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Major achievements under NeoCAD funding 
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circuits and electromagnetics without equivalent circuits or convolution 
2. Fast full-wave and quasi-static solution with PILOT enabling 10-50x speedup and 

memory savings over commercial solvers (Sonnet, Ansoft, Zealand) 
3. Fast frequency sweeps for coupled system enabling additional 10-50x speedups 
4. Material models enabling accurate broadband skin effect characterization for the first 

time with surface formulations 
5. Time domain stable EM-circuit nonlinear co-simulation for the first time 
6. Incorporation of coupling schemes, material models, and fast frequency sweeps into 

the EIGER framework 
7. Successful benchmarking of UW PILOT methods on structures from HRL, Rockwell, 

Intel, AFRL, Mayo 
8. Further interest in commercialization from EDA vendors and microelectronics design 

industry 
9. Semi-implicit and full-implicit time stepping algorithms developed in LLNL’s 

EMSolve.  



10. Development of EIGER and EMSolve interfaces to CFDRC’s micromesh, with 
related mesher enhancements. 
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to the feeding lines network. Moreover, this transition can be used
in the Butler matrix to avoid the unavailable cross lines.
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ABSTRACT: A surface-based integral-equation formulation for cou-
pled electromagnetic and circuit simulation is presented. The approach
is sufficiently general to model arbitrarily shaped structures and high-
frequency skin effects. The formulation is implemented in both an equiv-
alent circuit form for spice compatibility, and in a more general form as
a coupled-matrix system outside spice. The overall approach can be
interpreted as either a modified surface-only partial element equivalent
circuit approach, or as a circuit-coupled version of the surface-based
method of moments. © 2002 Wiley Periodicals, Inc. Microwave Opt
Technol Lett 34: 103–106, 2002; Published online in Wiley InterScience
(www.interscience.wiley.com). DOI 10.1002/mop.10386

Key words: PEEC; method of moments; coupled simulation; integral
equations

1. INTRODUCTION

The simulation of electromagnetic (EM) effects in high-speed
chips, packages, and boards is essential for complete electrical
characterization. However, it is impractical to analyze the entire
structure under test as a large EM problem; this is especially true
in iterative design practice. Moreover, the introduction of circuit
elements makes the overall problem an inherently coupled and

hierarchical one. The partial element equivalent circuit (PEEC)
approach [1,2] has been developed as a successful means to
interface circuit and EM formulations. In the classical PEEC
approach, conductor cross sections are divided into volumetric
filaments of rectangular cross section. Equivalent inductance, ca-
pacitance, and resistance matrices are computed for EM interac-
tions between these filaments. These matrices are then imported
into SPICE or similar circuit solvers, either directly or in the form
of reduced-order models. The coupled system can then be solved
in the time or frequency domain.

Owing to recent developments in systems-on-chip and in high-
speed integrated circuits, there is a need to go beyond the classical
filament-based PEEC for a variety of reasons. First, there is a need
to model arbitrarily shaped structures including on-chip inductors,
micro-electro-mechanical devices, on-chip antenna structures, et
cetera. Second, at high frequencies, skin effect modeling is crucial.
The classical filament-based approach addresses this by mimicking
the behavior of the conduction current at these frequencies through
appropriate lateral meshing of filaments. Unfortunately, such an
approach is both heavily frequency dependent and potentially
computationally intensive. An elegant approach to modeling skin
impedance is presented by the use of surface impedance approx-
imations in the surface-based method of moments (MoM).

The work presented in this Letter aims at using surface-only
formulations utilizing surface meshes [5,7,8] in order to model
more complex current distributions and their field effects arising
from nonrectangular conducting structures. The surface-based ver-
sion of PEEC is first presented, in a SPICE-compatible form. The
circuit-solver-free equivalent coupled matrix formulation is then
presented. Finally, it is shown that, by a reformulation of un-
knowns, the surface-based formulation can be reformulated as a
modified method of moments (MoM) system.

2. SURFACE-BASED COUPLED EM-CIRCUIT SIMULATION

Conducting structures are analyzed with the use of the electric field
integral equation formulation (EFIE), wherein the surface current
J satisfies the equation

j�
�

4� 	
s

J�r��


r � r�
 ds� � �
���r� � �ZJ�r� (1)

and the scalar potential � and surface charge density � are related
through the equation

� �
1

4�� 	
s

��r��


r � r�
 ds�. (2)

In Eq. (1) Z represents the surface impedance

Z � � j��

2�
(3)

in terms of the circular frequency �, permeability �, and conduc-
tivity �. The surface impedance approximation is valid at frequen-
cies where the skin depth is smaller than the cross section of
conductors. At lower frequencies, a coupled interior EFIE utilizing
lossy medium Green’s functions is required. For surface current
and charge modeling, the standard RWG functions f [3,4], defined
over pairs of triangles are used in conjunction with a triangular
tessellation of the conductor surfaces. Upon testing the EFIE, the
following matrix equations are obtained:
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� j�L� � Z� � J � I (4)

P� Q � V. (5)

In these equations, the variables are the current, charge, and
potential, and the excitation includes known terminal voltages v or
current sources. The inductance, potential, and surface impedance
matrices can be defined as

Lij �
�
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fj�r��


r � r�
 ds� � fi�r�� ds, i, j � 1, . . . , Ne, (6)

Pij �
1

4�� 	
s

	
s


� � fj�r��


r � r�
 
 � fi�r� ds ds�, i, j � 1, . . . , Np,

(7)

Zij � Z 	 fi�r� � fj�r� ds, i, j � 1, . . . , Ne, (8)

where the indices traverse the total number of edges or patches,
and the surface impedance matrix is nonzero for only those entries
where RWG bases i and j share a common triangle. The matrix A�
is a sparse, rectangular adjacency matrix that couples edges to
triangular patches. Each row has two nonzero entries.

Such an approach can be used to incorporate EM effects, within
the limitations of SPICE solvers and reduced-order models,
through element stamps and controlled sources for mutual cou-
pling terms. The distributed equivalent circuit based on triangular
surface meshes is depicted in Figure 1, and Figure 2 shows the
PEEC-like equivalent circuit for two neighboring triangular ele-
ments.

As discussed in the previous section, an alternative desirable
approach is to remove the dependency on SPICE-like solvers, and
to formulate the equations as a coupled system amenable to fast
iterative or direct solution.

3. Coupled Method-of Moments-Formulation

The EFIE described in the previous section can be explicitly
written in a coupled form outside SPICE in the following manner

�
j�L� � Z� A� 0� X�

0� I� P� 0�

�A� T 0� j�D� 0�

X� T 0� 0� MNA
��

J
V
Q

ckt
� � �

0
0
0

ckt_ex
�. (9)

In this formulation, the sparse matrix X� is used to enforce KVL,
KCL, and field continuity. The sparse block MNA represents the
modified nodal analysis conductance matrix corresponding to cir-
cuit unknowns (ckt). The excitation includes voltage and current
sources within the excitation vector ckt_ex. The matrix D� is a
diagonal matrix used to enforce the current and charge continuity
equation. The unknowns in this formulation include the surface
current, potential, charge, and MNA circuit unknowns. Electric
field excitation can also be included in this formulation, in the first
block of the right-hand side. The above formulation is analogous
to the filament-based PEEC method, but for a surface-only formu-
lation. It is interesting to note that these equations can be reorga-
nized and eliminated to obtain a simpler set of equations:

� j�L� � � j���1A� P� D� �1A� T X�

X� T MNA �� J
ckt � � � 0

ckt_eq �.

(10)

Figure 3 Interconnect over ground plane. The ground plane is 2 cm long
and 1 cm wide, the interconnect is 2 cm long and 1 mm wide, and is 0.5
mm above the ground plane

Figure 1 Equivalent circuit construction on a triangular mesh, showing
inductances, resistances, capacitances, and dependent controlled sources

Figure 2 Equivalent PEEC-like circuit for two adjacent triangular mesh
elements
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The first block of equations above is nothing but a statement of the
MoM, with appropriate interfaces (voltages and currents) to ckt
unknowns. The second block is the self-consistent set of circuit
equations and independent excitations. Thus the surface-based
coupled formulation can be reinterpreted as a classical MoM with
appropriate excitation and circuit boundary conditions.

4. SIMULATION EXAMPLES

The first example (Figure 3) is that of an interconnect over a
ground plane, as in [6]. The frequency dependence of the input
impedance is shown in Figure 4. It is interesting to note that the
transmission-line resonance behavior of this structure is also cap-
tured. The finite-sized impedance peaks are due to coarse fre-
quency sampling at resonance.

The next example demonstrates the ability to model time-
domain cross talk. Figure 5 shows two sets of traces over a ground
plane, one set running parallel, and the other set with one trace
having two right-angled discontinuities and with a larger average
distance between the traces. One of the traces is excited with a
600-ps duration trapezoidal pulse. The far-end cross-talk wave-
forms on the unexcited traces are shown in Figure 6. As expected,
the closer-in trace shows a large noise waveform. Also, the sepa-
ration between the two large pulses, signifying the initiation and

Figure 6 Far-end cross-talk voltage waveforms for the straight and bent
pair of interconnects [Color figure can be viewed in the online issue, which
is available at www.interscience.wiley.com.]

Figure 7 Induced ground plane current under spiral inductor, obtained
with the use of equivalent surface-PEEC elements in SPICE, at 1 kHz (top)
and 1 GHz (bottom). Spiral inductor is 200 �m 
 200 �m and 30 �m
above the ground plane, and the ground plane is 400 �m 
 400 �m

Figure 4 Input impedance of the interconnect over a ground plane as a
function of frequency [Color figure can be viewed in the online issue,
which is available at www.interscience.wiley.com.]

Figure 5 Pair of traces over a ground plane: straight, parallel traces
(left), and bent traces (right). The ground plane is 2 cm long and 1 cm wide,
the traces are 2 cm long 1 mm wide, and are 0.5 mm above the ground
plane. In the left figure the traces are 1 mm apart; in the right figure the
traces are 1 mm apart at the near end and 2 mm apart at the far end
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conclusion of the trapezoidal pulse influence (through its deriva-
tive), is 600 ps.

The third example illustrates the ability of the coupled method
to predict induced current behavior. A planar, spiral inductor over
a ground plane is excited with a voltage source connected to the
ground, and terminated with a resistance to an oppositely located
point on the ground plane. At a frequency of 1 KHz, the current on
the ground plane (Figure 7) is well spread out and travels along
low-impedance paths from the terminal back to the source. How-
ever, at a higher frequency of 1 GHz, the inductance minimization
phenomenon is observed. The current tries to flow in loops of
small area in order to minimize inductive impedance at this high
frequency. Although this is captured reasonably well by the
SPICE-linked version of the surface-PEEC algorithm presented
here, the example also highlights the strengths of the coupled
matrix method. The presence of a dense matrix in SPICE makes
the SPICE solution time large. However, with a dedicated dense
iterative solver and coupled-matrix system outside SPICE, the
overall solution is rendered far more efficient. Consequently, more
resolved surface meshes can be used, and a smoother current
distribution is obtained, as in Figure 8. Both high- and low-
frequency behavior of the current below the inductor is exhibited
in this figure.

5. CONCLUSIONS

A new surface-based coupled EM-circuit formulation is described
for arbitrarily shaped three-dimensional conducting structures. The
formulation is expressed first as a modified surface-based PEEC
and is solved by introducing equivalent circuits in SPICE. Next it
is shown that a coupled matrix system can be generated outside
SPICE, which can be reduced to a modified MoM system, and can
be solved efficiently with the use of an iterative solver. The method
is general enough to be applicable to a wide variety of high-
frequency and high-speed integrated circuit and packaging appli-
cations.

Continuing work is aimed at incorporating a fast multilevel
iterative solver, multilayered and finite dielectrics, and specialized
quadrature rules for very low frequency characterization of the
interior lossy medium problem. A fast direct solution based on a
multilevel low-rank decomposition algorithm is also being imple-
mented.
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Figure 8 Induced current on ground plane under inductor, obtained with the use of the coupled-matrix solution, at 100 kHz (left) and 1 GHz (right). Also
shown is the inductor current
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very high, at point (0, 0) and point (�2.5 cm, 2.5 cm), the
resolutions are nearly the same. This implies that even when the
imaging object is located far from the rotating center, it is possible
to visually reconstruct the profile of the object. The numerical
results show that the higher center frequency f0 may yield better
resolution if the sweep frequency range is fixed (for example, 10
GHz).

5. CONCLUSION

A novel theory about near-field microwave imaging has been
proposed and a near-field microwave diversity imaging system has
been constructed, which includes data acquirement, imaging pro-
cess, and imaging display. This paper mainly focused on a theo-
retical investigation of the imaging process for the turntable mode.
We derived the imaging function in both the space and spectrum
domains. The imaging function is an integral of the backscattering
of the object over a given window in the Fourier domain. The
imaging resolution of this system, which depends on the sweep
frequency and rotatory angle ranges (so-called frequency- and
angle-diversity), was then studied. The theoretical results indicated
that the PSF of the imaging system for the practical case could
infinitely approach that of the ideal case when B3 �, namely, the
Dirac-� function. Further investigation is in progress and relevant
developments will be reported soon.
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ABSTRACT: This paper presents an accurate formulation and integra-
tion scheme for computing vector potential interactions due to linear
basis functions in lossy conducting media over wide frequency ranges.
The emphasis is on an approach that is broadband and works both at
high-frequency surface impedance limits and at low-frequency volumet-
ric current flow limits. The method can be interpreted as a step towards
a surface-only formulation for an integral-equation-based broadband
characterization. © 2003 Wiley Periodicals, Inc. Microwave Opt
Technol Lett 36: 359–363, 2003; Published online in Wiley InterScience
(www.interscience.wiley.com). DOI 10.1002/mop.10764
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1. INTRODUCTION

Modeling the interior problem associated with a lossy conductor is
of particular importance in the ultra-wideband frequency-domain
modeling of structures such as interconnects and packages. This is
specifically of interest at frequencies where the cross sections of
conductors are smaller than their skin depths. In such cases,
surface impedance approximations break down, and recourse is
normally taken to explicit volumetric formulations.

This paper presents a step towards surface-only wideband
modeling of interconnects and packages through an exact formu-
lation and accurate numerical integration scheme for efficiently
computing highly damped vector potentials in lossy conductors.
The presented method is general in terms of geometries, frequen-
cies, material parameters, and relative separation and orientation of
source and observer regions. The motivation behind the presented
approach is that a coupled integral equation formulation, linking an
exterior homogeneous medium problem to an interior lossy me-
dium problem, is required in order to correctly predict electromag-
netic behavior of conductors in specific frequency bands. As line
widths and heights of interconnects become smaller, and as pro-
gressively smaller devices and structures are integrated at the
package and chip levels, the underlying complex analyses cannot
be handled by an ad hoc mixing of surface and volume formula-
tions, and seamless wideband formulations become imperative.

2. VECTOR POTENTIALS IN LOSSY CONDUCTING MEDIA

Computing the electric field in a lossy medium requires computa-
tion of scalar and vector potentials. The scalar potential computa-
tion has been studied previously in [1], and this paper deals with
the computation of vector potentials for arbitrarily located sources
and observation points. The vector potential A is given by

A�r� �
�

4� �
S�

e�jk�r�r��

�r � r�� J�r��ds�, (2.1)

where r and r� are the position vectors of the observation point and
of an arbitrary point in the source region, respectively, and S�
denotes the conductor surface. The source current density is de-

Figure 4 Point spread function (PSF) at point (�2.5 cm, 2.5 cm)
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noted by J, and k is the wave number in the lossy medium given
by

k � ���0�r�0��r �
	

j��0
� , (2.2)

where 	 is the conductivity of the lossy medium, �0 and �0

represent the free-space permeability and permittivity, respec-
tively, and � � 2�f, where f is the frequency of interest. Also, �r

and �r represent the relative permeability and relative permittivity
of the lossy medium, including magnetic and dielectric losses;
typically, these are both equal to 1 for metallic conductors. The
popular triangle-pair-based Rao–Wilton–Glisson (RWG) functions
[2] are used to represent J(r�), wherein current is modeled by
piecewise linear vector functions. The vector potential integral
computation (2.1) is replaced by integrals of the form

��
T

�e�jk�R�

�R� ds�, (2.3)

where R � r � r�, and � denotes a vector from the node opposite
the edge of interest in triangle T to r�. The distinction from the
corresponding integrals in the exterior equivalent problem is that
the wave-vector is complex and may lead to strong exponential
decays in the integrands, depending upon the frequency of interest.

