Submodular Functions, Optimization, and Applications to Machine Learning

— Spring Quarter, Lecture 3 —

April 2nd, 2018

Logistics

Cumulative Outstanding Reading

- Read chapter 1 from Fujishige’s book.
Class Road Map - EE563

- L1(3/26): Motivation, Applications, & Basic Definitions,
- L3(4/2): Info theory exs, more apps, definitions, graph/combinatorial examples
- L4(4/4):
- L5(4/9):
- L6(4/11):
- L7(4/16):
- L8(4/18):
- L9(4/23):
- L10(4/25):
- L11(4/30):
- L12(5/2):
- L13(5/7):
- L14(5/9):
- L15(5/14):
- L16(5/16):
- L17(5/21):
- L18(5/23):
- L–(5/28): Memorial Day (holiday)
- L19(5/30):

Last day of instruction, June 1st. Finals Week: June 2-8, 2018.

Two Equivalent Submodular Definitions

Definition 3.2.1 (submodular concave)

A function \(f : 2^V \rightarrow \mathbb{R} \) is submodular if for any \(A, B \subseteq V \), we have that:

\[
f(A) + f(B) \geq f(A \cup B) + f(A \cap B)
\]

(3.8)

An alternate and (as we will soon see) equivalent definition is:

Definition 3.2.2 (diminishing returns)

A function \(f : 2^V \rightarrow \mathbb{R} \) is submodular if for any \(A \subseteq B \subset V \), and \(v \in V \setminus B \), we have that:

\[
f(A \cup \{v\}) - f(A) \geq f(B \cup \{v\}) - f(B)
\]

(3.9)

The incremental “value”, “gain”, or “cost” of \(v \) decreases (diminishes) as the context in which \(v \) is considered grows from \(A \) to \(B \).
Two Equivalent **Supermodular** Definitions

Definition 3.2.1 (supermodular)

A function \(f : 2^V \to \mathbb{R} \) is supermodular if for any \(A, B \subseteq V \), we have that:

\[
f(A) + f(B) \leq f(A \cup B) + f(A \cap B)
\]

(3.8)

Definition 3.2.2 (supermodular (improving returns))

A function \(f : 2^V \to \mathbb{R} \) is supermodular if for any \(A \subseteq B \subset V \), and \(v \in V \setminus B \), we have that:

\[
f(A \cup \{v\}) - f(A) \leq f(B \cup \{v\}) - f(B)
\]

(3.9)

- Incremental “value”, “gain”, or “cost” of \(v \) increases (improves) as the context in which \(v \) is considered grows from \(A \) to \(B \).
- A function \(f \) is submodular iff \(-f\) is supermodular.
- If \(f \) both submodular and supermodular, then \(f \) is said to be **modular**, and \(f(A) = c + \sum_{a \in A} f(a) \) (often \(c = 0 \)).

Submodularity’s utility in ML

- A **model of a physical process**:
 - When **maximizing**, submodularity naturally models: diversity, coverage, span, and information.
 - When **minimizing**, submodularity naturally models: cooperative costs, complexity, roughness, and irregularity.
 - vice-versa for supermodularity.
- A submodular function can act as a **parameter** for a machine learning strategy (active/semi-supervised learning, discrete divergence, structured sparse convex norms for use in regularization).
- Itself, as an object or function to learn, based on data.
- A **surrogate or relaxation strategy** for optimization or analysis
 - An alternate to factorization, decomposition, or sum-product based simplification (as one typically finds in a graphical model). I.e., a means towards tractable surrogates for graphical models.
 - Also, we can “relax” a problem to a submodular one where it can be efficiently solved and offer a bounded quality solution.
- Non-submodular problems can be analyzed via submodularity.
Learning Submodular Functions

- Learning submodular functions is hard
- Goemans et al. (2009): “can one make only polynomial number of queries to an unknown submodular function f and constructs a \hat{f} such that $\hat{f}(S) \leq f(S) \leq g(n)\hat{f}(S)$ where $g : \mathbb{N} \rightarrow \mathbb{R}$?” Many results, including that even with adaptive queries and monotone functions, can’t do better than $\Omega(\sqrt{n}/\log n)$.
- Balcan & Harvey (2011): submodular function learning problem from a learning theory perspective, given a distribution on subsets. Negative result is that can’t approximate in this setting to within a constant factor.
- Feldman, Kothari, Vondrák (2013), shows in some learning settings, things are more promising (PAC learning possible in $\tilde{O}(n^2 \cdot 2^{O(1/\epsilon^4)})$).
- One example: can we learn a subclass, perhaps non-negative weighted mixtures of submodular components?

Structured Learning of Submodular Mixtures

- Constraints specified in inference form:

 \[
 \text{minimize} \quad w, \xi_t \quad \frac{1}{T} \sum_t \xi_t + \frac{\lambda}{2} \|w\|^2 \\
 \text{subject to} \quad w^T f_t(y^{(t)}) \geq \max_{y \in Y_t} \left(w^T f_t(y) + \ell_t(y) \right) - \xi_t, \forall t \\
 \xi_t \geq 0, \forall t.
 \]

 - Exponential set of constraints reduced to an embedded optimization problem, “loss-augmented inference.”
 - $w^T f_t(y)$ is a mixture of submodular components.
 - If loss is also submodular, then loss-augmented inference is submodular optimization.
 - If loss is supermodular, this is a difference-of-submodular (DS) function optimization.
Structured Prediction: Subgradient Learning

- Solvable with simple sub-gradient descent algorithm using structured variant of hinge-loss (Taskar, 2004).
- Loss-augmented inference is either submodular optimization (Lin & B. 2012) or DS optimization (Tschiatschek, Iyer, & B. 2014).

