,
like gallium arsenide (GaAs) or gallium phosphide (GaP), or a
χ(3) nonlinearity, like silicon (Si). However, owing to the weak
nonlinear nature of bulk susceptibilities, we would need an
ultrahigh quality (Q) factor to reach an appreciable nonlinearity
at the single-photon level, as recently pointed out.11,12

Two-dimensional (2D) materials are single atomic mono-
layers of material, which can be metallic, semiconducting, or
insulating.13 They exhibit unusual optical and electronic
properties,13 and in many ways they behave similarly to
semiconductor quantum wells with the additional benefits of
fabrication and integration ease. These 2D materials can be
grown by simple chemical vapor deposition on a growth
medium like silicon dioxide and then transferred onto a pre-
existing device. This process does not require explicit lattice
matching between the device and the 2D material, unlike the
complicated and expensive molecular beam epitaxy process
used in the growth of quantum wells. Second, unlike quantum
wells, 2D materials can be easily transferred on top of a
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prefabricated cavity, allowing the growth of the 2D material to
be independent of the etching treatment, desirable for
compatibility with modern foundry processes. Then, 2D
materials could be easily restricted to a selective area by
photolithography and subsequent etching, reducing unwanted
losses in the device. These unique properties have generated
significant interest in exploring 2D material-based nano-
photonic devices,14 including electro-optic modulators,15,16

cavity enhanced four-wave mixing devices,17 strongly coupled
2D exciton-cavity systems,18 and optically pumped lasers.19

Despite these advances, cavity enhanced nonlinear optics with
2D materials remains largely unexplored. In this paper, we
theoretically analyze a cavity integrated nonlinear 2D material
device. More specifically, we focus on transition metal
dichalcogenides (TMDCs). These materials demonstrate a
strong off-resonant second order nonlinearity20 that is notably
absent in silicon or silicon nitride, the materials with current
scalable fabrication methods.21 We provide a simple way to
estimate this nonlinear strength and explore the performance of
two different devices: an optically bistable device important for
optical computing and a quantum optical device that can
generate single photons by engineering photon−photon
interactions via photon blockade.

■ RESULTS

Theory and Simulations. Unlike bulk materials, 2D
materials interact with the cavity only via an evanescent field
(Figure 1a). Hence, the maximum effective nonlinearity
obtainable in a 2D material-cavity system will be smaller than
with a bulk material that has the same nonlinear coefficient.
The Hamiltonian describing a cavity with two modes (mode
a at the fundamental and mode b at the second harmonic
frequency) containing second order nonlinearity is given by12

= Δ + Δ + + *† † † †a a b b g b a g b a( ) ( )a b nl
2

nl
2

Here, Δa and Δb are the detuning of the cavity modes from the
laser frequency and its second-harmonic, respectively, and gnl is
the second-order nonlinear interaction strength, whose
magnitude we want to estimate in the following. A reasonable
assumption for the cavity field profile (polarized along the y ̂
direction) confined in a high-Q photonic crystal cavity is given
by a Gaussian envelope in the photonic lattice plane22 (Figure
1b)
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where, σx and σy are the confinement lengths of the cavity-field
in the plane, and f(z) is the field profile along the z-axis. The
prefactor is chosen such that the normalization integral
∫ ∫ ∫ |αa(x,y,z)|2dxdydz = 1 is satisfied, where the integration
is performed over the entire volume of the cavity. We also
assume that both fundamental and second-harmonic modes
have only y-polarization, where the x- and y-directions are
aligned to the TMDC monolayer crystal axes. Assuming a three
layer model for the cavity slab, the analytic functional form of
f(z) reads:
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Here, A and B are the amplitudes of the field at the center and
at the surface of the slab (Figure 1b). The effective nonlinearity
for 2D material can be calculated from an integration
performed only over the 2D material region12
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Figure 1. (a) Coupled 2D material-cavity device. A 2D material layer is transferred on top of a prefabricated cavity. The cavity thickness is d, and the
2D material thickness is assumed to be D. (b) The confined light inside the cavity can be modeled as a cosine-like function inside the slab and two
exponentially decaying field profiles on the top and the bottom of the slab. (c) The ratio of the field amplitude at the surface and at the center of a
generic photonic crystal cavity (silicon nitride-based nanobeam cavity) as a function of the slab thickness. The corresponding quality factor of the
cavity is also plotted. The results are obtained via 3D-Finite Difference Time Domain (FDTD) simulations, for which we employed the commercial
software from Lumerical Solutions. (d) The nonlinear interaction strength plotted as a function of the slab thickness.
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where, αi,j,k is the component of α polarized in the i,j,k
directions, which for the calculation of the effective nonlinearity
are iterated over the TMDC crystal axis directions (x,y,z). In
the case of monolayer TMDCs, which have D3h symmetry, the
only nonzero components of the χ(2) tensor are χyyy