3. PREVALENT METHODS FOR LOSSY
CONDUCTING MEDIA

Existing techniques for lossy media computations involve the use
of polar coordinate transformations. This has been accomplished
for the evaluation of the scalar Green’s function [1], and in the
context of lossless media [3, 4]. The self-term for the vector
potential integral has been computed using a polar coordinate
transformation [5], and the method presented therein is extendable
to observation points in the plane of the source triangle. This
precludes the important case of observation at a near-singular point
located above or below the source triangle, as often occurs in thin
conductors. In this work, the restrictions on observer location are
lifted and a general computation of vector potentials due to RWG
functions in lossy conducting media is performed.

4. FREQUENCY DEPENDENCE OF VECTOR
POTENTIALS IN CONDUCTING MEDIA

The sparsity of the method of moments (MoM) matrix correspond-
ing to Green’s function interactions in lossy conducting media is
highly frequency-dependent. At sufficiently high frequencies,
where conductor cross-sections are significantly larger than skin
depth, the surface impedance approximation is very accurate.
Consequently, the MoM matrix based on the RWG and testing
functions is nearly diagonal, with only interactions between over-
lapping functions being non-zero. As the frequency is reduced, the
exact exponential decay of the potentials is apparent, and there is
a distance beyond which the interactions are numerically zero (for
example, in double precision). Further lowering of frequency
yields a full matrix, with an exponential decay with distance.
Finally, at very low frequencies, where the conductor cross-sec-
tions are significantly smaller than the skin depth, the matrix is
dense with a mild exponential decay. The formulation and inte-
gration scheme presented here is intended for wideband vector
potential in lossy conducting media, that is, to compute the inter-
actions over the entire frequency range as described above.

5. FORMULATION OF THE INTEGRALS AND
NUMERICAL INTEGRATION SCHEME

The vector potential integral GVect due to RWG functions can be
written in polar coordinates as

GVect�r� � x̂ �
T


e�jk�
2�d2

�
2 � d2 
 cos���d
d�

� ŷ �
T


e�jk�
2�d2

�
2 � d2 
 sin���d
d�, (5.1)

where it is assumed, for ease of discussion, and without loss of
generality, that the triangle T (Fig. 1) lies in the x � y plane. In the
above equation, the distance d is the height of the observation
point from the plane of T, and the distance 
 is the separation of
source points in T from the projection of the observation point onto
the plane of T.

For the case when the observation point is in the plane of T, d
equals zero and it is possible to carry out the integration as in [5]
to yield

GVect�r� � x̂ �
T


e�jk
d
 cos���d� � ŷ �
T


e�jk
sin���d�.

(5.2)

Existing work reported in the literature [5] focuses on the self-term
computation, and the results can readily be extended to the in-
plane observation case, but do not apply to the general case of
arbitrarily located and oriented basis and testing functions at all
frequencies. This is due to the lack of a closed-form expression for
one-dimensional integration with respect to 
 in (5.1) for d � 0.
In order to lift this restriction and to enable a one-dimensional
analytic integration followed by a one-dimensional numerical in-
tegration for (5.1), the integration order needs to be reversed
compared to existing work for scalar and in-plane cases; integra-

Figure 1 Triangle T in transformed coordinates, with the projection of
the observation point as the origin
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tion over � is performed analytically followed by a numerical
integration over 
:

Gvect�r� � x̂ �

min


max 
2e�jk�
2�d2

�
2 � d2 	sin���
�min

�maxd


� ŷ �

min


max 
2e�jk�
2�d2

�
2 � d2 	�cos���
�min

�maxd
. (5.3)

In the above equation, 	�sin �
�cos ��
�min

�max is required as a function of 
.
For a given 
, when the integration points lie inside the triangle for
all values of �, the multiplying function becomes �0

2� (sin �
cos �)d�,

which integrates to zero. Also, for @(
, � ) : P(
, � ) � T, the
integral is zero, where P(
, � ) denotes a point having coordinate
(
, �). Hence, the limits are obtained for the piecewise boundaries,
where P(
, � ) � T, as shown in Figure 2. To obtain the limits on
� as a function of 
, the reference coordinate system in which T
lies in the x � y plane is translated so that the projection of the
observation point onto the plane of T defines the origin (Fig. 1).
The intersection of a circle of constant 
 with the sides of the
triangle determines the limits of integration in �. The expression
	�sin �

�cos ��
�min

�max is evaluated for a given 
 to arrive at the final form of
the one-dimensional integral

Gvect�r� � x̂ �

min


max

�1�
�d
 � ŷ �

min


max

�2�
�d
, (5.4a)

where

�1�
� �

2e�jk�
2�d2

�
2 � d2 �sin �max�
��sin �min�
�� (5.4b)

and

�2�
� �

2e�jk�
2�d2

�
2 � d2 ��cos �max�
� � cos �min�
��.

(5.4c)

The one-dimensional integrals arising above are evaluated using
an adaptive integration technique. In general, the integrands appear
as segmented piecewise functions, each of which has a smooth
variation in its domain. Within each segment, a recursive adaptive
integration is carried out. A binary segment split is performed, and
the resultant integration value from a 5th-order Newton–Cotes
formula (Bode’s rule) [7] over the two sub-segments is compared
to the integration value obtained with the same integration rule
over the un-split segment. If the relative change in integration
value is larger than a prespecified threshold, then the binary split
continues recursively. In addition, a global threshold based on the
contribution of a sub-segment to the total integral is used as a
stopping criterion.

Figure 2 Region of integration for specific values of 
 for a triangle T.
The origin for determining distances is the projection O of the observation
point on the plane of T

Figure 3 Behavior of �1(
) and adaptive sampling for the non-self-term
integral, for a triangle with vertices (
, �
, 
), (
, 
/2, 
), (�2
, 
/2, 
),
and observation point located at (0, 0, 2
), where 
 � 0.001 m, at a
frequency of 1 KHz, with 	 � 5.8 
 107 S/m. The stopping threshold
resulted in a relative integration error of 2.59 
 10�5

Figure 4 Behavior of �2(
) and adaptive sampling for the non-self-term
integral, for a triangle with vertices (
, �
, 
), (
, 
/2, 
), (�2
, 
/2, 
),
and observation point located at (0, 0, 2
), where 
 � 0.001 m, at a
frequency of 1 KHz, with 	 � 5.8 
 107 S/m. The stopping threshold
resulted in a relative integration error of 2.59 
 10�5
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6. NUMERICAL SIMULATION AND VALIDATION

The real and imaginary parts of the two integrands �1(
) and �2(
)
in Eq. (5.4) are shown in Figures 3 and 4 for a non-planar case.
Also shown is the sampling based on the adaptive integration,
within each segment of the integration, for O(10�5) error in
integration accuracy. The location of quadrature points can be
intuited by the variation and curvature of the integrands, especially
for lower accuracy cases; the sampling points are shown in Figures
5 and 6 for the same integrands for a higher error of O(10�3) in
integration accuracy.

The nature of the vector potential at both low frequencies and
very high frequencies lends itself to simpler computation schemes,
namely, singularity extraction [6] and Gaussian quadrature (typi-
cally 7 point) [7], and surface impedance forms, respectively. As

a self-consistency check, the integration scheme constructed in this
paper is compared against these standard methods. The results are
shown in Figure 7, for a specific self-term case with 	 � 5.8 
 107

S/m. As can be seen, as the frequency increases, the relative error
between the proposed integration method and surface impedance
approximations drastically fall to very low values. Similarly, the
proposed scheme shows very good agreement with standard
Gaussian quadrature and singularity extraction at low frequencies.
At the same time, the need for the accurate integration scheme is
self-evident in the intermediate band of frequencies. The self-term
was used in order to be able to compare against surface impedance.
A similar comparison for the non-self-term case is shown in Figure
8 versus standard singularity extraction and Gaussian quadrature.
In this case, the need for accurate integration is highlighted, since
the standard singularity extraction and Gaussian quadrature starts
performing poorly as the frequency is increased.

Figure 5 Behavior of �1(
) and adaptive sampling for the non-self-term
integral, for a triangle with vertices (
, �
, 
), (
, 
/2, 
), (�2
, 
/2, 
),
and observation point located at (0, 0, 2
), where 
 � 0.001 m, at a
frequency of 1 KHz, with 	 � 5.8 
 107 S/m. The stopping threshold
resulted in a relative integration error of 2.23 
 10�3

Figure 6 Behavior of �2(
) and adaptive sampling for the non-self-term
integral, for a triangle with vertices (
, �
, 
), (
, 
/2, 
), (�2
, 
/2, 
),
and observation point located at (0, 0, 2
), where 
 � 0.001 m, at a
frequency of 1 KHz, with 	 � 5.8 
 107 S/m. The stopping threshold
resulted in a relative integration error of 2.23 
 10�3

Figure 7 Validation and comparison of the proposed method with sin-
gularity extraction and a 7-point Gaussian quadrature rule for low frequen-
cies and surface impedance for high frequencies. The compared value is the
self-patch interaction for a triangle with vertices (0.1, �0.1, 0) cm, (0.1,
0.05, 0) cm, (�0.2, 0.05, 0) cm, with 	 � 5.8 
 107 S/m

Figure 8 Comparison of the proposed method with singularity extraction
and a 7-point Gaussian quadrature rule for a non-self-patch interaction,
where the source triangle has vertices (0.1, �0.1, 0) cm, (0.1, 0.05, 0) cm,
(�0.2, 0.05, 0) cm, and the observation point is at (0, 0, 0.1) cm, with 	 �
5.8 
 107 S/m
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Finally, the proposed scheme is compared for accuracy versus
an existing method for the special case of in-plane observation.
Table 1 shows the relative errors between the new method and the
method in [5] for the components of the vector integral, for
different source-observer distances. As can be seen, in all cases
relative errors smaller than 10�3 are obtained.

7. CONCLUSION

A formulation and integration scheme to compute vector potentials
in a lossy conducting medium was presented in this paper. This
general method compares well in terms of accuracy with existing
methods with restricted applicability, is error-controllable, and can
be used for vector potential computations at all frequencies in
conducting media, for arbitrarily located and oriented source and
basis functions. Ongoing work focuses on similar formulation and
integration rules for Green’s function integrals arising in the mod-
eling of lossy dielectric and lossy magnetic structures, extension of
the method to polygonal regions, and a two-region surface integral
equation formulation for wideband modeling of inductances and
impedances of realistic interconnects and package structures.
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ABSTRACT: In this paper, we present a pattern synthesis method of
non-uniform linear array antennas for simultaneous reduction of the
side-lobe level and pattern distortion during beam steering. To achieve
these two requirements, the positions of linear array elements are ad-
justed using the Gauss–Newton method. It is shown that the proposed
method can significantly reduce pattern distortion as well as the side-
lobe level, although the beam direction is scanned. © 2003 Wiley Peri-
odicals, Inc. Microwave Opt Technol Lett 36: 363–367, 2003; Published
online in Wiley InterScience (www.interscience.wiley.com).
DOI 10.1002/mop.10765

Key words: antenna array pattern synthesis; non-uniform spacing; opti-
mization technique; side-lobe reduction

1. INTRODUCTION

In the field of antenna array pattern synthesis, the side-lobe level
of an array radiation pattern can be reduced by appropriately
changing inter-element spacing, namely, by applying a non-uni-
formly spaced array [1–4]. Of course, the desired low side-lobe
level can be achieved by optimizing the amplitudes and phases of
excited array elements with uniform spacing. However, this syn-
thesis method degrades total radiation power efficiency due to
amplitude tapering, which requires a complicated feed system.
Therefore, it is preferable to use a non-uniformly spaced array to
improve the side-lobe level, while maintaining total radiation
power efficiency. The non-uniform linear array (NULA) can re-
duce inner side-lobes (nearby side-lobes from the main beam),
whereas it may increase outer side-lobe levels [1]. Because of this
phenomenon, its radiation pattern with scanning includes undesir-
able large side-lobes in the visible region, whose levels can be
higher than the first side-lobe level. To overcome this problem, an
optimization technique is adopted to reduce both the inner side-

TABLE 1 Validation of the Proposed Method with the Existing Technique in [5] for In-Plane Observation Points


-cm

GVect�x̂ GVect�ŷ Relative
ErrorExisting Method in [5] Proposed Method Existing Method in [5] Proposed Method

0 10�6 
 0.126930 � 0.024078i 10�6 
 0.126853 � 0.024049i 10�6 
 �0.000174 � 0.002200i 10�6 
 �0.000176 � 0.002192i 6.41 
 10�4

0.05 10�6 
 �0.434146 � 0.261252i 10�6 
 �0.4341153 � 0.261176i 10�6 
 �0.107124 � 0.019400i 10�6 
 �0.107093 � 0.019376i 1.73 
 10�4

0.1 10�6 
 0.941456 � 0.494869i 10�6 
 0.941245 � 0.494778i 10�6 
 �0.118088 � 0.027149i 10�6 
 �0.118055 � 0.027132i 2.17 
 10�4

0.15 10�6 
 0.796986 � 0.617191i 10�6 
 0.796777 � 0.617102i 10�6 
 �0.073881 � 0.026486i 10�6 
 �0.073800 � 0.026438i 2.42 
 10�4

The source triangle has vertices (0.1, �0.1, 0) cm, (0.1, 0.05, 0) cm, (�0.2, 0.05, 0) cm, and the observation point is parameterized as (
, 0, 0). The frequency
is 1 KHz, with 	 � 5.8 
 107 S/m.

MICROWAVE AND OPTICAL TECHNOLOGY LETTERS / Vol. 36, No. 5, March 5 2003 363



PILOT: A FAST ALGORITHM FOR ENHANCED 3D  
PARASITIC EXTRACTION EFFICIENCY 

 
Dipanjan Gope and Vikram Jandhyala   

Department of Electrical Engineering, Box-352500 , University of Washington, Seattle, WA-98195, Telephone:  
206-543-2186 Fax: 206-543-3842,{dip, jandhyala}@ee.washington.edu} 

 
ABSTRACT 

Integral equation methodologies applied to extract parasitics at the board, package, and on-chip levels involve 
solving a dense system of equations. In this paper, we present an improved oct-tree based multilevel QR compression 
technique for fast iterative solution. The regular tree and interaction structure of the fast multipole method, and the 
QR compression scheme applied to interaction sub-matrices as in IES3 are combined to achieve superior time and 
memory efficiency. As is demonstrated by numerical simulation results presented herein, the new algorithm is found 
to be faster than both existing QR based methods and FastCap. 

 
I. Introduction 

Quasi-static parasitic extraction is an important problem in digital circuits and in mixed signal IC analysis. Due 
to the complexity of on-chip design structures, numerical techniques that utilize field solutions for parasitic 
extraction are preferred when high accuracy is necessitated. Among the existing approaches, a surface-based 
integral-equation methodology based on the Method of Moments (MoM) is ideally suited to address the problem. It 
leads to a well-conditioned system with reduced size compared to volumetric approaches, but the system of 
equations generated is inherently dense, thereby creating a time and memory bottleneck. Several fast iterative 
techniques have been developed to efficiently store and solve a MoM system. All these methods (e.g. QR-based 
methods, fast multipole methods (FMMs), FFT-based techniques etc.) rely on algorithms to accelerate matrix vector 
products and therefore expedite the iterative solution significantly to linear time and memory complexity. 
The multilevel QR-based fast iterative solver (IES3) [1] is particularly attractive for circuit problems. The approach 
is based on low-rank decomposition of MoM sub-matrices by Singular Value Decomposition (SVD) or the Modified 
Gram Schmidt (MGS) method [2]. It is independent of the Green’s function kernel, and can be applied directly to 
multi-layered dielectrics without increasing the size of the problem unlike the other methods. Even in terms of free-
space capacitance extraction IES3 has been demonstrated as being more efficient in terms of memory and solve time. 
The method however, suffers from a higher setup time cost. For problems with large number of nets, that require 
solving for many right-hand-sides (RHS’s), the higher setup cost is more than offset by faster matrix vector 
multiplies. However for well-conditioned systems with fewer nets and consequently fewer matrix vector products, 
the time efficiency of IES3 could be inferior. 
In this paper, we present a Predetermined Interaction List Oct Tree  (PILOT) QR algorithm, that greatly reduces the 
setup time while maintaining the memory and solve time efficiency of the Rank-Map based Binary Tree QR 
(RMBT-QR), which is based on the same principles as IES3. The PILOT-QR algorithm exploits the properties of a 
multilevel oct-tree implementation (common to FMM approaches), to create a predetermined set of interaction lists, 
thereby reducing the setup time considerably. In short the regular geometry structure of FMM and the compression 
efficiency of QR are combined together to yield an improved capacitance extraction algorithm. Though not 
discussed in this paper, the compression scheme is amenable to full-wave multi-layered dielectric kernel solutions 
and is stable for low frequency analysis without any modifications unlike some full-wave FMM techniques. 
 