Algorithm 1: Subgradient descent learning

Input : $S = \{(x^{(t)}, y^{(t)})\}_{t=1}^{T}$ and a learning rate sequence $\{\eta_t\}_{t=1}^{T}$.
1. $w_0 = 0$;
2. for $t = 1, \cdots, T$ do
3. Loss augmented inference: $y^*_t \in \arg\max_{y \in \mathcal{Y}_t} w_{t-1}^T f_t(y) + \ell_t(y)$;
4. Compute the subgradient: $g_t = \lambda w_{t-1} + f_t(y^*) - f_t(y^{(t)})$;
5. Update the weights: $w_t = w_{t-1} - \eta_t g_t$;
6. Return : the averaged parameters $\frac{1}{T} \sum_t w_t$.

Recall

The next page shows a slide from Lecture 1
Submodular-Supermodular Decomposition

- As an alternative to graphical decomposition, we can decompose a function without resorting sums of local terms.

Theorem 3.4.1 (Additive Decomposition (Narasimhan & Bilmes, 2005))

Let \(h : 2^V \to \mathbb{R} \) be any set function. Then there exists a submodular function \(f : 2^V \to \mathbb{R} \) and a supermodular function \(g : 2^V \to \mathbb{R} \) such that \(h \) may be additively decomposed as follows: For all \(A \subseteq V \),

\[
h(A) = f(A) + g(A) \quad (3.8)
\]

- For many applications (as we will see), either the submodular or supermodular component is naturally zero.
- Sometimes more natural than a graphical decomposition.
- Sometimes \(h(A) \) has structure in terms of submodular functions but is non additively decomposed (one example is \(h(A) = f(A)/g(A) \)).
- **Complementary:** simultaneous graphical/submodular-supermodular decomposition (i.e., submodular + supermodular tree).

Applications of DS functions

Any function \(h : 2^V \to \mathbb{R} \) can be expressed as a difference between two submodular (DS) functions, \(h = f - g \).

- **Sensor placement with submodular costs.** I.e., let \(V \) be a set of possible sensor locations, \(f(A) = I(X_A; X_{V \setminus A}) \) measures the quality of a subset \(A \) of placed sensors, and \(c(A) \) the submodular cost. We have \(f(A) - \lambda c(A) \) as the overall objective to maximize.
- **Discriminatively structured graphical models,** EAR measure \(I(X_A; X_{V \setminus A}) - I(X_A; X_{V \setminus A}|C) \), and synergy in neuroscience.
- **Feature selection:** a problem of maximizing \(I(X_A; C) - \lambda c(A) = H(X_A) - [H(X_A|C) + \lambda c(A)] \), the difference between two submodular functions, where \(H \) is the entropy and \(c \) is a feature cost function.
- **Graphical Model Inference.** Finding \(x \) that maximizes \(p(x) \propto \exp(-v(x)) \) where \(x \in \{0, 1\}^n \) and \(v \) is a pseudo-Boolean function. When \(v \) is non-submodular, it can be represented as a difference between submodular functions.
Submodular Relaxation

- We often are unable to optimize an objective. E.g., high tree-width graphical models (as we saw).
- If potentials are submodular, we can solve them.
- When potentials are not, we might resort to factorization (e.g., the marginal polytope in variational inference, were we optimize over a tree-constrained polytope).
- An alternative is submodular relaxation. I.e., given

\[
\Pr(x) = \frac{1}{Z} \exp(-E(x))
\]

where \(E(x) = E_f(x) - E_g(x) \) and both of \(E_f(x) \) and \(E_g(x) \) are submodular.
- Any function can be expressed as the difference between two submodular functions.
- Hence, rather than minimize \(E(x) \) (hard), we can minimize the easier \(\tilde{E}(x) = E_f(x) - E_m(x) \geq E(x) \) where \(E_m(x) \) is a modular lower bound on \(E_g(x) \).

Submodular Analysis for Non-Submodular Problems

- Sometimes the quality of solutions to non-submodular problems can be analyzed via submodularity.
- For example, “deviation from submodularity” can be measured using the submodularity ratio (Das & Kempe):

\[
\gamma_{U,k}(f) \triangleq \min_{L \subseteq U, S: |S| \leq k, S \cap L = \emptyset} \frac{\sum_{s \in S} f(x|L)}{f(S|L)}
\]

\(f \) is submodular if and only if \(\gamma_{V,|V|} = 1. \)
- For some variable selection problems, can get bounds of the form:

\[
\text{Solution} \geq (1 - \frac{1}{e^{\gamma_{U*,k}}}) \text{OPT}
\]

where \(U^* \) is the solution set of a variable selection algorithm.
- This gradually get worse as we move away from an objective being submodular (see Das & Kempe, 2011).
- Other analogous concepts: curvature of a submodular function, and also the submodular degree.
Submodular functions are functions defined on subsets of some finite set, called the ground set.