(2) = −χyxx(2) =
−χxxy(2) = −χxyx(2),23 and therefore, the general equation for the
nonlinear coupling of modes via the 2D TMDC becomes
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Inputting the expressions for αa and αb, assumed to be purely
y ̂ polarized over the whole 2D material region, simplifies the
expression to
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where ε is the dielectric constant, χ(2) is the second order
nonlinear coefficient of the 2D material, and D is the thickness
of the 2D material. We note that a different field polarization
with the same spatial pattern and total electric field strength
may yield lower or even zero effective nonlinearity due to the
tensor form of the nonlinear coupling. Unlike our model
electric field, typical planar photonic crystal cavities (e.g., L3 or
nanobeam) have nonzero field components polarized in the ̂x,

̂y , and ̂z directions. The contributions from the ̂x and ̂y
polarizations are most significant and vary depending on the
particular cavity mode. By examining the form of the nonlinear
overlap we can see that when a term in the integral is
antisymmetric in the x or y directions it will integrate to zero,
which can be used to simplify the expression for particular
modes. For TE-like polarized cavity modes in planar structures
with thickness (d) less than λ/2, the ̂z polarized field
component is very small, and it contributes only to the
normalization (where it will reduce the overlap slightly).
In our analysis we have assumed that the fundamental and

second harmonic modes have the same spatial profiles. Such an
assumption is not strictly valid, but one needs to ensure that the
integral ∫ ∫ ∫ dxdydzχ(2)/ε3/2αa(x,y,z)

2αb(x,y,z) ≠ 0, which
amounts to the condition that one needs to satisfy phase
matching. Such phase matching is difficult to realize in a
nanoscale cavity,24 where the integration is performed over the
whole volume. For a given field pattern αa = αa,xx ̂ + αa,yy,̂ the
field pattern in mode b that maximizes the nonlinear coupling is
given by αb,x ∝ αa,xαa,y and αb,y ∝ αa,y

2 αa,x
2 . A mode with this

exact field profile is unlikely to exist in a photonic crystal cavity,
but it can be used as a guide for designing cavities (e.g., in
inverse design).25 However, we notice that in the case of 2D
material systems the integration is performed only over the
region where the material is present, giving more flexibility to
the cavity design. For example, odd modes oriented normal to
the surface yield almost zero mode overlap when the
integration is performed over the entire cavity volume.
However, due to the unique device geometry with 2D
materials, the integration is performed only over one surface,
and such modes are acceptable. The ability to selectively etch

the 2D material without changing the cavity parameters also
opens up new possibilities for quasi-phase matching that were
not possible when the cavity material is also being used as the
nonlinear material. For example, in nanobeam cavity designs for
second harmonic generation,24 the nonlinear overlap is typically
greatly reduced due to the fact that the mode is extended over
several photonic crystal periods, and the field changes sign each
period. When the overlap is integrated, these cancel to give very
low effective nonlinearities. However, if the 2D material was
etched away every other period, the overlap and, subsequently,
the effective nonlinearity may be increased by orders of
magnitude.
To estimate the nonlinearity, we need to estimate the

magnitudes of A and B, respectively. From the continuity of the
field and its derivative, we find the conditions
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The field amplitude B determines the strength of the field on
the surface of the cavity where the 2D material is physically
located. Hence, one way to increase the nonlinear interaction
strength is to increase the intensity of the field at the surface,
that is, by decreasing the slab thickness. Using three-
dimensional Finite-Difference Time-Domain (3D-FDTD)
simulations of a silicon nitride nanobeam cavity, we can
determine the ratio of the electromagnetic field intensities at
the surface and at the center of the cavity as a function of the
cavity thickness, d. We observe a monotonic increase of the
surface field with decreasing thickness (Figure 1c). However, a
monotonic decrease in the Q factor is also observed with
decreasing slab thickness, as with increased surface field more
light can leak out. We note that this result shows only a
qualitative behavior and that proper design of the cavity can
improve the Q factor while maintaining comparable surface
field strength. We also note that, the nonlinear interaction
strength does not depend on the Q factor of the cavity, but Q is
important for the low-power operation of the devices as
explained below.
Next we calculate the value of the nonlinear coefficient gnl for