II. Integral Equation 
Capacitance problems formulated using the MoM are solved via Poisson’s Equation 2 ( ) - ( ) /∇ φ = ρ εr r  

relating potential φ and charge-density ρ . The discretization of the integral form of this equation results in a matrix 
system of the form =ZI V  where the N N×  MoM matrix Z is a dense Green’s function matrix, I represent the 
unknown coefficients of known charge density basis functions, and V is the known potential excitation. Each 
element of the MoM matrix denotes the interaction between a testing and a basis function and is written as follows: 
                                                                 (j,i) ( ) ( , ) ( )′ ′ ′= ∫ ∫Z r r r r

j i

ds t dsg fj i
S S

                                                         (1)  



where tj is the testing function defined over Sj,  fi is the basis function defined over Si and g( , )′r r  is the relevant  
Green’s function. In the electrostatic case for P disconnected conductors, each column of the required 
P P× capacitance matrix is obtained by enforcing a voltage of 1V on the excited conductor, 0V on all other 
conductors, solving the above system, and integrating the charge density over each conductor. The N N× system of 
equations is therefore solved P times to obtain the capacitance matrix. 
 

III. Existing Multilevel QR algorithm 
The IES3 fast iterative solver, based on the QR method reduces the cost of performing the matrix vector product 

ZI  to ( log )O N N from quadratic time. It exploits smoothness of the Green’s function to decompose the 

numerically rank-deficient far-field sub-matrices of the MoM using QR decomposition; a sub-matrix A of the MoM 

matrix Z can be decomposed as mxn rxnmxrA = Q R  where R is upper triangular, Q is unitary i.e.
T

=Q Q I and 

( , )r m n= . At the same time it is possible to construct the compressed representation without forming the entire 

sub-matrix from sampled rows and columns, thereby reducing the setup time to ( log )O N N . 
In RMBT-QR, which is based on the same principles as IES3, the algorithm has 3 main steps: 

a) Geometry subdivisions into cells: Binary decompositions with density balancing and tight bounds technically 
known as tight-bound k-d trees [3] are employed, similar to that used in IES3. As shown in figure 1 each cell is 
recursively decomposed along the largest side into 2 cells with equal number of entities. 

  
 
 
 
 
 
It is interesting at this point to note that a tight-bound k-d tree may yield cells of any shape and size separated from 
each other by arbitrary distances depending on the geometry under consideration.   
b) Rank-Map predicted QR formations: A rank-map is a statically-determined look up table that identifies low-
ranked MoM sub-matrices on which QR formation from samples should be attempted. Large and low-ranked sub-
matrices are the chief candidates to be identified by the rank-map so as to ensure maximum compression with 
minimum setup time. Each entry of the table outlines the expected rank of a cell-to-cell interaction, which is a 
function of various parameters pertaining to the source and observer cells: 

( , , , , , , , )E s s s o o or f l b h l b h d g=                                                                (2) 

where Er  is the expected rank, l, b, h stands for the length, breadth and height of a cell, the subscripts s and o 
indicate source and observer cells respectively, d is the distance between the centers of the source and observer cells 
and g denotes the type of Green’s function used e.g. free-space Green’s function. The construction of this table is an 
expensive process considering all possible pairs of source and observer cells.  
c) Fine-tuning through splits and merges: The rank-map only predicts the starting block structure for a MoM matrix. 
The rank estimation is often inaccurate and may result in underestimation of rank or missing larger low-rank blocks. 
These problems are addressed by splits and merges respectively [1].  

The setup cost of the algorithm is largely controlled by the accuracy of rank map predictions. An accurate and 
exhaustive rank map would preclude the necessity for merges and unnecessary splits, and the optimum matrix block 
structure would be achieved without any backtracking or fine-tuning. However, a foolproof rank-map is difficult if 
not impossible to construct owing to the fact that the algorithm can lead to cells with any shape and size. This leads 
to a high constant being associated with the setup time cost of the algorithm. 

IV. New Multilevel QR Algorithm 

The proposed PILOT QR algorithm develops a predetermined multilevel matrix structure for the geometry 
under consideration, which guarantees maximum compression. The algorithm has 3 main steps: 

a) Oct-tree spatial decomposition in 3D:  Each cube is recursively decomposed by loosely bounded, spatially 
balanced splits along orthants leading to 8 child cubes in 3D. The cell data structure is in the form of an oct-tree, 
identical to that in multilevel FMMs [4].  

Figure 1: Multilevel tight bound k-d tree decomposition 



b) Basic multilevel interaction list: The basic multilevel interaction list of FMM is used as the starting block in the 
process of building the optimal multilevel compressed matrix structure. In multilevel FMM every cube ic  has a 

nearest neighbor list and an interaction list. The nearest neighbor list is defined as: { |
ic j jK c c= is in the same level 

as ic and has at least 1 common vertex with ic } and the interaction list is denoted by: { | ; }
i j c iic j c P j cI c P K c K= ∈ ∉ , 

where 
icP denotes parent of ic . Direct Green’s function computations are used only at the lowest level for 

interactions between cube ic  and 
icK . Multipole expansions are used to construct ( , ) |

ij i j cT c c j c I∀ ∈ , where 

( , )j iT c c denotes the interaction between testing functions of 
l
jc  and basis functions of l

ic . Since PILOT does not 

explicitly require cubical regions but simply deals with interaction matrices, there is scope for further compression 
by combining cubes in 

icI  in an a priori manner into a new interaction list called the merged interaction list (MIL).  

c) Merged interaction list: It is observed that the multilevel FMM interaction lists of siblings share many cubes in 
common as illustrated in figure 2. (2D version shown here for ease of illustration). 

 
 
 
 
 
 
 
 
It is possible to group source and observer cubes of different interaction lists (merged interaction) in order to 
compress larger low-rank matrices and thereby gain in terms of overall compressibility. It must be noted that the 
entire common interaction list does not directly translate into a merged interaction because the rank of such an 
interaction sub-matrix will not be low. The common interaction list is carefully decomposed into disjointed parts 
such that the overall compression is optimized. Each such disjointed part is an interaction between grouped source 
cubes and observer cubes and forms an entry of the MIL denoted by µ , which can be expressed as a combination of 

multilevel FMM cube-to-cube interactions: { ( , )} |1k p j i gT c c p p nm = ∀ ≤ ≤ , where gn  is the number of FMM 

interactions grouped. Higher compression is achieved since a larger matrix is compressed to low rank: 

( ) ( )
1

g

k k k

n

i i i
i

m n r m n rµ µ µ
=

+ < +∑                                                           (3)                            

where m, n and r denote the number of rows, number of columns and the rank of a sub-matrix. The subscript i 
denotes a regular multilevel FMM interaction list entry that is now a constituent of the MIL. Figure 3 demonstrates 
the decomposition of the common interaction list of figure 2 into merged interactions. 
 
 
 
 
 
 

The merged interactions shown in figure 3 are only a subset of all MIL entries. In PILOT there are in total 16 MIL 
entries in 2D and 40 in 3D. The same MIL pattern is valid for all sibling pairs across levels. The MIL can thus be 
visualized as an accurate replacement for rank-map used in RMBT-QR and leads to a predetermined matrix block 
structure. MoM sub-matrices pertaining to interactions of the MIL are compressed by forming QRs from samples. 
At the lowest level, dense blocks are retained for interactions of the smallest cube with its neighbors.  

V. Simulation Results 

In this section, simulation results are presented to demonstrate the accuracy and time and memory efficiency of 
PILOT. For a comparative analysis, results obtained from RMBT-QR, which is based on IES3 and FastCap, which is 
an open source code based on FMM are presented side-by-side. A QR decomposition tolerance of 1e-3 is used for 
both PILOT and RMBT-QR whereas for FastCap the adaptive algorithm with multipole order of 2 is employed. An 

Figure 2: Common interaction shell of siblings in 2D 

Figure 3: Merged interaction list entries corresponding to the common interaction list 

   Siblings    Interaction Shell Common region 



absolute residual of 1e-3 is used for the Krylov sub-space iterative solution. All tests were run on a processor with 
4GB RAM and 1.6GHz CPU speed.  

In the first example the capacitance matrix of the multi-net structure 
(figure 4) is simulated. The surface of the structure is meshed with 0.113 
million patches. The absolute values of the first column of the matrix as 
obtained from the 3 algorithms are plotted in figure 4, where it can be seen 
that even very small entries relative to the large ones match very well. 
In the next example a 5-by-5 bus structure (figure 5) is considered. Each 
trace is 1 µm in length and 0.1µm X 0.1 µm in cross section. The distance 
between the layers of trace is 0.3 µm and the separation between traces on 
the same layer is 0.1 µm. The number of triangular patches is varied from 
1000 to 0.7 million. The memory and time efficiency of PILOT is 
demonstrated first by comparison to regular direct and iterative solvers as 
in figure 5a and 5b and then to RMBT-QR and FastCap as in figure 5c and 
5d.  

 

 

 

 

 

 

The next example demonstrates the relative advantage of QR methods 
as compared to FMM based algorithms for higher number of nets and 
consequently larger number of matrix vector products. A package 
structure with 14 leads as illustrated in figure 6a is considered. The 
surface is meshed with 0.101 million patches and then solved for 
increasing number of right hand sides (1 to14). The time requirements 
are plotted in figure 6b. The constant offset between the plots of 
PILOT and RMBT-QR is due to the superior one-time setup cost. The 
memory required for the process by PILOT is 441MB, by RMBT-QR 
is 445MB and FastCap 700MB.    The largest problem solved using 
our method is an on-chip structure discretized with 0.913 million 
patches, similar to that in figure 4, with 30 times more traces in a 10 x 
3 array. The problem took 3.3Gb and 48 minutes to setup and 90 minutes to solve for 3 specific excited nets.  Both 
the other methods required more than the 4 Gb available. 

VI.    Conclusions 
A new oct-tree based QR technique for fast parasitic extraction, PILOT, was presented. The best features of 

FMM and IES3 are exploited and merged, along with the generation of new merged interaction lists in order to yield 
superior run times and reduced memory consumption in PILOT. In the battle of reducing constants in the era of 
mature linear complexity algorithms, PILOT can potentially emerge as an optimal paradigm for parasitic extraction. 
While this paper is related to parasitic extraction, the PILOT paradigm can also be applied to full-wave applications 
in multi-layered microelectronic environments. This work was partially supported by US DARPA/MTO NeoCAD 
program under Grant N66001-01-1-8920 and NSF Career Award grant ECS-0093102.  
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Abstract—In this paper, a new formulation for coupled
circuit–electromagnetic (EM) simulation is presented. The for-
mulation employs full-wave integral equations to model the EM
behavior of two- or three-dimensional structures while using
modified nodal analysis to model circuit interactions. A coupling
scheme based on charge and current continuity and potential
matching, realized as a generalization of Kirchoff’s voltage and
current laws, ensures that the EM and circuit interactions can
be formulated as a seamless system. While rigorous port models
for EM structures can be obtained using the approach discussed
herein, it is shown that the coupling paradigm can reveal addi-
tional details of the EM–circuit interactions and can provide a
path to analysis-based design iteration.

Index Terms—Coupled circuit–electromagnetic (EM) simula-
tion, method of moments (MoM), signal integrity, surface integral
equation.

I. INTRODUCTION

WITH THE rapidly increasing interest in applications
such as RF wireless communication and high-speed

data processing, electronic systems are required to work at
progressively higher frequencies [1]. As the operating frequen-
cies enter gigahertz range, phenomena such as crosstalk, power
and ground-plane voltage bounce, substrate losses, etc. can
no longer be neglected. In order to design high-performance
systems with fast time to market, it is essential to be able
to analyze whole or part of the system at one fundamentally
deeper level of physics: distributed electromagnetic (EM) field
analysis needs to be rigorously and seamlessly included as an
addition to traditional circuit simulation.

In the existing literature, several methods have been devel-
oped to model and simulate coupled circuit–EM problems.
Those based on finite difference time domain (FDTD) [2]–[4]
are effective for time-domain analysis. For broad-band sim-
ulation, the FDTD can be used to obtain frequency-domain
results via a Fourier transform. However, it is not a direct
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frequency-domain method, and it also requires dispersive/fre-
quency-dependent parameters to be represented in the time
domain in order to model losses and frequency-dependent
behavior, accomplished through recursive convolutions and
similar methods. Furthermore, FDTD requires the discretiza-
tion of the three-dimensional (3-D) space where the object
under study resides, which can lead to substantially more
system unknowns than in surface-based methods [5]. The
finite-element method (FEM) has been applied to both time-
and frequency-domain coupled circuit–EM simulation using
schemes including port models [6] via paralleling each coupling
circuit element to an FEM edge [7] or through a fully coupled
approach [8], as has been the transmission-line method [9].
Analytical approaches [10] and simpler transmission lines are
usually much faster than the numerical-based methods and can
be easily coupled to circuit simulation. However, they are not
general enough for analyzing irregular structures.

In recent years, methods based on integral equations have
gained importance. Among them, the partial-element equiv-
alent-circuit (PEEC) approach [11] has been widely used to
study coupled circuit–EM problems. Very recently, nonorthog-
onal and generalized PEEC methods have been developed
[12], [13]. By representing all the interactions using equiv-
alent SPICE-compatible resistor–inductor–capacitor (RLC)
elements and controlled sources, PEEC can solve the coupled
circuit–EM problem using a traditional SPICE-like circuit sim-
ulator. However, due to the dense nature of the interactions and
the fact that SPICE is tuned for solving sparse matrices, direct
PEEC is limited to problems with a relatively small number of
unknowns [14], although recently, fast methods in conjunction
with PEEC are being developed [15], [16]. The PEEC method
itself was inspired by EM integral equations. These equations,
solved by the method of moments (MoM) [17] with appropriate
basis functions, can be used for distributed effects simulation
of arbitrarily shaped structures.

When nontrivial lumped circuits are simultaneously present,
previous work can only solve the coupled problem based
on port models through several steps: port parameters are
calculated using an EM simulator first, curve-fitting or model
order-reduction techniques are then used to generate an
equivalent-circuit model, followed by circuit simulation to
estimate complete electrical performance of the system. The
port-model-based approach has several limitations: first, for
complex multiport structures with frequency-dependent mate-
rial properties, deriving the equivalent passive network within a

0018-9480/04$20.00 © 2004 IEEE
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given accuracy is still an area of current research [18]. Second,
after the EM structure is converted to a port model, information
about the details of the EM-field distribution in the structure
will be lost, such information could otherwise provide useful
insights into the problem under study and be useful in design
iterations. Third, the port-model approach, when used with a
fast iterative solver, needs to solve the EM system repeatedly,
i.e., for each port, which could be very expensive when both
the number of ports and number of unknowns are large.

This paper presents a new and complementary approach
to the formulation and solution of the coupled circuit–EM
problem. EM conducting structures and lumped-element
circuits are formulated jointly using one system matrix in a
form amenable to existing fast iterative numerical solvers such
as those based on the fast multipole method [19], fast Fourier
transform (FFT) method [20], and low-rank decomposition
[21], as well as emerging fast direct solvers [22]. Solving the
EM and circuit simultaneously not only permits more detailed
field information, but also obviates the necessity of generating
port models and, thus, automates the design flow. The proposed
method, originally presented by the authors as an idea at a
recent conference [23], is detailed and advanced herein, and
applied to several microelectronic problems. The technique
is inherently hierarchical and provides seamless transitions
between circuit and EM depending on the level of details
required.

The EM formulation used in this paper is a full-wave
MoM approach using surface triangular tessellations. Since
Rao–Wilton–Glisson (RWG) basis functions [24] associated
with triangular meshes do not make assumptions about current
flow directions as the classical volumetric PEEC does, the
adopted approach is suitable to model arbitrarily shaped
structures often found in microwave and RF applications.
The presented formulation employs a surface impedance
approximation that is valid at high frequencies for thin and
thick conductors. Although not presented here, for a complete
broad-band solution, frequency-dependent effects can be
modeled via employing lossy media’s Green’s functions in a
two-region formulation without frequency-dependent meshing
[25].