- It is common in the literature to use either E or V as the ground set — we will at different times use both (there should be no confusion).
- The terminology ground set comes from lattice theory, where V are the ground elements of a lattice (just above 0).

Notation \mathbb{R}^E, and modular functions as vectors

What does $x \in \mathbb{R}^E$ mean?

$$\mathbb{R}^E = \{ x = (x_j \in \mathbb{R} : j \in E) \}$$

(3.7)

and

$$\mathbb{R}^E_+ = \{ x = (x_j : j \in E) : x \geq 0 \}$$

(3.8)

Any vector $x \in \mathbb{R}^E$ can be treated as a normalized modular function, and vice versa. That is, for $A \subseteq E$,

$$x(A) = \sum_{a \in A} x_a$$

(3.9)

Note that x is said to be normalized since $x(\emptyset) = 0$.
characteristic (incidence) vectors of sets & modular functions

- Given an \(A \subseteq E \), define the incidence (or characteristic) vector \(1_A \in \{0, 1\}^E \) on the unit hypercube to be
 \[
 1_A(j) = \begin{cases}
 1 & \text{if } j \in A; \\
 0 & \text{if } j \notin A
 \end{cases}
 \quad (3.10)

 or equivalently,
 \[
 1_A \overset{\text{def}}{=} \left\{ x \in \{0, 1\}^E : x_i = 1 \text{ iff } i \in A \right\} \quad (3.11)

- Sometimes this is written as \(\chi_A \equiv 1_A \).
- Thus, given modular function \(x \in \mathbb{R}^E \), we can write \(x(A) \) in a variety of ways, i.e.,
 \[
 x(A) = x^T \cdot 1_A = \sum_{i \in A} x(i) \quad (3.12)

Other Notation: singletons and sets

When \(A \) is a set and \(k \) is a singleton (i.e., a single item), the union is properly written as \(A \cup \{k\} \), but sometimes we will write just \(A + k \).
What does S^T mean when S and T are arbitrary sets?

- Let S and T be two arbitrary sets (either of which could be countable, or uncountable).
- We define the notation S^T to be the set of all functions that map from T to S. That is, if $f \in S^T$, then $f : T \rightarrow S$.
- Hence, given a finite set E, \mathbb{R}^E is the set of all functions that map from elements of E to the reals \mathbb{R}, and such functions are identical to a vector in a vector space with axes labeled as elements of E (i.e., if $m \in \mathbb{R}^E$, then for all $e \in E$, $m(e) \in \mathbb{R}$).
- Often “2” is shorthand for the set $\{0, 1\}$. I.e., \mathbb{R}^2 where 2 $\equiv \{0, 1\}$.
- Similarly, 2^E is the set of all functions from E to “two” — so 2^E is shorthand for $\{0, 1\}^E$ — hence, 2^E is the set of all functions that map from elements of E to $\{0, 1\}$, equivalent to all binary vectors with elements indexed by elements of E, equivalent to subsets of E. Hence, if $A \in 2^E$ then $A \subseteq E$.
- What might 3^E mean?

Example Submodular: Entropy from Information Theory

- Entropy is submodular. Let V be the index set of a set of random variables, then the function

$$f(A) = H(X_A) = -\sum_{x_A} p(x_A) \log p(x_A) \quad (3.13)$$

is submodular.
- Proof: (further) conditioning reduces entropy. With $A \subseteq B$ and $v \notin B$,

$$H(X_v | X_B) = H(X_{B+v}) - H(X_B) \quad (3.14)$$

$$\leq H(X_{A+v}) - H(X_A) = H(X_v | X_A) \quad (3.15)$$

- We say “further” due to $B \setminus A$ not nec. empty.
Alternate Proof: Conditional mutual Information is always non-negative.

Given $A, B \subseteq V$, consider conditional mutual information quantity:

$$I(X_A \setminus B; X_B \setminus A | X_{A \cap B}) = \sum_{x_{A \cup B}} p(x_{A \cup B}) \log \frac{p(x_{A \setminus B}, x_B \setminus A | x_{A \cap B})}{p(x_{A \setminus B} | x_{A \cap B})p(x_B \setminus A | x_{A \cap B})}$$

$$= \sum_{x_{A \cup B}} p(x_{A \cup B}) \log \frac{p(x_{A \cup B} | x_{A \cap B})}{p(x_A | x_B)} \geq 0 \quad (3.16)$$

then

$$I(X_A \setminus B; X_B \setminus A | X_{A \cap B}) = H(X_A) + H(X_B) - H(X_{A \cup B}) - H(X_{A \cap B}) \geq 0 \quad (3.17)$$

so entropy satisfies

$$H(X_A) + H(X_B) \geq H(X_{A \cup B}) + H(X_{A \cap B}) \quad (3.18)$$

Given a set of random variables $\{X_i\}_{i \in V}$ indexed by set V, how do we partition them so that we can best block-code them within each block.