different ratios of the amplitudes of the surface and center field.
Note that this ratio is the same as B/A = cos(kd/2). The
analytically estimated expression for gnl reveals that the
interaction strength depends on the product of the second-
order nonlinear coefficient χ(2) and the 2D material thickness
D. From previous experimental demonstrations, D is generally
assumed to be the same as the interlayer distance ∼0.65 nm,
unlike the value of χ(2), which can vary significantly
(experimental data ranges from 0.1 to 100 nm/V for
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molybdenum disulfide20,26,27 and 4 nm/V for tungsten
disulfide23). For our numerical investigations, we choose two
representative cases: χ(2) = 10 and 100 nm/V, and a target
wavelength of 810 nm. For the cavity, we want to use silicon
compatible material to ensure scalability and compatibility with
foundry processes.21 However, the use of silicon is prohibitive,
because it is not transparent at both the fundamental and the
second harmonic frequencies. As the fundamental wavelength is
around 810 nm, one requires a large bandgap material, which
typically corresponds to a lower refractive index. Among these
materials, silicon nitride has a relatively large refractive index (n
∼ 2). Using a photonic crystal cavity, one can reach σx = σy = λ·
2n.28 Figure 1d shows the nonlinear interaction strength as a
function of the slab thickness, where we obtain the field ratio
from the results in Figure 1c. A monotonic increase in gnl is
observed with decreasing d; although, depending on the other
cavity parameters, a nonmonotonic dependence on the slab
thickness might be observed. This is due to the fact that, with a
reduction in the thickness d, the ratio of the surface-to-center
field increases. However, this reduces the center field itself due
to lower confinement. These two are counteracting effects and
could lead to a nonmonotonic dependence in an actual device.
We note that one can enhance the interaction strength further
by optimizing the cavity design to enhance the fields at the
surface of the cavity without sacrificing the quality factor.
Another important consideration for cavity nonlinear optics

is the loss originating from the material itself. Denoting the
electric field amplitude inside the cavity as E, the mode volume
of the cavity as Vm, and the relative permittivity of the cavity
material as εr, we determine that the energy stored in a cavity is
ET = εoεr|E|

2Vm. The electric field inside the cavity (with
resonant frequency ωo and quality factor Q) decreases with
time as E(t) = E(0) exp(−ωot/2Q). If the bare cavity has a line
width of Δωo = ωo/Q and the integrated 2D material-cavity has
a line width (due to material absorption) of Δω, then the
energy lost due to absorption over a small time duration T is
εoεr|E(0)|

2Vm(exp(−ΔωoT) − exp(ΔωT)). The optical power
absorbed in the 2D material with a conductivity of σ is given by
σ|E2D|

2Am, where E2D is the electric field at the spatial location
of the 2D material, and Am is the overlap area between the
cavity and the 2D material. Following previous analysis, we
identify E(0) = A and E2D = B, and we can write

ε ε ω ω σ| | −Δ − −Δ = | |A V T T B A T(exp( ) exp( ))o r
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Expanding the exponential, we can simplify:
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The relationship between Am and Vm strongly depends on
the cavity design, but as a rough order of magnitude, one can
estimate Am = Vm/d, d being the cavity thickness as explained
before. For TMDCs, the conductivity σ is very close to zero at
the fundamental frequency of 810 nm,29 but at the second
harmonic there might be significant absorption, which will limit
the ultimate operation. In fact, the calculated absorptive Q is
only ∼100. Hence, for the successful demonstration of a 2D
material nonlinear device, one needs to ensure that the
conductivity is close to zero at both the fundamental and the
second harmonic frequencies, respectively. At a fundamental
frequency of 1500 nm, this condition is satisfied, but
unfortunately, the nonlinear coefficient strongly depends on
frequency and is expected to decrease at longer wavelengths.

For example the reported value of χ(2) for tungsten diselenide is
only 0.06 nm/V at 1550 nm;30 and for molybdenum disulfide,
the nonlinearity peaks at around 0.85 μm, and drops
significantly for pump wavelengths longer than 1 μm. With
the available TMDCs, strong absorption at the second
harmonic frequency poses a serious problem for operation at
the frequency where the nonlinear optical effect is the
strongest. Hence, the ideal wavelength of operation will be
somewhere where the conductivity is lower at the second
harmonic frequency and the second order nonlinear coefficient
is appreciable. Current experimental measurements, however,
lack such data for TMDCs. We hope that with further
experimental study and exploration of new 2D materials, for
example, black phosphorus31,32 or molybdenum ditelluride,33

such a regime can be found.
For the following simulations, we assume gnl/2π = 0.2 and 2