For the circuit subsystem, the standard modified nodal anal-
ysis (MNA) matrix is formulated. Kirchoff’s current law (KCL)
is enforced for each circuit node and Kirchoff’s voltage law
(KVL) is applied to branches containing voltage sources. Areas
of EM structures where the circuit connections are made are
defined as contact regions. Associated with each contact are
coupling currents that are introduced as additional system un-
knowns. The coupling scheme is based on charge and current
continuity equations and potential matching with the assump-
tion that circuit voltage is equal to the EM scalar potential at a
contact region.

The remainder of this paper is organized as following. Sec-
tion II introduces the formulation of surface-based electric
field integral equations (EFIEs) for EM structures, and MNA
equations for lumped-element circuits. Implementation of the
coupled method using RWG basis functions is presented in Sec-
tion III. Section IV discusses port-model derivation and compar-
ison between the port-model and coupled approaches. Numerical

Fig. 1. Arbitrary lumped circuit connected through a contact to a 3-D
geometric object.

examples for a low-noise amplifier (LNA), power/ground-plane
bounce modeling are given in Section V. Section VI discusses
conclusions.

II. COUPLED CIRCUIT–EM FORMULATION

This section presents a generalized KCL–KVL formulation
for simulation of coupled circuit–EM problems. A typical
high-speed microelectronic system layout consists of both
lumped circuits and sections requiring distributed EM simula-
tion. For modeling purposes, the circuit section is abstracted
by a topology-based domain, wherein signals propagate along
idealized conduction paths between lumped-circuit elements,
while the EM section is represented by a geometry-based
domain, wherein signals propagate in 3-D space and materials.
The two domains couple to each other through contact inter-
faces where a circuit node is associated with an EM contact
surface. As will be shown in this paper, this interface can be
rigorously defined using a generalized version of Kirchoff’s
voltage and current laws.

Consider Fig. 1, which shows a 3-D geometric object con-
nected through a contact to lumped circuits and, optionally,
illuminated by incident fields.

The boundary condition for the electric field on the surface
of the object is

(1)

where is the scattered electric field produced by the induced
equivalent-surface current is the incident electric field,
subscript denotes the tangential components on rep-
resents the surface impedance, and its value is

(2)

where is angular frequency, and and are the permittivity
and conductivity of the material, respectively. Note that surface
impedance is a valid approximation to the behavior of fields
internal to conductors only for frequencies where the skin depth
is smaller than the dimension of the cross section of conductors.
At lower frequencies, if a surface integral formulation is used,
more accurate modeling of the lossy media Green’s function
within the conductor is required, as discussed in [26]. In terms
of potentials, the electric field can be written as

(3)
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Fig. 2. Concept of surface contact.

where the vector potential is defined as

(4)

the scalar potential is defined as

(5)

where and are observation and source locations, respec-
tively, and represent the equivalent surface current den-
sity and surface charge density, respectively, and are the
permeability, permittivity, and wavenumber, respectively, of the
homogeneous medium enclosing the object.

The concept of a contact is introduced in Fig. 2, where surface
is divided into two subsurfaces, denoted by and

such that

(6a)

and

(6b)

On , the standard continuity equation relating the surface
current density and surface charge density holds as follows:

(7a)

or

(7b)

where represents the surface divergence.
On , the continuity equation is altered due to the exis-

tence of injected circuit currents. This current introduces an ad-
ditional source term in the continuity equation and, thus, affects
the distribution of both surface currents and surface charges. Let

be comprised of disjoint surfaces ,
each such unique subsurface is termed one of contacts.
On , the modified continuity equation has the following
form:

(8a)

or

(8b)

where represents the scalar volumetric current density pro-
duced on via a circuit interconnection, and represents
total surface charge density on .

Substitute (6a)–(8b) into (3)–(5), we have

(9)

The last two terms represent the contribution to the field pro-
duced by the gradient of the scalar potential, which, in turn, is
produced by the equivalent surface charge density. The charge
density itself is produced by over , and by

over . Therefore, the current density
introduced by the circuit interconnection produces an additional
source or sink of charge that alters the scalar potential and the
resulting electric field.

The current density is a system unknown that is deter-
mined by the solution of the coupled circuit–EM system. An ad-
ditional system equation can also be constructed, which is based
on a generalized KVL that equates the scalar potential produced
on electrically small contacts to the voltage of the circuit
node associated with the interconnection at as follows:

(10)

where corresponds to the node voltage associated with a
circuit node connected to contact.

The contact, as defined above, is inherently an electrically
small surface, i.e., its dimensions are small compared to the
wavelength of signals in a microelectronic system. Larger con-
tacts can be defined by associating several circuit nodes with
neighboring contact regions, thereby not enforcing erroneous
constant potential over electrically large regions.

As can be seen from (10), the calculation of the scalar po-
tential at the contacts assumes the potential at infinity is zero.
Although the ground node can be chosen randomly in a pure cir-
cuit problem, in a coupled circuit–EM formulation, specifying a
circuit node to be a ground node indicates this node has the same
potential as the EM scalar potential at infinite distance. In the
coupled formulation, there is no requirement to define a circuit
ground and, in fact, every node has an associated KCL (which
is not possible in a pure circuit problem since one of them will
be redundant). Thus, there is one unambiguous ground (infinity)
definition in the entire problem.

The final self-consistency condition, in addition to scalar po-
tential matching, is a generalized KCL, which ensures that the
coupling current will contribute one additional term to the
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Fig. 3. Connection scheme for EM and circuit interface.

Fig. 4. Definition of RWG basis function.

KCL-based circuit equation associated with circuit node as
follows:

(11)

where is the current of the th branch, and is the total
number of circuit branches connected to circuit node . Fig. 3
shows the connection scheme for the EM–circuit interface.

We notice that whereas other approaches such as delta gap
methods or wire basis functions [27] can be used to describe the
coupling between the circuit and EM, they often need artificial
parameters such as basis-function lengths, directions, and radii
that are not consistent with topology-only circuit sections.

III. INTEGRAL EQUATION WITH RWG BASIS FUNCTIONS

The self-consistent coupled circuit–EM equations described
in Section II are valid for arbitrary basis functions for modeling
surface currents using surface integral formulations. Here, the
method is expressed in more detail for the popular edge-based
RWG spatial basis functions [24] that rely on a triangular tes-
sellation of the surface . An RWG function , defined over
two triangles with a common edge , used to approximate the
spatial distribution of current density has the well-known form

(12)

where is the length of the th edge, is the area of triangle
, and is the vector pointing to or from location in

triangle with respect to the node opposite the edge. Fig. 4
illustrates the definition of RWG basis functions.

As a consequence of the above form, the charge density in
each pair of triangles is modeled as a piecewise constant as
follows:

(13)

The surface current density is expanded using RWG functions
as

(14)

where represents the coefficient of the th RWG basis func-
tion, and is the total number of nonboundary edges. For con-
sistency with RWG basis functions, the charge associated with
the coupling current is modeled using piecewise constant func-
tions (that have a value of unity on a given triangle and zero
elsewhere) over each contact triangle

(15)

Equation (9) is then expressed as

(16)

where is the total number of nonboundary edges, is
total number of triangles on contact and denotes the

th triangle on contact that is used for circuit connection.
Also, and are the positive and negative triangles as-
sociated with the th RWG function. To solve for the unknown
coefficients, the expression in (16) is substituted into (1) and
tested with the RWG functions to yield

(17)

where denotes a spatial dot product, and testing of the
vector potential yields

(18)
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The testing of the scalar potential is the result of the sum of two
potential contributions, from the EM surface current

(19)

and from the coupling current

(20)

The surface impedance contribution is local and has nonzero
values only for those combinations of basis and testing functions
that share at least one triangle. Therefore, the contribution is
a sparse matrix where each column has, at most, five nonzero
entries as follows:

share a common triangle.

(21)

Finally, any incident electric field is tested as in the term
.

The next set of equations is obtained by enforcing

(22)

and by enforcing (15). Substituting (19)–(22) in (18) leads to
the matrix format of the coupled circuit–EM system

(23)

where is the regular MoM matrix whose elements can be
interpreted as equivalent partial impedances if a comparison
with a surface-based PEEC is desired. The partial inductances,
capacitances, and resistances are equivalent to the terms in
(19)–(21). The remaining three dense EM matrices define
the contact. Matrix represents the scalar potential con-
tribution due to the coupling current at , and matrix
denotes the potential contribution from the EM surface current

at . Finally, matrix represents the scalar potential
contribution to due to coupling currents. This two-by-two
system is a self-consistent definition of the EM interactions
with a circuit section. To complete the coupled formulation,
a sparse rectangular matrix is introduced as connection
matrix to enforce generalized KCL and KVL. This matrix
has one nonzero element per row to select the potential of the
circuit node associated with a contact triangle. The transpose
matrix selects the coupling current and adds it to the KCL
equation of the circuit node at the contact. The MNA matrix
represents circuit interactions for linear RLC elements and the
linearized small-signal models of nonlinear elements such as
diodes and transistors. The system unknowns and ckt
relate to surface equivalent currents, coupling currents, and
circuit voltages/currents, respectively. The right-hand-side
excitation vector consists of the tested incident EM field ,
the strengths of independent voltage, and current sources
[28].

IV. PORT MODEL VERSUS COUPLED SOLUTION

The port model is a widely used approach for circuit designers
to include EM effects. Here, we first show how the coupled
solver can be used to generate port models, and then we give
a comparison between the port-model and coupled approach to
show that coupled solver has advantages in terms of simulation
cost and automation.

In addition to being used as a fully coupled solver, the formu-
lation discussed in Section III can also be used in a manner sim-
ilar to port-model approaches. Equations (15) and (22) permit
sufficient flexibility in solution in order to aid iterations in cir-
cuit design. When structures to be analyzed with EM analysis
remain unchanged and circuit parameters and topologies vary
during design iterations, an EM contact model is generated. By
combining the first two equations and unknowns, (23) can be
rewritten as

(24)

where contains and in (23), and
are extensions of their corresponding entry in (23). In (24),

the EM surface current and coupling current unknowns can
be eliminated from the first set of equations and the rest of the
system can be written in the Schur complement form

(25)

Therefore, the formal inversion of the matrix only needs
to be done once as long as the EM structures do not change.
For large-sized EM problems, the equivalent of the inversion
is obtained by iteratively solving the EM system with each of
the contacts excited independently. The EM contact model can,
therefore, be obtained through exciting each contact and using
an iterative solver, or through the formal inversion shown in
(25).

The EM contact model ultimately permits the EM structure
to be represented in an MNA-compatible element-stamping
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Fig. 5. Illustration of a short-wire antenna of length l and radius a (l=2a =
74:2). (a) Classic MoM solution. (b) Coupled circuit–EM solution.

format and the incident EM wave in the equiva-
lent-circuit excitation format . The advantage
of the above nodal contact model compared to the traditional
port model is that it eliminates the intermediate step of con-
structing an equivalent circuit with its associated cost, accuracy
limitations, and complexity in terms of ensuring passivity.

The advantages of coupled formulation over port-model
methods lie in several areas. First, computation cost for
port-model extraction, assuming a standard or fast iterative
solver, increases linearly with the number of ports. Consider
an -port EM structure as an example, column of its -pa-
rameter matrix needs to be calculated with port connected
to 1 V, while the rest of ports are grounded. Thus, an -port
structure will necessitate solving the system for times. Since
the coupled solver only needs to solve the system equations
(23) once, the port-model approach will be computationally
more expensive than the coupled method. Second, the coupled
solver can reveal the distributed field information more easily.
Distributed field information is important for layout-based cir-
cuit design. In the coupled formulation, since surface currents
are formulated as system unknowns, field distribution will be
just a simple post-processing after the system is solved. In the
port-model approach, to derive distributed field information,
one has to either solve the problem again with the derived
port voltage and current or use complex bookkeeping and
superposition to recalculate the field distribution. Coupled
formulation also automates the process to consider EM effects
during circuit design.

V. NUMERICAL RESULTS

A fully coupled circuit–EM simulator has been developed
based on the above-described approach. The first example is a
validation test against the classical MoM. As shown in Fig. 5,
the input admittance of a center-fed antenna is simulated [17].

In Fig. 5, the short-wire antenna under consideration is of
length and radius such that the ratio of the length and di-
ameter is 74.2 and . The input admittance is first sim-
ulated using our in-house MoM solver, employing a delta-gap
excitation at its center, as shown in Fig. 5(a). The antenna is
then excited at its center by a circuit voltage source and our cou-
pled solver is used to solve for the input impedance, as shown
in Fig. 5(b). The simulation results from both methods are illus-
trated in Fig. 6, which demonstrates a good match. These also
match very well with the published results in [17].

Fig. 6. Input conductance and susceptance versus l=�. (a) Conductance.
(b) Susceptance.

Fig. 7. Interconnect over a solid ground plane.

Another validation example, comparing the presented ap-
proach to the standard PEEC, is an interconnect over a ground
plane, as in [29], and as shown in Fig. 7.

The ground plane is 2 cm long 1 cm wide and the trace is
2 cm long 1 mm wide and stays 0.5 mm above the ground
plane. The frequency dependence of the input impedance is de-
picted in Fig. 8, and matches well. The small bump is very near
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Fig. 8. Input impedance of an interconnect over a ground plane.

Fig. 9. Schematic of a 5.6-GHz LNA.

the first resonant frequency, and might be related to internal res-
onant effects in the EFIE system, but this is not clear.

One of the typical applications is circuit/layout co-simulation
for RF electronics system design, where on-chip inductors are
often employed. In RF circuit design, accurate characterization
of the inductor is the most challenging task. Fig. 9 shows the
topology of a 5.6-GHz differential-mode LNA, where several
on-chip inductors are included either for the frequency-selec-
tion purpose such as and or for the impedance matching
purpose such as – .

With 5.6-GHz central working frequency, performance of
the LNA will be affected by both the distributed effect and
the crosstalk of on-chip spiral inductors. The precision of two
inductors and is most important since it affects the
central frequency where the maximum gain can be derived.
While the transistor sizes are fixed by the requirement of the
optimum noise figure [30] to be 123 m, the main design task
is to adjust the turns and spacing of spiral inductors to tune
the resonant frequency of the LC tank to the central frequency
5.6 GHz.

Fig. 10. Extracted equivalent inductance.

Fig. 11. S curve versus distance between inductors.

The spiral inductor is first simulated using the coupled
solver to decide the number of turns according to the extracted
equivalent inductance. With a total parasitic capacitance to be
105 fF at node A, the inductor is designed to be five turns with
an area of 500 m 500 m. Fig. 10 shows the extracted equiv-
alent inductance of such a single spiral inductor. The increase in
inductance with frequency is due to approaching self-resonance
frequency of the inductor.

Due to the radiation and inductive coupling effects, the two
inductors will mutually couple, and lead to a shift in the central
frequency. Fig. 11 shows a series of curves versus different
distances between the two inductors.

As the two inductors are moved closer, the coupling effect
becomes prominent and leads to poorer performance. In actu-
ality, the coupling effect could also be used to an advantage:
due to the differential mode nature of the currents through the
two inductors, a larger effective inductance can be realized by
tight coupling between the two inductors. In other words, the
same inductance value could be achieved using a lesser number
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Fig. 12. Structure of a mixed-signal board with a noise source at the center.

of turns and, thus, less chip area. Some new multilevel inductor
designs are based on this concept.

To simulate the coupled system in the frequency domain,
an operating point analysis is first performed to linearize the
nonlinear BSIM3 transistor model [31]. As an existing circuit
simulation technique, the operating point is calculated via
Newton–Raphson iterations. EM structures are not involved
in those iterations directly; instead, these are represented by
a resistance network calculated using a volumetric resistance
extractor.

If large-signal analysis instead of the small-signal analysis
presented above is required for the coupled system, the fre-
quency domain can be facilitated through a harmonic-balance
method [32] coupled to the EM simulation. However, this is be-
yond the scope of this paper.

A frequency sweep is then performed for the range of interest.
The EM problem was meshed with 5120 RWG basis functions
and it required 43 s to set up the problem and 88 s to solve using
our in-house low-rank compression fast iterative solver on a
1.6-GHz Pentium processor. In contrast, extraction of the entire
port model requires 42-s one-time setup time and 334-s solve
time. Note that the solve time for port-model extraction is ap-
proximately four times as long as the solve time for the coupled
solver, which is because the problem needs to be solved four
times in order to extract the port model, each for one column of
the matrix with a 1-V excitation on one port and 0-V excita-
tion on the rest of ports.

The second example studies the power/ground-plane voltage
bounce distribution due to a high-frequency noise source. Con-
sider a typical mixed analog/digital print circuit board (PCB),
as shown in Fig. 12.