I.e., how do we form $S \subseteq V$ such that $I(X_S; X_{V \setminus S})$ is as small as possible, where $I(X_A; X_B)$ is the mutual information between random variables X_A and X_B, i.e.,

$$I(X_A; X_B) = H(X_A) + H(X_B) - H(X_A, X_B) \quad (3.19)$$

and $H(X_A) = -\sum_{x_A} p(x_A) \log p(x_A)$ is the joint entropy of the set X_A of random variables.
Example Submodular: Mutual Information

- Also, symmetric mutual information is submodular,

\[f(A) = I(X_A; X_{V\setminus A}) = H(X_A) + H(X_{V\setminus A}) - H(X_V) \] \hspace{1cm} (3.20)

Note that \(f(A) = H(X_A) \) and \(\tilde{f}(A) = H(X_{V\setminus A}) \), and adding submodular functions preserves submodularity (which we will see quite soon).

Monge Matrices

- \(m \times n \) matrices \(C = [c_{ij}]_{ij} \) are called Monge matrices if they satisfy the Monge property, namely:

\[c_{ij} + c_{rs} \leq c_{is} + c_{rj} \] \hspace{1cm} (3.21)

for all \(1 \leq i < r \leq m \) and \(1 \leq j < s \leq n \).

- Equivalently, for all \(1 \leq i, r \leq m, 1 \leq j, s \leq n \),

\[c_{\min(i,r),\min(j,s)} + c_{\max(i,r),\max(j,s)} \leq c_{is} + c_{rj} \] \hspace{1cm} (3.22)

- Consider four elements of the \(m \times n \) matrix:

\[c_{ij} = A + B, \quad c_{rj} = B, \quad c_{rs} = B + D, \quad c_{is} = A + B + C + D. \]
Monge Matrices, where useful

- Useful for speeding up many transportation, dynamic programming, flow, search, lot-sizing and many other problems.

- Example, Hitchcock transportation problem: Given $m \times n$ cost matrix $C = [c_{ij}]_{ij}$, a non-negative supply vector $a \in \mathbb{R}^m_+$, a non-negative demand vector $b \in \mathbb{R}^n_+$ with $\sum_{i=1}^m a(i) = \sum_{j=1}^n b_j$, we wish to optimally solve the following linear program:

$$\begin{align*}
\text{minimize} & \quad \sum_{i=1}^m \sum_{j=1}^n c_{ij}x_{ij} \\
\text{subject to} & \quad \sum_{i=1}^m x_{ij} = b_j \quad \forall j = 1, \ldots, n \\
& \quad \sum_{j=1}^n x_{ij} = a_i \quad \forall i = 1, \ldots, m \\
& \quad x_{i,j} \geq 0 \quad \forall i, j
\end{align*}$$

$$C = \begin{bmatrix}
0 & 1 & 3 & 3 \\
1 & 4 & 7 & 10 \\
0 & 4 & 9 & 14 \\
3 & 2 & 1 & 2
\end{bmatrix}$$

- Solving the linear program can be done easily and optimally using the “North West Corner Rule” (a 2D greedy-like approach starting at top-left and moving down-right) in only $O(m + n)$ if the matrix C is Monge!
Monge Matrices and Convex Polygons

- Can generate a Monge matrix from a convex polygon - delete two segments, then separately number vertices on each chain. Distances c_{ij} satisfy Monge property (or quadrangle inequality).

\[
d(p_2, q_3) + d(p_3, q_4) \leq d(p_2, q_4) + d(p_3, q_3)
\]
(3.27)

Monge Matrices and Submodularity

- A submodular function has the form: $f : 2^V \rightarrow \mathbb{R}$ which can be seen as $f : \{0, 1\}^V \rightarrow \mathbb{R}$
- We can generalize this to $f : \{0, K\}^V \rightarrow \mathbb{R}$ for some constant $K \in \mathbb{Z}_+$.
- We may define submodularity as: for all $x, y \in \{0, K\}^V$, we have

\[
f(x) + f(y) \geq f(x \lor y) + f(x \land y)
\]
(3.28)

- $x \lor y$ is the (join) element-wise min of each element, that is \((x \lor y)(v) = \min(x(v), y(v))\) for $v \in V$.
- $x \land y$ is the (meet) element-wise min of each element, that is, \((x \land y)(v) = \max(x(v), y(v))\) for $v \in V$.
- With $K = 1$, then this is the standard definition of submodularity.
- With $|V| = 2$, and $K + 1$ the side-dimension of the matrix, we get a Monge property (on square matrices).
- Not-necessarily-square would be $f : \{0, K_1\} \times \{0, K_2\} \rightarrow \mathbb{R}$.
Submodular Motivation Recap

- Given a set of objects $V = \{v_1, \ldots, v_n\}$ and a function $f : 2^V \rightarrow \mathbb{R}$ that returns a real value for any subset $S \subseteq V$.
- Suppose we are interested in finding the subset that either maximizes or minimizes the function, e.g., $\text{argmax}_{S \subseteq V} f(S)$, possibly subject to some constraints.
- In general, this problem has exponential time complexity.
- Example: f might correspond to the value (e.g., information gain) of a set of sensor locations in an environment, and we wish to find the best set $S \subseteq V$ of sensors locations given a fixed upper limit on the number of sensors $|S|$.
- In many cases (such as above) f has properties that make its optimization tractable to either exactly or approximately compute.
- One such property is submodularity.