GHz, respectively, for a cavity thickness d ≈ 140 nm, depending
on the nonlinear interaction strength of χ(2) = 10 and 100 nm/
V. We also assumed that the absorptive loss from the 2D
material is minimal. For comparison, a similar device made out
of a bulk χ(2) nonlinear medium (for example, with III−V
material, like GaAs with typical value of χ(2) = 100 pm/V), the
typical nonlinear interaction strength achievable is gnl/2π = 1.2
GHz.12 Even though the effective nonlinearity in a 2D material-
cavity device is not significantly higher than that of a cavity
made exclusively of χ(2) nonlinear material, these 2D materials
offer the possibility to leverage the second order nonlinearity in
a silicon compatible platform. With this analysis of the
nonlinear interaction strength at hand, we can analyze the
performance of nonlinear optical devices operating at low
intracavity photon numbers. More specifically, we analyze two
different applications: (1) an optically bistable device for all-
optical switching exploiting second-order nonlinearity, and (2)
single-photon blockade as a consequence of strong photon−
photon repulsion, useful for prospective quantum simulation
applications.

Optical Bistability. Few photon optical bistability is a
necessary condition for digital optical computing. The main
hurdle for this becoming a practical technology is the large
optical power required to observe the bistability. One way to
achieve optical bistability is through nonlinear optics, with a
strong second order nonlinearity being desirable to reduce the
necessary power requirements.34 Proper analysis of a lossy
system, such as the proposed cavity system, requires the
analysis of the master equation with the addition of Lindblad
terms, as outlined in ref 34. With the total cavity field decay rate
through the transmission and reflections ports defined as κ, the
cavity driving term becomes E(κ/2)1/2(a + a†), assuming the
two ports are equivalent. The quality factor of the cavity is
defined as Q = ωa/2κ, with ωa being the resonance frequency of
the mode a. Note that, we have assumed that the second-
harmonic mode has similar Q as the fundamental mode. Such
an assumption may not be valid for a realistic case, where
strong absorption might occur at the second harmonic
harmonic frequency, as explained earlier in the paper.
Following the formalism in ref 34, we numerically simulate

the performance of the device by using the mean-field
equations. Figure 2a shows clear signatures of optical bistability,
both in the steady state as well as under dynamic simulation.
We analyze the optical power as well as the intracavity photon
number required to observe the optical bistability as a function
of the cavity Q factor (Figures 2b,c). Depending on the choice
of χ(2), the photon number can be reduced below 100 with a
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cavity Q-factor of 105−106. Such quality factors can be readily
achieved using silicon nitride nanobeam photonic crystal
resonators.35 We emphasize that this optical bistability
originates from true nonlinear optical effects and differs from
previous demonstrations of optical bistability based on thermo-
optical nonlinearity36 or photorefractive effects due to free
carriers.37,38 With other effects, one may observe optical
bistability with lower quality factor cavities, but χ(2) nonlinear
optical effects preserve the optical coherence, a necessary
condition in the exploration of coherence in optical
computing.1 2D material-integrated silicon nitride cavity is a
promising test-bed for the exploration of such true nonlinear
optical bistability. Most materials, including silicon and III−V
semiconductors generate carriers through two-photon absorp-
tion, thereby leading to free carrier-based effects. However, the
large band gap of silicon nitride prevents this, making silicon
nitride an ideal platform to develop cavity-based optically
bistable systems.
Photon Blockade. In addition to optical bistability, we also

analyze the possibility of single-photon blockade, where due to
the nonlinear interaction between photons, one can filter out
single photons from the input laser (a coherent state). For a
coherent state, the g(2)(0) = 1, and for a perfect single photon
source, g(2)(0) = 0.39 The second order autocorrelation
function, g(2)(0) = ⟨a†a†aa⟩/⟨a†a⟩2, is the typical figure of
merit employed to probe the single photon nature of the
transmitted light through a nonlinear optical cavity. A reduction
in the second order autocorrelation, such as in Figure 3a, is
known as photon antibunching. Note that, in the analysis of the
optically bistable device, the quantum optical nature of the
system is largely ignored, despite the fact that we are concerned
with few photon nonlinear optics. However, to analyze the

photon blockade, we cannot make such simplifications and we
need to perform fully quantum optical simulations.
Photon blockade has been observed in various cavity QED