Since digital circuits are usually associated with high-speed
signal switching that contains numerous high-frequency com-
ponents, the potential difference between power and ground
planes will not be equal to ideal supply voltage everywhere. At
high frequencies, the power and ground planes need to be con-
sidered as a distributed RLC network instead of ideal conduction
planes. The voltage bounce could cause digital logic circuits to
switch erroneously. In such a case, decoupling capacitors are
needed to suppress the peak bounce voltage.

With traditional port-model-based EM–circuit simulation
methods, it is difficult to acquire the voltage bounce distribution
information all over the plane since the potentials can only be
accessed via ports. Thus, deriving the spatial distribution of
the potential requires ports everywhere on the plane and could
make the problem cumbersome or too large to solve. On the
other hand, since the coupled circuit–EM solver uses equiv-
alent surface currents as system unknowns, the voltage/field

Fig. 13. Bounce-voltage distribution at 3 GHz.

Fig. 14. Bounce-voltage distribution at 3 GHz after adding 20 decoupling
capacitors.

Fig. 15. Partially split power ground-plane design.

distribution can then be easily derived by a post-processing
operation once the coupled system is solved.

In Fig. 12, the size of the PCB board is 12 cm 8 cm.
At 3 GHz, 1-mA noise source at the board center can cause a
bounce-voltage distribution, as shown in Fig. 13.

By continuously pinning down the peak bounce voltage using
10-nF decoupling capacitors, peaks of the noise voltage can be
isolated in a local area of the noise source, as shown in Fig. 14,
after adding approximately 20 decoupling capacitors.

Note that the EM part of the problem does not change as
additional capacitors are added and, hence, the factorization and
storage of the EM section can be done just once if required,
using the EM port model of the coupled system.

An alternative design approach is to design the power/ground
board, as shown in Fig. 15, with partially split planes.
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Fig. 16. Bounce-voltage distribution at 3 GHz for split power/ground plane.

Fig. 17. Bounce-voltage distribution at 3 GHz for split power/ground plane
with nine decoupling capacitor.

Simulation results reveal that the bounce-voltage localization
effect was achieved even without adding decoupling capacitors,
as shown in Fig. 16.

Further localization of bounce voltage will need a smaller
number of decoupling capacitors compared to the previous ex-
ample. Bounce localization shown in Fig. 17 was achieved by
using nine decoupling capacitors.

VI. CONCLUSION

In this paper, a coupled circuit–EM formulation has been pre-
sented. The EM solution is based on full-wave surface integral
equations (i.e., EFIEs), the circuit solution is based on KVL and
KCL, and the coupling is ensured by charge and current conti-
nuity, as well as potential matching. The primary objective of
the method is to ensure proper physics-based coupling between
the circuit and the EM parts such that a coupled matrix can be
formulated. While different kinds of EM and circuit port models
can be derived, a fully coupled solution process will guarantee
complete electrical transparency in the entire system, including
all EM and circuit effects. Work in progress is aimed at ex-
tending the same approach to the time-domain simulation to in-

clude the effect of lossy conductors and to incorporate fast mul-
tilevel solvers and fast frequency-sweep methods for the cou-
pled system.
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Oct-Tree-Based Multilevel Low-Rank Decomposition
Algorithm for Rapid 3-D Parasitic Extraction

Dipanjan Gope and Vikram Jandhyala

Abstract—Fast parasitic extraction is an integral part of high-speed mi-
croelectronic simulation at the package and on-chip level. Integral equation
methods and related fast solvers for the iterative solution of the resulting
dense matrix systems have enabled linear time complexity and memory
usage. However, these methods tend to have large disparities between setup
and matrix-vector product times that affect their efficiency when applied
to multiple excitation problems, i.e., problems with a large number of nets.
For example, FastCap, which is based on the fast multipole method, has a
significantly faster setup time than the multilevel QR decomposition-based
IES , but relatively slow matrix-vector products. In this paper, we present
a novel oct-tree-based QR compression technique for fast iterative solution.
The regular cube structure of the fast multipole method and the QR com-
pression scheme for interaction submatrices as in IES are combined to
achieve a predetermined compressible matrix-block structure and, conse-
quently, superior memory, setup, and solve time efficiencies.

Index Terms—Low-rank-decomposition, oct-tree multilevel hierarchy,
parasitic extraction.

I. INTRODUCTION

In deep submicron technology, as the trace width decreases, the
height-to-width ratio is increased to maintain low wire resistance. The
larger trace aspect ratio along with the reduction in trace spacing leads
to increasing parasitic capacitances [1]–[3], such that the connectivity
delay becomes the dominant delay [4]. At the same time, the rise in
clock frequencies render the estimation of interconnect delay and,
hence, the associated parasitic quantities extremely crucial for modern
day circuit design [5], [6]. Due to the complexity of on-chip design
structures, numerical techniques that utilize field solutions for parasitic
extraction are preferred, to achieve maximum accuracy [7].

Among the existing numerical tools, a surface-based integral equa-
tion methodology such as the method of moments (MoM) [8] is ideally
suited to address the problem. It leads to a well-conditioned system
with reduced size, compared to volumetric methods [9], but the system
of equations generated is inherently dense, thereby creating a time and
memory bottleneck [10]–[14]. Several fast iterative techniques have
been developed to efficiently store and solve an MoM system. All these
methods, including QR-based approaches [10]–[12], fast multipole
methods (FMMs) [13], and fast Fourier transform (FFT)-based tech-
niques [14] accelerate matrix-vector products and, therefore, expedite
the Krylov-subspace iterative solution [15]. The memory requirement
and the setup time is reduced from O(N2) to O(N) or O(N logN)
and the solve time is reduced from O(N3) as in Gaussian elimination
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or O(N2)� p� r as in a regular iterative solver to O(N)� p� r or
O(N logN)� p � r, where N is the number of degrees of freedom,
and p is the number of iterations for convergence per right-hand side
(RHS), and r is the number of RHS vectors.

The QR-based fast iterative solver (IES3) is particularly attractive
for circuit problems. The approach is based on the utilization of the
low-rank property of MoM submatrices under a user-specified toler-
ance. The rank of a submatrix obtained by such a tolerance-based de-
composition process is referred to as the epsilon-rank. This low-ep-
silon-rank decomposition is achieved by singular-value decomposition
(SVD) or the modified gram schmidt method [16]. Unlike fast multi-
pole methods, it is independent of the kernel (Green’s function), and
can be applied directly to multilayered dielectric cases [17] without
increasing the size of the problem [10]. Even in terms of free-space
capacitance extraction, IES3 has been demonstrated as being more ef-
ficient in terms of memory and solve time. However, in absolute terms,
the setup cost has a high value, owing to complexities in the underlying
binary tree decomposition in IES3.

In this paper, we present a predetermined interaction list supported
oct tree (PILOT)-based QR algorithm that greatly reduces the setup
time while maintaining the memory and solve time efficiency of
rank-map binary tree QR (RMBT-QR), which is a prototype imple-
mentation based on the same principles as IES3. PILOT exploits the
properties of a multilevel oct-tree implementation used in FMMs to
create a predetermined set of interaction lists, thereby reducing the
setup time considerably. In short, the regular oct-tree structure of
FMM and the compression efficiency of QR are combined together
to yield an enhanced efficiency capacitance extraction algorithm.
Though not discussed in this paper, the compression scheme is
amenable to full-wave multi-layered dielectric kernel solutions for
electrically-small structures and is also stable for these problems
unlike traditional full-wave FMM techniques.

The paper is organized as follows. Section II introduces the integral
equation formulation for an MoM-based parasitic capacitance extrac-
tion problem. In Section III, the algorithm of PILOT-QR with its as-
sociated components is discussed in detail. Performance comparisons
of PILOT, RMBT-QR and FastCap [13] are presented in Section IV.
Section V concludes the paper.

II. INTEGRAL EQUATION

Capacitance problems formulated using MoM are solved using the
integral form of the Poisson’s equation as follows:

r
2
�(r) = �

�(r)

"
(1)

relating potential � and charge density �. The discretization of the ge-
ometry into N basis functions results in a matrix system of the form

ZI = B (2)

where the N � N MoM matrix Z is a dense Green’s function ma-
trix, I represents the unknown coefficients of known basis functions
for charge density, and B represents the known potential excitations
on each basis function. Each element of the MoM matrix denotes the
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interaction between a testing and a basis function and is written as fol-
lows:

Z(j; i) =

S

ds tj(r)

S

ds
0

g(r; r0)fi(r
0) (3)

where t and f are the testing and basis functions, respectively, S de-
notes function domain, and g(r; r0) is the relevant Green’s function.

In the electrostatic case for P disconnected conductors, the charge-
voltage relation is given by

CV = Q (4)

whereC is the P � P capacitance matrix,V denotes the potential on
each conductor and Q is the resultant charge on the conductors. The
jth column of C is obtained by enforcing a voltage of 1 V on the jth
conductor, 0 V on all other conductors in (2)

Bi =1; i 2 Conductorj

=0; otherwise: (5)

Then, the above system is solved, and charge density over each con-
ductor is integrated

Cij = Ik k 2 Conductori (6)

The N �N system of (2) is, therefore, solved P times to obtain the
entire capacitance matrix.

III. OCT-TREE-BASED QR-COMPRESSION ALGORITHM

The presented PILOT QR algorithm develops a predetermined ma-
trix structure for arbitrary 3D geometries that ensures efficient com-
pression. The algorithm has 4 main constituents:

A. Oct-Tree Spatial Decomposition in Three-Dimensions (3-D)

The algorithm is based on maintaining a regular geometric pattern
of cells. The best combination, which yields a regular cell pattern, is
loosely bounded, spatially balanced decomposition into orthants [18].
Note that, as in FMM, empty cells are ignored.

The starting cell c00 is the smallest cube that encloses the entire ge-
ometry. The superscript indicates the level of decomposition to which
the cube belongs to and the subscript denotes the cube number in that
level. Each cell is then recursively decomposed into a maximum of
eight cubes in 3-D, depending on the distribution of basis functions.
Thus, each cube cli, which is the ith cube at level l is decomposed by
spatially balanced splits along each coordinate, x, y, and z

splitx =
xmax + xmin

2

splity =
ymax + ymin

2

splitz =
zmax + zmin

2
(7)

where splitx, splity , and splitz are the split positions in the three or-
thogonal directions and xmax, xmin, ymax, ymin, zmax, and zmin are
the bounding coordinates of the cube. Each cube cl+1j resulting from
this decomposition is called a child of cli and the latter is denoted as the
parent of cl+1j

P
c

= c
l
i: (8)

All the child cubes of cli are siblings of each other, where a sibling
set is defined as follows:

S
c

= c
l+1
k 8kjP

c
= P

c
: (9)

At each level, the generated cells are identical cubes and the pattern
repeats across levels. For 3-D arbitrarily shaped geometries, the cell
data structure is in the form of an oct tree. The geometric decomposition
is, hence, exactly similar to that of multilevel FMM [13] and, hence, its
interaction scheme can be leveraged in the presented algorithm.

B. Basic Multilevel Interaction List

Every cube cli8i, lj0 � l � lc; 0 � i < nlc, where lc is the
total number of levels and N l

c is the total number of cubes at level l,
has a nearest neighbor list Kc and an interaction list Ic . The nearest
neighbor list, is defined as

Kc = c
l
j jc

l
j is in the same level as cli and has at least one contact

point with cli : (10)

Consequently, the interaction list is defined as

Ic = c
l
j jPc

2 kp ; clj 62 Kc : (11)

In multilevel FMM, interactions between the testing functions of
cube cli with basis functions of cubes belonging to Ic are constructed
using multipole expansion. In other words, multipoles are used to con-
struct T (clj ; c

l
i)8jjc

l
j 2 Ic where T (clj ; c

l
i) denotes the interaction

between testing functions of clj and basis functions of cli. Furthermore,
multipole expansions are formed only once for cli and used for all its in-
teractions with other cubes. Direct Green’s function computations are
used only at the finest level to construct T (clj ; c

l
i )8jjclj 2 K

c
.

Since PILOT does not explicitly require cubical regions but simply
deals with interaction matrices, there is scope for further compression
by combining cubes in Ic in an a priori manner into a new interaction
list called the merged interaction list (MIL).

C. MIL

It is observed that the interaction lists of siblings share many
common cubes

IS = Ic 6= 0 8ijcli 2 Sc : (12)

The common cubes in the interaction lists of the siblings are denoted
by Is. For visualization purposes, the two-dimensional (2-D) common
interaction shell is illustrated in Fig. 1, though our algorithm is de-
signed for 3-D geometries.

It is, therefore, possible to group source cubes and observer cubes
of different interaction lists in order to compress larger matrices to low
epsilon-ranks and thereby gain in terms of overall compressibility. It
must be noted that the common interaction list does not directly trans-
late into a merged interaction because the epsilon-rank of such an in-
teraction submatrix will not in general be low. The common interaction
list is decomposed into disjointed parts such that the overall compres-
sion is optimized. Each such disjointed part is an interaction between
grouped source cubes and observer cubes and forms an entry of the
MIL denoted as �. A � can be expressed as a combination of multi-
level FMM cube-to-cube interactions

�k = Tp c
l
j ; c

l
i 8pj1 � p � ng (13)
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Fig. 1. (a) Individual interaction shells of each cube belonging to the sibling
combination. (b) Common interaction shell for the sibling combination formed
by the intersection of individual interaction regions of cubes belonging to the
sibling combination. For visualization purpose 2-D shells are illustrated. Similar
common-interaction regions exist for 3-D geometries.

Fig. 2. Merged interaction-list entries corresponding to the common
interaction region of Fig. 6(b). Each such entry gives rise to a low epsilon-ranked
matrix block.

where ng is the number of FMM interactions grouped. Higher com-
pression is achieved since a larger matrix is compressed to a low ep-
silon-rank under the same tolerance

(m� + n� ) r� <

n

i=1

(mi + ni)ri (14)

where m, n, and r denote the number of rows, number of columns,
and the epsilon-rank of a submatrix. The subscript i denotes a regular
multilevel interaction list entry that is now a constituent of the MIL.
Fig. 2 demonstrates the decomposition of the common interaction list
of Fig. 1(b) into merged interactions. Further compression is possible
considering common interaction lists for pairs of siblings. Thus, the
regular interaction list is replaced by the merged interaction list, which
has fewer interactions to consider and larger low epsilon-ranked ma-
trices to compress with the same tolerance.

PILOT supports MIL for both 3-D and 2-D geometries. However,
for visualization purposes, the 2-D MIL construction is illustrated in
detail. For 2-D geometries, each cube has a maximum of 27 cubes in
its interaction list and this pattern repeats for all cubes across levels. In
PILOT, the interaction lists of four siblings are replaced by 16 merged
interaction entries as demonstrated in Table I. The MIL entries, along
with the expected ranks, are setup as a one-time process for a given
kernel. The expected epsilon-rank is the maximum rank observed for
sources and observers randomly placed in an MIL setup. The expected
epsilon-ranks supplied in Table I apply for the free space Green’s Func-
tion kernel. The cube numbering used in the process is illustrated in
Fig. 3.

Though there are 16 entries in the MIL, there are only three different
types of interactions to be evaluated and the rest could be derived from
symmetry considerations. The same MIL pattern is valid for sibling

TABLE I
MIL ENTRIES WITH EXPECTED EPSILON-RANKS

Fig. 3. Siblings, and cubes belonging to their interaction shells are numbered.
The MIL entry table (Table I) follows the numbering scheme demonstrated in
this figure.

pairs across all levels. The MIL is thus an accurate replacement of the
rank-map used in RMBT-QR and leads to a predetermined tree struc-
ture. The 2-D MIL shell structure is invariant for multilayered dielectric
Green’s functions, for structures parallel to the layers and only the ex-
pected epsilon-ranks change. A similar MIL has been derived for 3-D
geometries with 40 entries, with only five unique entries owing to sym-
metry.

The construction of the MIL is a one-time process for a given mul-
tilayered dielectric environment and due to the regular pattern of the
cube structure, only a few interactions need to be considered for ep-
silon-rank evaluation. The MIL determines the final tree structure for
any geometry under consideration.