Two Equivalent Submodular Definitions

Definition 3.8.1 (submodular concave)

A function $f : 2^V \rightarrow \mathbb{R}$ is **submodular** if for any $A, B \subseteq V$, we have that:

$$f(A) + f(B) \geq f(A \cup B) + f(A \cap B) \quad (3.8)$$

An alternate and (as we will soon see) equivalent definition is:

Definition 3.8.2 (diminishing returns)

A function $f : 2^V \rightarrow \mathbb{R}$ is **submodular** if for any $A \subseteq B \subset V$, and $v \in V \setminus B$, we have that:

$$f(A \cup \{v\}) - f(A) \geq f(B \cup \{v\}) - f(B) \quad (3.9)$$

The incremental “value”, “gain”, or “cost” of v decreases (diminishes) as the context in which v is considered grows from A to B.
Submodular on Hypercube Vertices

- Test submodularity via values on vertices of hypercube.

Example: with $|V| = n = 2$, this is easy:

```
00 01
1110
```

With $|V| = n = 3$, a bit harder.

```
000
001
100
101
010
011
110
111
```

How many inequalities?

Subadditive Definitions

Definition 3.8.1 (subadditive)

A function $f : 2^V \rightarrow \mathbb{R}$ is subadditive if for any $A, B \subseteq V$, we have that:

$$f(A) + f(B) \geq f(A \cup B) \quad (3.29)$$

This means that the “whole” is less than the sum of the parts.
Definition 3.8.1 (supermodular)

A function \(f : 2^V \to \mathbb{R} \) is supermodular if for any \(A, B \subseteq V \), we have that:

\[
f(A) + f(B) \leq f(A \cup B) + f(A \cap B)
\] (3.8)

Definition 3.8.2 (supermodular (improving returns))

A function \(f : 2^V \to \mathbb{R} \) is supermodular if for any \(A \subseteq B \subset V \), and \(v \in V \setminus B \), we have that:

\[
f(A \cup \{v\}) - f(A) \leq f(B \cup \{v\}) - f(B)
\] (3.9)

- Incremental “value”, “gain”, or “cost” of \(v \) increases (improves) as the context in which \(v \) is considered grows from \(A \) to \(B \).
- A function \(f \) is submodular iff \(-f \) is supermodular.
- If \(f \) both submodular and supermodular, then \(f \) is said to be modular, and \(f(A) = c + \sum_{a \in A} f(a) \) (often \(c = 0 \)).

Superadditive Definitions

Definition 3.8.2 (superadditive)

A function \(f : 2^V \to \mathbb{R} \) is superadditive if for any \(A, B \subseteq V \), we have that:

\[
f(A) + f(B) \leq f(A \cup B)
\] (3.30)

- This means that the “whole” is greater than the sum of the parts.
- In general, submodular and subadditive (and supermodular and superadditive) are different properties.
- Ex: Let \(0 < k < |V| \), and consider \(f : 2^V \to \mathbb{R}_+ \) where:

\[
f(A) = \begin{cases}
1 & \text{if } |A| \leq k \\
0 & \text{else}
\end{cases}
\] (3.31)

- This function is subadditive but not submodular.
Modular Definitions

Definition 3.8.3 (modular)
A function that is both submodular and supermodular is called modular.

If f is a modular function, than for any $A, B \subseteq V$, we have

$$f(A) + f(B) = f(A \cap B) + f(A \cup B)$$ \hspace{1cm} (3.32)

In modular functions, elements do not interact (or cooperate, or compete, or influence each other), and have value based only on singleton values.

Proposition 3.8.4

If f is modular, it may be written as

$$f(A) = f(\emptyset) + \sum_{a \in A} (f\{a\} - f(\emptyset)) = c + \sum_{a \in A} f'(a)$$ \hspace{1cm} (3.33)

which has only $|V| + 1$ parameters.

Proof.

We inductively construct the value for $A = \{a_1, a_2, \ldots, a_k\}$.

For $k = 2$,

$$f(a_1) + f(a_2) = f(a_1, a_2) + f(\emptyset)$$ \hspace{1cm} (3.34)

implies

$$f(a_1, a_2) = f(a_1) - f(\emptyset) + f(a_2) - f(\emptyset) + f(\emptyset)$$ \hspace{1cm} (3.35)

then for $k = 3$,

$$f(a_1, a_2) + f(a_3) = f(a_1, a_2, a_3) + f(\emptyset)$$ \hspace{1cm} (3.36)

implies

$$f(a_1, a_2, a_3) = f(a_1, a_2) - f(\emptyset) + f(a_3) - f(\emptyset) + f(\emptyset)$$ \hspace{1cm} (3.37)

$$= f(\emptyset) + \sum_{i=1}^{3} (f(a_i) - f(\emptyset))$$ \hspace{1cm} (3.38)

and so on . . .
Complement function

Given a function $f : 2^V \to \mathbb{R}$, we can find a complement function $ar{f} : 2^V \to \mathbb{R}$ as $ar{f}(A) = f(V \setminus A)$ for any A.

Proposition 3.8.5

$ar{f}$ is submodular iff f is submodular.