systems, for example, using quantum dots4−6 and atoms,7 but
only very recently it has been proposed that such a purely
quantum effect might be observed when bulk second12 and
third11 order nonlinear materials are integrated with very high-
Q cavities. Due to their centro-symmetric nature, silicon
compatible materials lack a second order nonlinearity, limiting
bulk silicon devices to rely on third-order nonlinear effects
(unless surface effects play a major role). This greatly increases
the required Q-factor to values on the order of Q ∼ 107−108 for
typical photonic crystal-type cavities.11 With second order
nonlinearity, one can utilize lower quality factor cavities, ∼105−
106, but one would need to use a different material system that
exhibits second order nonlinear susceptibility, for example, III−
V materials, including GaAs or GaP. However, fabrication of
even these modest quality factor cavities in these materials is
often difficult, and the overall prospect of scalability is limited.
As mentioned before, 2D materials offer an interesting

solution toward realizing a second order nonlinearity in a
silicon compatible platform. Here we analyze whether the 2D
material-cavity platform can reach the photon blockade regime.
Fully quantum optical simulations are performed (with a
photon basis truncated up to 10 photons), and the second
order correlation g(2)(0) is calculated.4 Assuming gnl/2π = κ/2π
= 0.2 GHz, g(2)(0) of the transmitted light as a function of the
laser detuning Δ from the cavity resonance shows clear
antibunching (g(2)(0) < 1) when the laser is on resonance with
the cavity, indicating that a cavity enhanced 2D platform can
achieve photon blockade (Figure 3a). We then studied the
g(2)(0) as a function of the cavity quality factor (Figure 3b) at
zero detuning, where the antibunching is the most prominent.
A cavity quality factor of 105−106 is required to observe photon
blockade in both the 2D material-based and III−V semi-
conductor-based platforms. However, the 2D material-based
platform can take advantage of silicon-based cavities where
nanofabrication is well developed. In fact, recent experiments
have demonstrated a quality factor of ∼55000 in silicon
nitride,40 although in theory this cavity can reach up to a quality
factor of ∼106.35 To reach the regime of photon blockade with
g(2)(0) ∼ 0.1, with a strongly coupled quantum dot-cavity
system, one also needs a quality factor of ∼105.4
Apart from quantum dots, one can in principle employ other

quantum emitters based on defects. However, they generally
have a lower dipole moment, leading to reduced interaction
strength and, hence, require a larger quality factor. They also
suffer from similar limitations to quantum dots, in terms of
random positioning and inhomogeneous broadening. Another

Figure 2. (a) Cavity with two modes at fundamental and second-
harmonic frequencies, respectively. (b) Steady-state and dynamic
bistable behavior: the steady state shows the typical bistability
behavior, while the dynamic simulations show the hysteresis. (c)
Required input power to observe the optical bistability as a function of
the cavity quality factor for two different nonlinear coupling strengths.
(d) Intracavity photon number as a function of the quality factor. The
shaded area highlights the region where the required photon number
drops below 100.

Figure 3. (a) g(2)(0) as a function of Δ/κ, showing a clear
antibunching, and signature of photon blockade. (b) g(2)(0) as a
function of the cavity quality factor for two different second order
nonlinear interaction strengths.
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promising approach to reach blockade is to employ nonlinear
optomechanical interactions.41 Such methods provide the
necessary scalability, but generally require a much larger quality
factor (∼107 to ∼108) assuming a mechanical resonator
frequency from 100 MHz to 1 GHz. Both the quantum
emitters and optomechanics-based nonlinearities are very
different from the second-order nonlinearity reported here,
and a direct comparison between them is difficult. However, the
possibility of photon blockade clearly indicates that 2D material
integrated cavities offer a solid-state alternative to quantum
emitter-based systems.

■ CONCLUSION

The integration of two-dimensional materials with high quality
factor cavities offers one potential pathway toward a scalable,
silicon compatible platform for nonlinear optics. Even though
the 2D material monolayer only interacts with the evanescent
field of the cavity, the effective nonlinear strength is on the
same order of magnitude as bulk III−V material-based cavities.
Moreover, with coupling to a high Q-cavity (∼105 to ∼106), the
nonlinearity is comparable to the current quantum dot-based
systems and is sufficiently high for demonstrations of optical
bistability and photon blockade. However, this platform offers
the distinct advantages of direct integration and silicon
compatibility, which has been problematic to III−V based
devices. Thus, this 2D-integrated platform could yield large-
scale coupled cavity systems required for optics-based
computing, as well as extending the fundamental study of
quantum optical effects.
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