D. QR Compression of MIL Entries

MoM submatrices pertaining to interactions of the MIL are com-
pressed by forming QRs from samples. Consider n source basis func-
tions fi defined over domain Si for i = 1; 2; . . . ; n, such that Si 2
Rsrc, where Rsrc is the region of space inside an MIL entry source
group. Similarly, consider m testing functions whose domains belong
to region Robs, which is delimited by the MIL entry observer group.
Let the sub-matrix Z

sub

m�n of the full MoM matrix Z represent the in-
teractions between the basis and the testing functions through the des-
ignated Green’s function g(r; r0). Green’s functions encountered in
capacitance extraction problems including those for multilayered di-
electrics vary smoothly with distance [10]. Therefore, the column of
Z
sub

pertaining to the interaction of fi with all testing functions is
closely related to other columns that capture similar interactions for
fj 8jjSj is in the neighborhood of Si.
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Fig. 4. Levels of tight bound k-d tree decomposition. As can be seen,
rectangular (parallelepipeds in 3-D) cells obtained from subdivision can have
arbitrary dimensions depending on the distribution of basis functions.

Using the MGS process and a user-specified tolerance ", Z
sub

can
be decomposed into a unitary matrix Q

m�r
and an upper triangular

matrix Rr�n such that

kZ
sub

�QRk

kZ
sub

k
< " (15)

where

Q
H

Q = I (16)

and the matrix norm kXk is defined as the maximum singular value of
the matrix X.

The QR decomposition of Z
sub

, as shown above, requires the con-
struction of the entire submatrix. With such a scheme the setup time
for an N �N MoM matrix will be O(N2). However it is possible to
obtain the compressed form of the MoM matrix in subquadratic time
[11].

IV. ADVANTAGES OVER EXISTING QR ALGORITHM

The absolute setup time for RMBT-QR is large owing to the
following reasons. The setup cost of the algorithm [11] is largely
controlled by the accuracy of rank map predictions. An accurate and
exhaustive rank map would preclude the necessity for unnecessary
merges and splits and the optimum tree structure would be achieved
without any backtracking or refinement within the tree structure.
However, a foolproof rank-map is difficult if not impossible to con-
struct owing to the fact that the algorithm can lead to cells with any
shape and size as can be seen in Fig. 4. It is unfeasible to cover the
infinite combinations of parameters, thus introducing a scope of error
in the rank map. A conservative rank map will require more merges,
whereas a liberal rank map will induce wastage of time by constructing
unacceptable QRs, which are then discarded. Thus, the setup time
is largely increased by the variability of the tree structure and the
resulting backtracking and refinement.

In our work, we significantly reduce the setup time without com-
promising on memory or solve-time compression. The new algorithm
exploits the regularity of cell size, shape, and location of a spatially
balanced oct tree as in a multilevel FMM algorithm. By recourse to the
FMM interaction list and by adding a few additional features to maxi-
mize compression, a regular and compressed interaction pattern is gen-
erated. The number of different interactions to be evaluated is finite and
small and, therefore, an exhaustive and accurate a priori epsilon-rank
estimation is possible. PILOT therefore incorporates the best features
of the regular cube structure of multilevel FMM and the kernel-inde-
pendent low-epsilon-rank compression of IES3.

Fig. 5. (a) Structure under simulation with meander lines, coplanar
waveguides, pads, etc. (b) The absolute values of the first column of the
capacitance matrix for the structure in Fig. 5(a) are plotted for all three
algorithms. Even for relatively small off-diagonal terms the results agree
remarkably well.

TABLE II
ACCURACY, MEMORY, AND TIME

V. SIMULATION RESULTS

In this section, simulation results are presented to demonstrate the
accuracy and time and memory efficiency of the PILOT algorithm.
For a comparative analysis, results obtained from RMBT-QR, which
is based on IES3, and FastCap are presented side-by-side. Analytic in-
tegration scheme [20] is used for near-field integrals and discretization
scheme is collocation. A QR decomposition tolerance of 1e-3 is used
for both PILOT and RMBT-QR, whereas for FastCap the adaptive al-
gorithm with multipole order of two is employed. An absolute residual
of 1e-3 is used for the Krylov subspace iterative solution. Diagonal pre-
conditioners are used and the number of iterations required is observed
to be the same for the same problem with all the iterative algorithms.
All tests were run on a processor with 4-GB RAM and 1.6-GHz CPU
speed.

In the first example, the capacitance matrix of a structure consisting
of meander lines, coplanar waveguides and pads as in Fig. 5(a) is
simulated. The surface of the structure is then meshed into triangular
patches. Piecewise constant basis functions are defined on each trian-
gular patch. The total number of patches for this particular problem
is 0.113 million and the number of nets involved is 40. The absolute
values of the 40 entries of the first column as obtained from all the
three algorithms are plotted in Fig. 5(b). The elements are found to
closely match the ones obtained by solving the system with RMBT-QR
or FastCap even for relatively small off-diagonal terms. In Table II,
selected values of the capacitance matrix as obtained with all three
algorithms are presented as well as the comparative time and memory
required for the process. The total time includes the entire setup and
iteration time for six excitations.

The next example is that of a three-layer interconnect structure em-
bedded in a 10 � 4 � 1-�m space. Each interconnect is 0.1 �0.1 �m
in cross section. The separations between the layers are 0.4 �m and
the minimum separation between traces on the same layer is 0.15 �m.
The number of triangular patches is varied from 2000 to 0.6 million
and the problem is solved with ten of the interconnects as active nets
and the rest as floating conductors. The time and memory requirements
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Fig. 6. Performance comparison of PILOT with regular direct and iterative solvers for an interconnect bus structure. (a) Memory requirement in MB and (b) Time
requirement in minutes for setup and 10 RHS solutions.

Fig. 7. Performance comparison of PILOT with existing fast solvers for an interconnect bus structure. (a) Memory requirement in MB and (b) time requirement
in minutes for setup and 10 RHS solutions.

of PILOT are first compared to those of regular direct and iterative
solvers in Fig. 6. It is observed that performance of PILOT is orders
of magnitude superior for large number of patches. The efficiency of
the algorithm is then compared to those of RMBT-QR and FastCap in
Fig. 7. Due to limitations of RAM space, FastCap results are available
for up to 0.3 million patches. As expected the time required by PILOT
is least among the algorithms: it beats FastCap in faster matrix vector
products and RMBT-QR in faster setup. Memory-wise PILOT is su-
perior to FastCap due to greater compression. Also it is observed that
PILOT, on occasions, requires less memory compared to RMBT-QR.
This is because of the fact that the latter, inspite of multiple splits and
merges often fails to attain the optimal tree structure compared to the
physics-based interaction list in PILOT, leading to less compression
than expected.

The third example demonstrates the relative advantage of QR
methods as compared to FMM-based algorithms for higher number
of nets and consequently larger number of matrix vector products. A
package structure with 14 leads as illustrated in Fig. 8(a) is considered.
The surface is meshed with 0.101 million patches and then solved for
increasing number of right hand sides (1–14). The time requirements
are plotted in Fig. 8(b). The constant offset between the plots of
PILOT and RMBT-QR is due to the superior one-time setup cost. The
memory required for the process by PILOT is 441 MB, by RMBT-QR
is 445 MB and by FastCap is 700 MB.

The last example demonstrates the computing efficiency of the
PILOT algorithm for very large-scale problems. The structure of
example 1 is repeated in a 10 � 3 array, and shown in Fig. 9. The
entire structure is meshed with 0.913 million patches. The problem
is setup and solved for three different excitations. In the 4 GB of
memory available, only PILOT was able to fit and run this example,
and required 3.3 GB, 48 min for setup, and 90 min for solution with
three RHS.

Fig. 8. Performance comparison showing efficiency of QR-based algorithms
for increasing number of RHS (a) multipin structure considered for simulation
consisting of 14 pins (b) setup and solve time for increasing number of RHS.

Fig. 9. Illustrated structure is generated by placing the geometry of Fig. 5(a)
in a 10 � 3 array. The surface is meshed with 0.913 triangular patches.
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VI. CONCLUSION

In this paper, we presented PILOT, an improved algorithm for
QR-compression-based fast iterative solver and apply it to parasitic
capacitance extraction problems modeled on surface-based method of
moments. The regular geometry decomposition scheme of FMM and
improved compression capability of IES3 are combined together to
yield an algorithm with superior efficiency. From the IES3 perspective,
the concept of rank-map and fine-tuning through merges and splits
is replaced by the a priori merged interaction list, enabled through
exploitation of the regular oct-tree structure in FMM. As a result, ac-
curate prediction of predetermined low epsilon-rank blocks is possible
and this, in turn, reduces the setup time of the process. Compared to
the FMM interaction list, greater compression is achieved through
merging source sibling cubes and observer cubes in their interaction
list to form the merged interaction list. The resultant blocks in the
list are then QR-compressed. The merged interaction list, like the
rank-map of IES3 is created only once for a given Green’s function.
However, due to the regular pattern of cubes, far fewer epsilon-rank
evaluations are required to construct the list compared to the original
binary-tree rank map.

The simulation results presented demonstrate the relative efficiency
of the PILOT algorithm compared to existing QR methods and
FastCap, in terms of setup time, memory, and matrix-vector products
for large number of excitations. While we have discussed PILOT only
in the context to parasitic capacitance extraction, continuing work
focuses on its application to full-wave kernels in multilayered media
for electrically small structures where classical FMM techniques break
down.
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Accurate and Efficient Modeling of SOI MOSFET With
Technology Independent Neural Networks

S. Hatami, M. Y. Azizi, H. R. Bahrami, D. Motavalizadeh, and
A. Afzali-Kusha

Abstract—This paper presents neural network (NN) approaches formod-
eling the – characteristics of silicon-on-insulator MOSFETs. The mod-
eling approach is technology independent, fast, and accurate, which makes
it suitable for circuit simulators. In the model, two different NN architec-
tures, namely, multilayer perceptron and generalized radial basis function,
are used and compared. To increase the training efficiency of the NN, both
modular and region partitioning methods have been proposed and utilized.
In addition, two approaches for obtaining the transconductance and output
conductance of the device are discussed. The first approachmakes use of an
NN for the conductances, while the second uses the numerical differentia-
tion of the - results. To confirm the accuracy of themodel, the drain-cur-
rent characteristics as well as conductances obtained by themodel are com-
pared to the simulation data for the points where the NNs are not trained.
The comparison shows excellent agreements with relative errors of around
1% over a wide range of drain and gate voltages as well as channel lengths
and widths.

Index Terms—Circuit simulation, fully depleted (FD), - character-
istic, neural network (NN) modeling, partially depleted (PD), silicon-on-in-
sulator (SOI) modeling, technology independent modeling, unified mod-
eling.

I. INTRODUCTION

MOSFET devices in silicon-on-insulator (SOI) technology have
many advantages over bulk counterparts, such as lower parasitic
capacitance and radiation hardness. The silicon layer on the oxide

Manuscript received March 18, 2003; revised December 19, 2003. This paper
was recommended by Associate Editor C.-J. R. Shi.

The authors are with the Department of Electrical and Computer Engi-
neering, Faculty of Engineering, University of Tehran, Tehran, Iran (e-mail:
hatami_safar@yahoo.com; y.azizi@ece.ut.ac.ir; hrbahrami@yahoo.com;
motavalizadeh@yahoo.com; afzali5@gmail.com).

Digital Object Identifier 10.1109/TCAD.2004.836725

0278-0070/04$20.00 © 2004 IEEE



Efficient Sensitivity Analysis using Coupled Circuit-Electromagnetic Simulation 
 

Yong Wang*, Vikram Jandhyala and C.J. Richard Shi 

Dept. of Electrical Engineering, University of Washington 

Box 352500, Seattle WA 98195, Ph: 206-543-2186, Fax: 206-543-2186 

Email: jandhyala@ee.washington.edu 
 

With the rapidly increasing interest in applications such as radio frequency wireless 

communication and high-speed data processing, electronic systems are required to work 

at progressively higher frequencies. As the operating frequencies enter the high GHz 

range, phenomena such as cross talk, parasitic-induced delay, and substrate losses etc. 

can no longer be neglected. In order to design high-performance systems with short time-

to-market, it is essential to perform EM simulation to include these layout related effects 

at design stages prior to fabrication. In particular, sensitivity of EM-related behavior, i.e. 

the analysis of variation of results with parametric changes in design, layout and material 

distribution is very important. 

 

Traditional sensitivity computation employs a finite difference approach, for example, the 

sensitivity of a system performance P using the forward finite-difference approximation 

can be written as 
( ) ( ) ( )i i i i

i i

P x P x x P x

x x

∂ + ∆ −≈
∂ ∆

, where ix  is a design variable. In such 

methods, the system needs to be solved twice for each design variable thus making the 

method computationally expensive. Moreover, the accuracy of this method depends on 

the step size ix∆ ; while a large value of ix∆  will lead to inaccurate sensitivity, a small 

value could also introduce numerical error due to solver precision. Recent approaches 

(Georgieva et. al., IEEE Trans. MTT, 50, 2751-2758, 2002) using the adjoint variable 

method greatly reduce the computation cost by employing the fact that the inverse of the 

system matrix can be derived with little cost once the problem is solved, and prove to be 

an effective way for calculating sensitivity.  

 

The simulation approach used in this work is based on a coupled circuit-electromagnetic 

formulation. In this approach the system unknowns consist of both EM parts (typically 

surface currents related to the method of moments) and circuit parts (node voltages and 

branch currents). The system performance is itself typically related to a sub-set of the 

circuit unknowns, which are system unknowns in the coupled formulation. This leads to 

the sensitivity calculation being more convenient than with the adjoint method. Therefore 

there is no requirement to introduce additional adjoint variables, and the only extra 

computation needed for the proposed method is the calculation of the spatial derivative of 

the overall coupled system matrix versus design variable ix , in addition to a few simple 

matrix-vector multiplications and additions. The spatial derivatives of the basis functions 

used in the system matrix are derived by analytical spatial differentiation of near- and far- 

field expressions of the method of moments matrix elements. 

 

Efficient EM sensitivity computation as discussed above can help high frequency circuit 

design in two ways. First, it enables identification of EM structures that are extremely 

sensitive to small variations of geometric or material parameters; such structures could 

cause the system performances to be very different and unacceptable due to process and 

layout variation. Second, efficient and accurate sensitivity calculation enables gradient-

based optimization of EM structures, which is useful to automate high-frequency circuit 

design. 
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With the modern microelectronic industry entering a new era featured by 
progressively higher speed and higher integration mixed-signal systems on chip, 
accurate modeling of distributed electromagnetic behavior of sections which 
may includes signal traces, power planes, substrates etc, is crucial during the 
design flow. Driven by broadband and non-linear circuit design, time domain 
coupled electromagnetic and circuit simulation has been gaining popularity. In 
particular, integral equation methods have proven to be useful since radiation 
conditions are built in and only surface meshing and modeling is needed. In this 
work, the time-domain integral equation (TDIE) method is enhanced to model 
realistic loss behavior in substrates, which is a crucial component for quality 
factor prediction of integrated passives, as well as for thermal pattern prediction. 
 

The EM simulation environment in present and future 3D integrated 
circuits is characterized by multiple piecewise homogeneous regions. Each 
region is comprised of lossy materials, which may or not have a strong impact 
on the overall performance. In general, for higher speed and higher sensitivity 
systems such as RF and analog methods, the loss is a crucial factor in 
determining system specifications and performance. The TDIE approach has 
been shown to work with lossy material (M. J. Blunk and S. P. Walker, Antennas and Propa,  
49, 875-879, 2001) wherein the Green’s functions, besides possessing delta 
functions in time, also include a broadly exponentially decaying “wake”. This 
leads to the implementation issue that the spatial integrals at retarded times 
have to be replaced by temporal convolutions. This convolution brings not only 
coding complexity but also increases the computational cost dramatically.  

 
In the presented work, the multi-region substrate geometry is addressed with a 
TDIE solver. An equivalent surface approach for each region is used along with 
the following method to tackle the lossy medium Green’s function. To 
circumvent the difficulty caused by the convolution in time, the decaying 
“wake” in the Green function is approximated by a sum of decaying 
exponentials via Prony’s method. It is shown that for circuit dimensions and 
realistic losses, the decaying “wake” changes slowly with the variation of the 
distance between the source and observation point. This allows the building of 
an exponential fitting table for discrete distances. The use of the exponential 
models permit the convolutions in time to be computed recursively. This then 
achieves the purpose of reducing computational complexity, with an added 
constant, to be the same as that of a TDIE solver for lossless media.  
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ABSTRACT 
A fast multilevel direct solver for the Method of Moments - based analysis of electrically small structures is 
presented. The approach is based on a combination of low-rank decompositions and fill-in control. It is particularly 
advantageous for multiple right-hand-side problems such as those encountered in digital circuit and IC analyses, as 
is demonstrated by numerical simulation results presented here. 
 