Proof.

$$
\bar{f}(A) + \bar{f}(B) \geq \bar{f}(A \cup B) + \bar{f}(A \cap B) \quad (3.39)
$$

follows from

$$
f(V \setminus A) + f(V \setminus B) \geq f(V \setminus (A \cup B)) + f(V \setminus (A \cap B)) \quad (3.40)
$$

which is true because $V \setminus (A \cup B) = (V \setminus A) \cap (V \setminus B)$ and $V \setminus (A \cap B) = (V \setminus A) \cup (V \setminus B)$ (De Morgan’s laws for sets).

Undirected Graphs

- Let $G = (V, E)$ be a graph with vertices $V = V(G)$ and edges $E = E(G) \subseteq V \times V$.
- If G is undirected, define
 $$
 E(X, Y) = \{\{x, y\} \in E(G) : x \in X \setminus Y, y \in Y \setminus X\} \quad (3.41)
 $$
 as the edges strictly between X and Y.
- Nodes define cuts, define the cut function $\delta(X) = E(X, V \setminus X)$.

$G = (V, E)$

$S = \{a, b, c\}$

$\delta_G(S) = \{\{u, v\} \in E : u \in S, v \in V \setminus S\} = \{\{a, d\}, \{b, d\}, \{b, e\}, \{c, e\}, \{c, f\}\}$
Directed graphs, and cuts and flows

- If G is directed, define
 \[E^+(X,Y) \equiv \{(x,y) \in E(G) : x \in X \setminus Y, y \in Y \setminus X\} \] (3.42)
 as the edges directed strictly from X towards Y.

- Nodes define cuts and flows. Define edges leaving X (out-flow) as
 \[\delta^+(X) \equiv E^+(X, V \setminus X) \] (3.43)
 and edges entering X (in-flow) as
 \[\delta^-(X) \equiv E^+(V \setminus X, X) \] (3.44)

The Neighbor function in undirected graphs

- Given a set $X \subseteq V$, the neighbor function of X is defined as
 \[\Gamma(X) \equiv \{v \in V(G) \setminus X : E(X, \{v\}) \neq \emptyset\} \] (3.45)

- Example:
 \[G = (V, E) \]
 \[\Gamma(S) = \{d, e, f\} \]
 \[S = \{a, b, c\} \]
Directed Cut function: property

Lemma 3.9.1

For a digraph $G = (V, E)$ and any $X, Y \subseteq V$: we have

$$|\delta^+(X)| + |\delta^+(Y)| = |\delta^+(X \cap Y)| + |\delta^+(X \cup Y)| + |E^+(X, Y)| + |E^+(Y, X)| \tag{3.46}$$

and

$$|\delta^-(X)| + |\delta^-(Y)| = |\delta^-(X \cap Y)| + |\delta^-(X \cup Y)| + |E^-(X, Y)| + |E^-(Y, X)| \tag{3.47}$$

Proof.

We can prove Eq. (3.46) using a geometric counting argument (proof for $|\delta^-(X)|$ case is similar).
Lemma 3.9.2

For a digraph $G = (V, E)$ and any $X, Y \subseteq V$: both functions $|\delta^+(X)|$ and $|\delta^-(X)|$ are submodular.

Proof.

$|E^+(X, Y)| \geq 0$ and $|E^-(X, Y)| \geq 0$.

More generally, in the non-negative edge weighted case, both in-flow and out-flow are submodular on subsets of the vertices.

Lemma 3.9.3

For an undirected graph $G = (V, E)$ and any $X, Y \subseteq V$: we have that both the undirected cut (or flow) function $|\delta(X)|$ and the neighbor function $|\Gamma(X)|$ are submodular. I.e.,

$$|\delta(X)| + |\delta(Y)| = |\delta(X \cap Y)| + |\delta(X \cup Y)| + 2|E(X, Y)|$$ \hspace{1cm} (3.48)

and

$$|\Gamma(X)| + |\Gamma(Y)| \geq |\Gamma(X \cap Y)| + |\Gamma(X \cup Y)|$$ \hspace{1cm} (3.49)

Proof.

- Eq. (3.48) follows from Eq. (3.46): we replace each undirected edge $\{u, v\}$ with two oppositely-directed directed edges (u, v) and (v, u). Then we use same counting argument.

- Eq. (3.49) follows as shown in the following page.
Graphically, we can count and see that

\[\Gamma(X) = (a) + (c) + (f) + (g) + (d) \] \hspace{1cm} (3.50)

\[\Gamma(Y) = (b) + (c) + (e) + (h) + (d) \] \hspace{1cm} (3.51)

\[\Gamma(X \cup Y) = (a) + (b) + (c) + (d) \] \hspace{1cm} (3.52)

\[\Gamma(X \cap Y) = (c) + (g) + (h) \] \hspace{1cm} (3.53)

So

\[|\Gamma(X)| + |\Gamma(Y)| = (a) + (b) + 2(c) + 2(d) + (e) + (f) + (g) + (h) \]
\[\geq (a) + (b) + 2(c) + (d) + (g) + (h) = |\Gamma(X \cup Y)| + |\Gamma(X \cap Y)| \] \hspace{1cm} (3.54)

Therefore, the undirected cut function \(|\delta(A)|\) and the neighbor function \(|\Gamma(A)|\) of a graph \(G\) are both submodular.
Another simple proof shows that $|\delta(X)|$ is submodular.

Define a graph $G_{uv} = (\{u,v\}, \{e\}, w)$ with two nodes u, v and one edge $e = \{u,v\}$ with non-negative weight $w(e) \in \mathbb{R}_+$.

Cut weight function over those two nodes: $w(\delta_{u,v}(\cdot))$ has valuation:

$$w(\delta_{u,v}(\emptyset)) = w(\delta_{u,v}(\{u\}, v)) = 0$$ (3.55)

and

$$w(\delta_{u,v}(\{u\})) = w(\delta_{u,v}(\{v\})) = w \geq 0$$ (3.56)

Thus, $w(\delta_{u,v}(\cdot))$ is submodular since

$$w(\delta_{u,v}(\{u\})) + w(\delta_{u,v}(\{v\})) \geq w(\delta_{u,v}(\{u,v\})) + w(\delta_{u,v}(\emptyset))$$ (3.57)

General non-negative weighted graph $G = (V, E, w)$, define $w(\delta(\cdot))$:

$$f(X) = w(\delta(X)) = \sum_{(u,v) \in E(G)} w(\delta_{u,v}(X \cap \{u,v\}))$$ (3.58)

This is easily shown to be submodular using properties we will soon see (namely, submodularity closed under summation and restriction).

Other graph functions that are submodular/supermodular

These come from Narayanan’s book 1997. Let G be an undirected graph.

- Let $V(X)$ be the vertices adjacent to some edge in $X \subseteq E(G)$, then $|V(X)|$ (the vertex function) is submodular.
- Let $E(S)$ be the edges with both vertices in $S \subseteq V(G)$. Then $|E(S)|$ (the interior edge function) is supermodular.
- Let $I(S)$ be the edges with at least one vertex in $S \subseteq V(G)$. Then $|I(S)|$ (the incidence function) is submodular.
- Recall $|\delta(S)|$, is the set size of edges with exactly one vertex in $S \subseteq V(G)$ is submodular (cut size function). Thus, we have $I(S) = E(S) \cup \delta(S)$ and $E(S) \cap \delta(S) = \emptyset$, and thus that $|I(S)| = |E(S)| + |\delta(S)|$. So we can get a submodular function by summing a submodular and a supermodular function. If you had to guess, is this always the case?
- Consider $f(A) = |\delta^+(A)| - |\delta^+(V \setminus A)|$. Guess, submodular, supermodular, modular, or neither? Exercise: determine which one and prove it.
Number of connected components in a graph via edges

- Recall, \(f : 2^V \to \mathbb{R} \) is submodular, then so is \(\bar{f} : 2^V \to \mathbb{R} \) defined as \(\bar{f}(S) = f(V \setminus S) \).
- Hence, if \(g : 2^V \to \mathbb{R} \) is supermodular, then so is \(\bar{g} : 2^V \to \mathbb{R} \) defined as \(\bar{g}(S) = g(V \setminus S) \).
- Given a graph \(G = (V, E) \), for each \(A \subseteq E(G) \), let \(c(A) \) denote the number of connected components of the (spanning) subgraph \((V(G), A) \), with \(c : 2^E \to \mathbb{R}_+ \).
- \(c(A) \) is monotone non-increasing, \(c(A + a) - c(A) \leq 0 \).
- Then \(c(A) \) is supermodular, i.e.,
 \[
 c(A + a) - c(A) \leq c(B + a) - c(B)
 \] (3.59)
 with \(A \subseteq B \subseteq E \setminus \{a\} \).
- Intuition: an edge is “more” (no less) able to bridge separate components (and reduce the number of connected components) when edge is added in a smaller context than when added in a larger context.
- \(\bar{c}(A) = c(E \setminus A) \) is number of connected components in \(G \) when we remove \(A \); supermodular monotone non-decreasing but not normalized.

Graph Strength

- So \(\bar{c}(A) = c(E \setminus A) \) is the number of connected components in \(G \) when we remove \(A \), is supermodular.
- Maximizing \(\bar{c}(A) \) might seem as a goal for a network attacker — many connected components means that many points in the network have lost connectivity to many other points (unprotected network).
- If we can remove a small set \(A \) and shatter the graph into many connected components, then the graph is weak.
- An attacker wishes to choose a small number of edges (since it is cheap) to shatter the graph into as many components as possible.
- Let \(G = (V, E, w) \) with \(w : E \to \mathbb{R}_+ \) be a weighted graph with non-negative weights.
- For \((u, v) = e \in E \), let \(w(e) \) be a measure of the strength of the connection between vertices \(u \) and \(v \) (strength meaning the difficulty of cutting the edge \(e \)).
Graph Strength

- Then \(w(A) \) for \(A \subseteq E \) is a modular function
 \[
 w(A) = \sum_{e \in A} w_e \tag{3.60}
 \]
 so that \(w(E(G[S])) \) is the “internal strength” of the vertex set \(S \).
- Suppose removing \(A \) shatters \(G \) into a graph with \(\bar{c}(A) > 1 \)
 components — then \(w(A)/(\bar{c}(A) - 1) \) is like the “effort per
 achieved/additional component” for a network attacker.
- A form of graph strength can then be defined as the following:
 \[
 \text{strength}(G, w) = \min_{A \subseteq E(G): \bar{c}(A) > 1} \frac{w(A)}{\bar{c}(A) - 1} \tag{3.61}
 \]
 Graph strength is like the minimum effort per component. An attacker
 would use the argument of the min to choose which edges to attack. A
 network designer would maximize, over \(G \) and/or \(w \), the graph
 strength, \(\text{strength}(G, w) \).
- Since submodularity, problems have strongly-poly-time solutions.