I. Introduction 
 

Quasi-static parasitic extraction is an important problem in digital circuits and in mixed signal IC analysis. 
While several fast integral equation-based techniques have been proposed and developed to address this problem, 
practically all these methods including Fast Multipole Methods, FFT methods, QR-based methods, rely on fast 
algorithms to accelerate the iterative solution of the Method of Moments (MoM) system. These approaches 
primarily solve one right hand side (RHS) at a time, and therefore become considerably slower when a problem 
involves a large number of RHS vectors such as substrate coupling, or parasitic extraction in the presence of a large 
number of nets. Moreover, in certain formulations, such as the Partial Equivalent Electric Circuit (PEEC) method, or 
in coupled electromagnetic circuit simulation, it is advantageous to rapidly obtain the explicit inverse or LU factors 
of the MoM system. 
 
While fast iterative solvers reduce the cost of N N×  MoM matrix-vector products to O(N) or O(N logN) from 
O(N2), the overall solution cost is also proportional to the number of RHSs and the number of iterations per RHS. 
The overall cost for large RHS problems can be very large depending on the number of iterations or the conditioning 
of the system. A regular direct solver such as LU decomposition, on the other hand, has no iterative steps, and the 
single initial O(N3) decomposition step is performed only once. Subsequent solutions are obtained through an O(N2) 
forward and backward substitution. While the relative advantage of the LU method increases with the number of 
RHSs (more so if the problem is inherently poorly conditioned), the large costs of the initial step and subsequent 
solution steps relative to fast iterative methods is a large bottleneck. Moreover, regular direct solvers consume O(N2) 
memory for matrix storage compared to the O(N) or O(N log N) memory requirements of fast iterative solvers.   
 
The multilevel schemes developed for fast matrix-vector products do not inherently lend themselves to obtain fast 
methods for direct decomposition or inversion; however Canning and Rogovin [1] suggested sparse-LU and 
Sherman-Morrison-Woodbury schemes based on a multilevel sparse representation of the full-wave MoM matrix. In 
their work, an a priori low-rank structure, or class of structures, is assumed for the MoM matrix. In this work the 
QR-based low-rank representation and the sparse-LU computation are integrated in order to alleviate the 
computational overhead associated with fill-ins for an arbitrary block structure and thus make feasible the fast 
analysis of any 3D structures. Here a fast iteration free scheme to rapidly setup the inverse of the MoM matrix is 
proposed. The inverse so generated can also be applied to each RHS in quick time. This approach thus bypasses the 
need for an iterative solver, associated pre-conditioning and the uncertainty and time of convergence in an iterative 
scheme. The method is general enough in nature to be relevant to both quasi-static and full-wave analyses 
(electrically small structures), in free-space and in multi-layered media.  
 

II. Approach 
 

Capacitance problems formulated using MoM are solved by transforming the electrostatic equation 
2 ( ) - ( ) /∇ φ = ρ εr r  relating potential φ and charge-density ρ to a related integral equation. The discretization of the 



equation results in a matrix system of the form =ZI V  where the N N×  MoM matrix Z is a dense Green’s 
function matrix, I represent the unknown coefficients of known basis functions for charge density, and V represents 
the known potential excitation. Each element of the MoM matrix denotes the interaction between 2 basis functions 
and is written as follows: 
                                                                   (j,i) ( ) ( , ) ( )′ ′ ′= ∫ ∫Z r r r r

j i

ds t ds g fj i
S S

  

where tj is the testing function defined over Sj,  fi is the basis function defined over Si and g( , )′r r  is the relevant 
greens function. In the electrostatic case for P disconnected conductors, each column of the required 
P P× capacitance matrix is obtained by enforcing a voltage of 1V on the excited conductor, 0V on all other 
conductors, solving the above system, and integrating the charge density over each conductor. The N N× system of 
equations is therefore solved P times to obtain the capacitance matrix.  
 
The state-of-the-art fast iterative solver based on the QR method reduces the cost of doing the matrix vector product 

ZI  to O(NlogN). It takes advantage of the smoothness of the Green’s function in decomposing the rank deficient far 

field sub-matrix of the MoM using QR decomposition. In QR decomposition a sub-matrix A of the MoM matrix 

Z can be decomposed as mxn rxnmxrA = Q R  where R is upper triangular and Q is orthogonal i.e.
T

=Q Q I . 
However the cost of this scheme is proportional to the number of iterations and the number of RHS and therefore 
becomes quite expensive for large number of RHS, as is the case in IC parasitic analysis.  
 
The presented method relies on a combination of a fast compression scheme for reduced representation of the MoM 
matrix using the modified Gram-Schmidt method, followed by a fast method to LU-decompose the resultant 
compressed matrix. The compression scheme is based on the separation of the MoM matrix into dominant (near 
field) and low rank (far-field) portion based on a cost estimating algorithm. Subsequently the sparse LU scheme is 
applied to this multilevel sparse structure of the MoM matrix. 
 
Developing the sparse LU structure: 

Consider the low ranked sub matrix A and also assume its rank is 1 so that 

mxn A1xnmx1A
=A Q R . The first row of this block will remain the same in its LU form.  

Consider the second row of the block. Notice that all the elements of this row may be changed 
to its LU form by changing the second element of AQ as follows 

lu
A A A(2) (2) (1)*L(1)= −Q Q Q where L(1) is the proper multiplying coefficient from the  

lower triangular part. Thus the sparse LU form of block A becomes lu
AAQ R . For block B we not only need to 

modify the BQ but also need contributions from block A in the form of fill-ins. The sparse LU representation for 

block B will thus be in the form of 
lu

B AB AB −Q R F R . For block C similarly we need to modify the CQ as well as 

obtain fill-ins from blocks A and B. The sparse representation of block C thus looks like 
lu

C AC A BC BC − −Q R F R F R  
However it should be noted here that when we are working on block C, block B has been modified to its LU form. 
Therefore when we manipulate BCF we need to update ACF to counter for ABF . Thus we see that ACF needs to be 
modified twice, once for the direct contribution of block A to block C and second indirectly through the contribution 
of block B to block C. Therefore the number of computations required to generate the fill-ins is greater than the 
storage required by them due to these indirect effects.  In the solving step during forward and backward substitution 
also we can reduce the number of computations by using the developed LU sparse representation. 
 
Summarizing the process:  
In the L part Q is unaltered R is altered and F s (fill-ins) acting as substitute R s of left blocks are created. In the U 
part Q is altered R is unaltered and F s acting as substitute Q s of upper blocks are created. 
 
 

A 
B 
C 



Figure 1: The top 3 QR blocks of the U part of LU    

              lu
AAm xr r nA A A A

* xQ R                                 We compute 
i-1lu lu

A A A
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(i, r) (n, r)*L(n) (n, r)*L(n)+

= =
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Developing the optimized sparse QR structure: The fill-ins require extra memory and cost along with the Q s and the 
R s. So the algorithm that optimizes the rank based memory of the Qs Rs, applicable to the QR based iterative solver 
is obviously not suitable for this particular purpose. The 2 main operations are the split and the merge. 
Outline of the split Algorithm: (The merge algorithm is exactly similar) 
1.   Find entry from the list. 
2.  Split dense block into 2 diagonal dense blocks and 2 non-diagonal QR blocks or QR block into 4 QR blocks 
(Ensures that the final block structure has a dense block diagonal part + all non-diagonal parts are expressed as QR) 
3. Calculate the new cost of sparse LU setup from the knowledge of number of rows and columns of the then block 
structure i.e. the one obtained after the recent split. 
4.  If  (new cost > previous cost) retain the split form of the block. 
     Else retain the non-split form of the block. 

 
III. Quasi-static Simulation Results: 

 
We considered a number of real life 3D structures like 5 by 5 bus, comb drive, multiple pin packages, multi-layered 
contacts (substrate coupling problem). Some of the results are shown here while others are tabulated below. In the 
plots, SLU denotes our sparse LU method. 
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Figure 2: LU setup cost Figure 3: LU memory cost Figure 4: Solve cost per RHS 

 Figure 5: First Column of capacitance matrix

 

Figure 6: QR block structure obtained by the algorithm 



 
Table 1: The order and constants observed 

Type of problem Slope of setup  Slope of solve per RHS Slope of Memory 
Thin strip  2.29 1.29 1.29 
Refined Plate  2.43 1.65 1.65 
5 by 5 bus 2.41 1.667 1.65 
Comb drive 2.31 1.68 1.61 
Multi pin package 2.51 1.667 1.61 

 
 

2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8
4

4.5

5

5.5

6

6.5

7

7.5
Estimated Solve time per RHS vs. Number of Unknowns

log(Number of Patches)

lo
g(

Fl
op

s)

LU                                 
SLU-R1 ie.ground plane + dielectric
SLU-R2 ie Freespace                
SLU-R3 ie With ground plane        

 
 

 
 
IV.    Conclusions: 

 
 This new method exploits the QR structure with no a priori assumptions. It has been shown that this fast 
direct solver is suitable for multiple right hand sides’ problem and that it can be used for multi-layered media. The 
QR decomposition concept is known to work well with full-wave MoM for electrically small structures. Thus this 
method needs very slight changes to be made adaptable to complex full-wave analysis for small electrical structures. 
Also since the above schemes are based on simple linear algebraic methods the possibility of coupled fast EM-
circuit matrix solutions can be seen. The limitation of the schemes discussed however lies in the fact that it will 
break down for high frequencies and will cost wise not be useful for less number of RHS. 
 
A similar approach using the Sherman-Morrison-Woodbury formula (SMW) is also analyzed. The direct inverse 
setup time is found to be more expensive than the sparse LU method. Also since the MoM inverse cannot be 
represented in a sparse form the solution step for every RHS remains O(N2). This makes the generated inverse 
unfavorable for use in the solve step. However in the PEEC approach, where each unknown is treated as a separate 
entity, the generated inverse would directly give the “detailed” capacitance matrix. Thus SMW eliminates the cost of 
solving for N right hand sides and becomes a better option. Further work is being carried on in this topic. 
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Abstract 

The Partial-Element-Equivalent-Circuit (PEEC) approach is an 
effective method to convert three-dimensional on-chip multi-
conductor structures to circuit-level descriptions. In this paper, a 
triangular-mesh-based PEEC approach is described, wherein the 
surfaces of arbitrarily-shaped conducting structures are 
represented by triangular mesh tesselations. A coupled EM-circuit 
formulation is obtained through the separation of the scalar, 
vector, and ohmic potential interactions between pairs of triangular 
edges-based basis functions. The overall approach can be 
interpreted as a SPICE-free, surface-only version of PEEC method 
and is especially useful for on-chip signal integrity analysis of 
systems-on-chip layout where components with irregular shapes 
are common. 
 
 

I. INTRODUCTION 
 

Recently, Systems-on-Chip (SoCs) have become one of 
the focus areas in VLSI. Through the integration of analog 
and digital parts into a single chip, the resulting system under 
design achieves more reliability and shorter manufacture to 
market cycle than solutions based on individual digital and 
analog integrated circuits. Meanwhile, new problems have 
emerged in SoC design [1], e.g., the fast-switching current in 
the digital part of a chip can electromagnetically couple to the 
analog part which is noise sensitive. This is especially true 
when the system is functioning at the GHz range or beyond. 

In order to analyze crosstalk due to EM coupling, 
electromagnetic simulation is needed for the layout of the SoC 
chip. The PEEC method [2] is a particularly effective 
approach to model the electromagnetic effects of a multi-wire 
or multi-conductor structure using SPICE compatible 
elements. 

The interaction of a multi-wire or multi-conductor 
structure can be described using the Electric Field Integral 
Equation (EFIE) [3]. In classical electromagnetics (EM), the 
EFIE is usually formulated using a Method of Moments 
(MoM) approach [4]. Instead of filling the Method of 
Moments (MoM) matrix and solving the resultant set of linear 
equations, the PEEC method extracts partial elements 
including resistance, self/mutual capacitance and self/mutual 
inductance from the EFIE formulation, by identifying these 
elements with ohmic, scalar, and vector potential interactions, 
respectively. A SPICE compatible netlist can then be 

generated using these extracted partial elements. Through this 
extraction, the original EM problem is converted to a circuit 
problem, and a circuit simulator can then predict the 
performance of a layout while automatically considering the 
electromagnetic effects due to geometry and structure [2]. 

The classical PEEC method, originally formulated for 
modeling crosstalk between digital traces, relies on a 
longitudinal filament discretization of all structures. This 
discretization, which assumes a direction of current flow 
along the length of the filament, is very well-suited for thin 
and long interconnect structures. However, an SoC scenario 
leads to several arbitrarily shaped structures, including spiral 
inductors, and regular and split ground planes wherein the 
filament approach is inherently not well suited, because of the 
arbitrary directions of current flow in such structures. 
Moreover, it is not intuitive to represent current flow on non-
longitudinal structures in terms of scalar longitudinal 
filaments.  

In this paper, Rao-Wilton-Glisson (RWG) basis functions  
[4,5] that are linear basis functions defined over triangles are 
used to model conductors using surface-only triangular 
meshes. Interactions between RWG basis functions are then 
extracted and were used to form a coupled matrix which also 
includes MNA formulation of circuits. The aim of developing 
a coupled formulation outside SPICE is to reduce reliance on 
sparse-matrix solvers, since sections of the coupled matrix 
system are inherently dense. 

The rest of the paper is organized as follows. Section II 
briefly outlines the classical filamental PEEC method, and 
introduces the RWG triangle-basis functions. Section III 
presents the triangular mesh approach and the coupled EM-
circuit formulation. Numerical simulation results are given in 
Section IV and Second V summarizes the paper. 

 
II. MESH GENERATION: FILAMENTS VERSUS TRIANGLE 

MESHES 
 
The PEEC method, originally developed to model digital 

interconnects, inherently assumes that filaments, i.e. thin and 
long structures, can be used to model sections of the structure 
under analysis, as well as the current flow (along the filament 
length). As shown in Fig. 1, filamental PEEC divides the 
object into filaments. Each filament, represented as a volume 



cell, represents a longitudinal current, and related surface cells 
represent surface charge. 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

For structures where 2D (e.g. a thin ground plane) or 3D 
(e.g. a thick ground plane) current distribution is necessitated, 
independent discretizations in terms of filaments in each 
direction are required, and the efficiency of the filamental 
PEEC method rapidly degrades. Also inherent in filamental 
approach is an eventual staircase approximation to the current 
distribution. In general, filamental PEEC is ideal  for long 
rectangular structures under the assumption that the currents 
flow only  along the longitudinal direction. 

 In this paper, triangular meshes are used to represent 
arbitrarily-shaped surfaces. Common edges between triangles 
are used to define RWG basis functions that define current 
flow and charge distribution. Fig. 2 shows the triangle pair on 
which the current density and charge density is defined. An 
RWG basis function, defined with respect to the common 
edge, defines current flows from one triangle (+) across the 
common edge to the other (-) triangle.  
 

 
 
 
 
 
 
 

 
 

III.  COUPLED EM-CIRCUIT SYSTEM FORMULATION 
 

In the MoM, conducting structures are analyzed using the 
electric field integral equation formulation (EFIE), wherein 
the surface current density J satisfies the equation: 

 
(3.1) 

 
Scalar potential φ and surface charge density ?  are related 

through the equation: 
 

(3.2) 
 
 

In the above equation Zs represents surface impedance  

(3.3) 

which is a valid approximation at frequencies where the skin 
depth is smaller than the cross section of conductors. At 
lower frequencies, a second (interior) problem and accurate 
modeling of the lossy medium Green function within the 
conductor is required. 

Upon testing the EFIE, the following matrix equation can 
be derived, entries of the matrix can then be extracted from 
the interaction of basis function. 

(3.4) 
 

(3.5) 
After dividing the surface of the object into triangular 

meshes, the unknowns of interest are: distribution of scalar 
potential φ, surface charge density q, and surface current 
density J . These quantities are expanded using basis 
functions defined over triangles: 

φ:  piecewise constant basis function 
 
Np is the number of total patches,  Cn is a piecewise 
constant basis function, which is 1 on triangle n, and 
0 elsewhere. 

q: piecewise constant basis function 
 
 
J : RWG basis function 

 
Ne is the number of total non-boundary edges, nf is  
 RWG basis function that is defined as: 

 
 
 

 
( 3.6) 
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Figure 1.  (a) rectangular conductor divided into filaments  
(b) Volume cells for currents (c) Surface cells for capacitive 
partitions 
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In the above expression, nl is the length of the 

common edge, +
nA and −

nA is the area of triangle Tn
+ 

and Tn
- respectively. 

 
With the above three basis functions, the entries of the L, 

P, and Z matrices can be defined as: 
 

(3.7) 
 

(3.8) 
 
 

(3.9) 
 

where Zij is non-zero only if edges i and edge j share a 
common triangle. 