Submodularity, Quadratic Structures, and Cuts

Lemma 3.9.4

Let \(M \in \mathbb{R}^{n \times n} \) be a symmetric matrix and \(m \in \mathbb{R}^n \) be a vector. Then
\(f : 2^V \to \mathbb{R} \) defined as
\[
 f(X) = m^T 1_X + \frac{1}{2} 1_X^T M 1_X \tag{3.62}
\]

is submodular iff the off-diagonal elements of \(M \) are non-positive.

Proof.

- Given a complete graph \(G = (V, E) \), recall that \(E(X) \) is the edge set
 with both vertices in \(X \subseteq V(G) \), and that \(|E(X)| \) is supermodular.
- Non-negative modular weights \(w^+ : E \to \mathbb{R}_+^+ \), \(w(E(X)) \) is also
 supermodular, so \(-w(E(X)) \) is submodular.
- \(f \) is a modular function \(m^T 1_{A} = m(A) \) added to a weighted
 submodular function, hence \(f \) is submodular.
Proof of Lemma 3.9.4 cont.

- Conversely, suppose f is submodular.
- Then $\forall u, v \in V$, $f(\{u\}) + f(\{v\}) \geq f(\{u, v\}) + f(\emptyset)$ while $f(\emptyset) = 0$.
- This requires:

 $$
 0 \leq f(\{u\}) + f(\{v\}) - f(\{u, v\})
 = m(u) + \frac{1}{2} M_{u,u} + m(v) + \frac{1}{2} M_{v,v}
 - \left(m(u) + m(v) + \frac{1}{2} M_{u,u} + M_{u,v} + \frac{1}{2} M_{v,v} \right)
 = -M_{u,v}
 $$

 (3.63) \hspace{1cm} (3.64) \hspace{1cm} (3.65) \hspace{1cm} (3.66)

 So that $\forall u, v \in V$, $M_{u,v} \leq 0$.

Set Cover and Maximum Coverage

just Special cases of Submodular Optimization

- We are given a finite set U of m elements and a set of subsets $U = \{U_1, U_2, \ldots, U_n\}$ of n subsets of U, so that $U_i \subseteq U$ and $\bigcup_i U_i = U$.
- The goal of minimum set cover is to choose the smallest subset $A \subseteq [n] \triangleq \{1, \ldots, n\}$ such that $\bigcup_{a \in A} U_a = U$.
- Maximum k cover: The goal in maximum coverage is, given an integer $k \leq n$, select k subsets, say $\{a_1, a_2, \ldots, a_k\}$ with $a_i \in [n]$ such that $|\bigcup_{i=1}^k U_{a_i}|$ is maximized.
- $f : 2^{[n]} \rightarrow \mathbb{Z}^+$ where for $A \subseteq [n]$, $f(A) = |\bigcup_{a \in A} V_a|$ is the set cover function and is submodular.
- Weighted set cover: $f(A) = w(\bigcup_{a \in A} V_a)$ where $w : U \rightarrow \mathbb{R}^+$.
- Both Set cover and maximum coverage are well known to be NP-hard, but have a fast greedy approximation algorithm, and hence are instances of submodular optimization.
Vertex and Edge Covers
Also instances of submodular optimization

Definition 3.9.5 (vertex cover)
A **vertex cover** (a “vertex-based cover of edges”) in graph \(G = (V, E) \) is a set \(S \subseteq V(G) \) of vertices such that every edge in \(G \) is incident to at least one vertex in \(S \).

- Let \(I(S) \) be the number of edges incident to vertex set \(S \). Then we wish to find the smallest set \(S \subseteq V \) subject to \(I(S) = |E| \).

Definition 3.9.6 (edge cover)
A **edge cover** (an “edge-based cover of vertices”) in graph \(G = (V, E) \) is a set \(F \subseteq E(G) \) of edges such that every vertex in \(G \) is incident to at least one edge in \(F \).

- Let \(|V|(F) \) be the number of vertices incident to edge set \(F \). Then we wish to find the smallest set \(F \subseteq E \) subject to \(|V|(F) = |V| \).

Graph Cut Problems
Also submodular optimization

- Minimum cut: Given a graph \(G = (V, E) \), find a set of vertices \(S \subseteq V \) that minimize the cut (set of edges) between \(S \) and \(V \setminus S \).
- Maximum cut: Given a graph \(G = (V, E) \), find a set of vertices \(S \subseteq V \) that minimize the cut (set of edges) between \(S \) and \(V \setminus S \).
- Let \(\delta : 2^V \rightarrow \mathbb{R}_+ \) be the cut function, namely for any given set of nodes \(X \subseteq V \), \(|\delta(X)|\) measures the number of edges between nodes \(X \) and \(V \setminus X \) — i.e., \(\delta(x) = E(X, V \setminus X) \).
- Weighted versions, where rather than count, we sum the (non-negative) weights of the edges of a cut, \(f(X) = w(\delta(X)) \).
- Hence, Minimum cut and Maximum cut are also special cases of submodular optimization.