The matrix formulation for the EM part will be: 
 
 

(3.10) 
 
 

 
A  is a sparse matrix which describes the adjacency of 

edges and patches, each row has two non-zero terms which 
correspond to patches associated with a particular edge. D  is 
a diagonal matrix used to enforce the current and charge 
continuity equation. The unknowns are the coefficients 
associated with the current, potential, and charge basis 
functions. 

When coupled with circuits, the formulated EM matrix 
needs to be extended to include both the circuit part and the 
EM-circuit connection part, as in equation 3.11. 

 
 
 

 
(3.11) 

 
 

 
M N A is the Modified Nodal Analysis matrix of the 

circuit part, X is a connection matrix which guarantees the 
current and field continuity at the node where EM structures 
and circuits are connected. The excitation includes regular 
voltage and current sources. 

 
IV NUMERICAL RESULTS 

 
The first example is an interconnect over a ground plane, 

as in [6]. The geometry is drawn again in Fig.3: 

 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
The interconnect is driven by a voltage source and is 

terminated by 86 Ohm resistors at both ends. The 
interconnect is 2.0cm long, 1mm wide and 0.5mm above the 
ground plane. In this example, the current flow on both the 
interconnect and ground plane is considered to be two 
dimensional. The discretized structure and the input 
impedance are shown in Fig. 4. 
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Figure 4. Triangular meshing of the structure (top) 

Input impedance of interconnect over a  ground plane(bottom) 

  Figure 3. Interconnect above a solid ground plane 
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It is interesting to note that the transmission line resonance 

behavior of this structure is also captured. The finite-sized 
impedance peaks is due to coarse frequency sampling at 
resonance. 

The second example illustrates that the coupled method 
can be used for cross talk analysis. Two scenarios are studied  
here: in one scenario two traces are 0.5mm above the ground 
plane and 1mm apart, in the other scenario the two traces are 
1mm apart at the near end and 2mm apart at the far end. One 
trace is excited with a 600 ps symmetrical trapezoidal pulse 
with a 10 ps rise time.  
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As can be seen from Fig. 6, the far end cross talk voltage 
waveform is weaker for the second case. Also, the time lag 
between the two crosstalk peaks is the same as the length of 
the input pulse.  

The third example is a spiral inductor of dimensions 
200µm×200µm, placed 30µm above the ground plane, as 
shown in Fig. 7. The observation of interest is the current 
distribution on the ground plane. The inductor has two turns, 
and both the line width and the gap width are 20µm.  
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The coupled EM-circuit simulation gives ground current 
distribution as in Fig. 8. At 1 GHz the current concentrates 
below the inductor in order to minimize the inductive 
impedance of the loop including return current. 

 

0

1

2

x 10
-4

-1

0

1

2

3

x 10
-4

0

1

2

3

x 10
-5

 
 

 
 
 
 

Fb 

Fa 

Figure 6.  Cross talk at far end 

Figure 7. Spiral inductor above a ground plane 

Figure 5. Two parallel traces(top), two traces with larger 
distance at far end(bottom) 

Figure 8. Current distribution of inductor and ground 
plane at 1GHz 



 
V. CONCLUSION 

 
In this paper, a generalized PEEC approach based on 

triangular meshes and well-known RWG basis functions was 
presented. Also, a SPICE-free coupled EM-circuit 
formulation was developed in order to solve the dense 
coupled system outside SPICE. Numerical results were 
presented to validate the approach and demonstrate its 
advantages in modeling induced and return current density 
due to arbitrarily-shaped structures. Furthermore, since the 
approach is surface-based, it can be used to reduce the 
numerical computation overhead of circuit-EM analysis by 
representing very thin structures by a two-dimensional 
representation. 
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The Partial Element [1]Electric Circuit (PEEC) approach is a popular method for coupled 
electromagnetic-circuit simulation in both frequency and time domains. In the classical PEEC 
approach, volumetric filament structures are used to model directional conduction current flow 
within a conductor. For curved, non-orthogonal structures such as those found on systems-on-
chip, including inductors and RF components, a more natural description is based on using 
surface-equivalent currents and a surface-integral formulation, as has been accomplished with 
great success for scattering problems in both the time and frequency domains. 
 
The coupling of surface-integral equation [2]approaches is normally carried out through S-
parameter models, or semi-infinite ports. The PEEC approach, on the other hand, uses a very 
intuitive and direct connection to circuit nodes owing to the fact that all electromagnetic 
interactions are represented in terms of equivalent circuits which can directly be linked to circuit 
nodes. Time or phase-delays are accounted for by controlled sources placed between two circuit 
nodes. 
 
In this work, we apply the equivalent-circuit-based coupling idea of the classical PEEC 
formulation for time-domain surface-integral equations. In a coupled time-domain system, the 
electromagnetic interactions are represented in terms of equivalent circuits, and connections to 
circuit equations are facilitated through modified nodal analysis. This coupled system is then 
reduced back to a form where it can be represented as a time-domain surface electric field integral 
equation coupled to modified nodal analysis in the time domain through sparse coupling matrices 
obtained from the connections of underlying equivalent circuits. Thus equivalent circuits are used 
to formulate the connections between the electromagnetic and circuit problems only. 
 
The resulting coupled matrix system can be interpreted as both a generalized time-domain PEEC 
approach, as well as a coupled time-domain surface integral equation and circuit solver. The 
coupling mechanisms includes an inductor-based equivalent model for planar connections to a 
two-dimensional structure, and a continuity equation-based model for a planar facial terminal on 
a  three-dimensional structure. The advantage of this approach is that it can be incorporated into a 
SPICE-like solver without altering the modified nodal analysis submatrix. Furthermore, the 
sparse coupling mechanism enables a variety of direct and iterative solution methods, fast matrix-
vector schemes, as well as design iteration on sub-sections of the circuit schematic. Numerical 
examples and application include transient simulations, impedance computations, and time-
domain crosstalk simulation. 
  
 
 
 
 
 
 
 



A Surface-Based 3D Coupled Circuit-Electromagnetic 
Simulator with Accurate Lossy Conductor Modeling 

 

Dipanjan Gope, Swagato Chakraborty, Yong Wang, Vikram Jandhyala*, and Richard Shi 

Department of Electrical Engineering 

University of Washington, Seattle WA 98195. 

Email {jandhyala,cjshi}@ee.Washington.edu 

 
With the increase in working frequencies for mixed signal ICs to GHz range, the accurate modeling of the 
on-chip and package-level electromagnetic (EM) effects becomes imperative for successful single-pass 
chip design. The Partial Element Equivalent Circuit (PEEC) method addresses the problem of coupled 
EM circuit simulation by deriving equivalent circuit elements like capacitors, inductors and resistors from 
the EM interactions.  The equivalent circuit can then be fed into a SPICE-like simulator to obtain the 
performance of the circuit including EM effects.  
 
Classical PEEC uses a filament discretization, which is not necessarily efficient for accurate modeling of 
skin effects in arbitrarily-shaped structures. This is because at high frequencies the current tends to flow 
on the surface of the conductor, with the magnitude of current reducing exponentially away from the 
surface. Hence volumetric modeling of the current needs a finer discretization near the surface. In order to 
accurately model the decaying current an appropriate filament meshing is required near the surface. 
However the skin depth, which determines the rate of decay of the current, is frequency dependent, which 
in turn necessitates frequency-adaptive meshing. Such dynamic meshing is computationally expensive for 
frequency domain analysis. Previous surface-based attempts to solve this problem employ the surface 
impedance formulation (Y. Wang et. al. Proc. IEEE Meeting on Elec. Perf.  of Electron. Packaging, pp. 
233-236, Sept. 2001). However this method is accurate only at high frequencies, where cross sections are 
larger than twice the skin depth. Thus at relatively lower frequencies, when the current flows through the 
entire cross section of the conductor, surface impedance is a poor approximation to the interior lossy 
problem. 
 
In this work we propose a surface based formulation for coupled circuit EM analysis with simultaneous 
solution of interior and exterior problems. The skin depth is modeled accurately by solving the interior 
problem based on the frequency-domain lossy medium Green’s Function.  Since this discretization is 
surface based, the need for dynamic volumetric meshing for different frequencies is avoided. The solution 
of the interior problem with the lossy medium Green’s function accurately models the skin depth at all 
frequencies, and reduces to the surface impedance at sufficiently high frequencies.  
 
For 3D problems, the EM structure is coupled to the circuit by enforcing electrical field integral equations 
for the EM part, KVL and KCL for the circuit unknowns and electrical field continuity for circuit EM 
coupling. The unknowns in this formulation include the surface equivalent current, and circuit quantities 
like voltage and current. Both circuit and electric field excitations can be modeled by proper formulation 
of the right hand side. The interior problem is solved using the lossy medium Green’s function.  For the 
lossy medium, the wave number is complex and thus the Green’s function falls exponentially away from 
the excitation region. Hence instead of the normal singularity extraction procedure, which is applied for 
the integration of free space Green’s function, an analytical singularity cancellation method is 
implemented for accurate modeling. Results presented at the conference will include applications of the 
simulator in real design problems, comparison with surface impedance formulation and impedance 
frequency response of lossy conductors.                                                                                                                               
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Abstract 
A full-wave time domain surface integral approach to coupled electromagnetic and circuit simulation is pre-
sented in this paper. In particular, non-linear circuit elements and effect of interference and crosstalk can be 
modeled in the time domain. The coupling of lumped elements to a surface integral formulation is detailed. 
Losses are modeled with an efficient recursive convolution. 
 
1 Introduction 
Time domain electromagnetic-circuit simulation is of interest to digital and analog-RF designers, and is essential 
in the case of non-linear elements and broadband coupling. In this work we propose a time-domain surface-only 
form that models losses using a recursive formulation of surface impedance. Using an implicit method ensures 
stability of the scheme. Furthermore, lumped linear and non-linear elements can be directly incorporated into 
this formulation through a rigorous coupling scheme for both open and closed conducting structures. The ap-
proach may be interpreted as a time-domain version of the partial element electric circuit (PEEC) [1,2] method, 
with the significant distinctions that the solution uses well-established method of moment (MoM) forms, is sur-
face-only (no volumetric discretization required), makes no a priori assumptions on current flow directions. Ex-
amples include validation against time-domain PEEC, as well as a demonstration of coupling and non-linear 
effects. 

2 Integral Equation Formulation  
For a lossy conductor, the following time domain integral equation (TDIE) holds under a surface impedance 
approximation 
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where  is the vector potential,  is the scalar potential, Z),( trA ),( trΨ s is the time-domain surface impedance, J 
is the equivalent surface current density, and  is incident electric field or its equivalent due to a circuit 
excitation. For a homogeneous medium the potentials are given by 
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where the domain S is the surface of the conductor, and the surface impedance is given by ttZ s πσµ /)( =  
where µ, ε, and σ are the material parameters. The surface charge density is related to J through the continu-

ity equation q . In this work the TDIE (1) is formulated and solved in the method of moments 

(MoM) form using the surface-triangle-pair based Rao-Wilton-Glisson (RWG) basis functions [3,4]. 
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3 Efficient Loss Modeling in the Time Domain 
The surface impedance model leads to a convolution for each time step, which can become prohibitively expen-
sive. To circumvent this, we adopt the following fast recursive formulation, presented in [5]. The convolution 
involving the surface impedance is 
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After applying finite difference in time and some algebraic manipulation, (3) can be rewritten as 
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where the indices m and n specify present and cumulative time steps. Finally, the function in (4) can be accu-

rately represented as a sum of complex exponentials as im
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and exponential weights are determined by Prony's method. It is shown in [5] that N=10 suffices to produce very 
high accuracy approximations for the given function. This enables (4) to be rewritten as 

[ ] ∑∑∑ ∆
=−−−−

∆ =

−

=

N

i

n
i

m
N

i

n

m
i t

mnmnea
t

i ΦrJrJ
πσ

µ
πσ

µ β )1(,())(,(
1

1

0
                  (5) 

Finally, a recursive relationship can be obtained between and Φ   n
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This permits a single computation at each time step instead of a convolution, thus enabling rapid loss computa-
tion along with the regular TDIE time stepping. 
 

A critical part of the use of TDIE for circuit problems is the proper form of excitation, based on circuit sources. 
Moreover, compatibility and interference modeling also requires field excitation that standard in electromag-
netic integral equation forms. For the circuit excitation, we follow the approach proposed in [6] and [7] in the 
frequency domain, and extend it to the time domain here. To summarize the approach, two distinct coupling 
schemes are proposed (Fig. 1). The first is for open or zero thickness structures wherein circuit current feeds into 
edges of the triangular mesh. In this instance, current continuity, along with the use of half-RWG bases is suffi-
cient; in physical terms half-RWG bases are equivalent to inductors projecting out from each terminal edge, 
which are then connected equi-potentially to a circuit node. In the second case, a circuit current is introduced to 
a closed equivalent surface. One or more triangles may be considered to be part of the terminal. In this case, the 

continuity equation needs to be modified to include the current due to the circuit Ic : ∇  where 

the denominator denotes the area of the terminal, which may contain one or more triangles. This new source 
creates a new scalar potential through modification of the total charge and divergence of current. The potentials 
of terminal triangles are tied to the circuit node potential. 

4 Coupling Circuit and Electromagnetic Equations 
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Figure 1. Circuit-EM mesh interconnections for open (left) and closed (right) structures 
 

Based on the above coupling mechanism a coupled matrix system is established as following. 
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The EM block in the coupled matrix represents the MoM section. The sparse EC block is the connectivity be-
tween the EM and the circuit part. The MNA block represents the modified nodal analysis conductance matrix 
corresponding to the circuit unknowns (CIR). The J vector represents the surface unknowns on the conductors. 
he HISTORY represents influence from past times, and the E_FIELD vector is the electrical field incident to 
the circuit. The SOURCE vector contains voltage or current sources applied to the circuit.  
 

 



 
 
 
5 Numerical Results 
In the first example, common mode current is computed for the structure In Fig. 2. A wire is placed between two 
ground strips, where L1 and L2  are 2cm and 0.4cm long respectively. The gap between the wire and the ground 
strip is 0.5mm. The wire and the two ground strips have the same width of 1mm. Trapezoidal voltage pulses 
with 1V amplitude, and rising, roof and falling time of 100ps are applied as shown. A 10 resistor is placed 
between the source and the ground. Because of the different length of the two ground strips, there is a common 
mode component in the ground currents, which is evident in Fig. 3. This result matches well with the published 
result for the same structures in [8]. 

Ω

 

 

 

 

 

 

Figure 2. Wire between two ground strips                     Figure 3. Current through GND1 and GND2 

The second example deals with interference on a two-level multiple crossover circuit (Fig. 4) comprised of lossy 
interconnects with conductivity  5.8e+6 S/m, with non-linear circuit elements.  Interconnects on the upper level 
are mµ40 wide, 0.75mm long, with a mµ40 separation between them. Interconnects on the lower level 
are mµ50  wide, 0.68mm, with a mµ50  separation between them. The distance between the two levels of inter-
connect is mµ50 . Each port at the upper level, except ports 2 and 4, is terminated by a 10pF capacitor. Ports 2 
and 4 are terminated by diodes with characteristics Is=5.e-9A and VT=25.e-3V. Each port at the lower level is 
terminated by a 200  resistor. A 1V sinusoidal voltage source VΩ )sin()( tt ω= , where 

GHz10f =f ,2= πω  is applied to port 1. A plane wave with zk )+= , yE ))/)( mVt )(sin(1000 0tω−= , 

where , is incident to the nonlinear circuit.  The output with no interfering plane wave, at 
port 2, as well as crosstalk at port 4, is shown in Fig. 5. Once the interference is introduced, the output distorts as 
shown in Fig. 6, and the crosstalk also changes. What is interesting is the non-linear effect of harmonic cou-
pling, where the harmonic of the plane wave at 10GHz couples into the circuit, causing distortions at the circuit 
frequency of 5GHz. This is observed in Figs. 7 and 8, where the FFT’s of the uncoupled and distorted signals 
are depicted. 

GHzf 50 =f2 ,0π0 =ω

 
 
 
 
 
 
 
 
 
 
 

 

Figure 4. Incident field coupling to nonlinear circuit 

 

 



 
 
 
 

 

 
 
 
 
 
 
 
 
 
 

          Figure 5. Uncoupled output at port 2                                        Figure 6. Coupled output at port 4 

 

 

 

 

 

 

 

 

Figure 7. FFT magnitude of uncoupled output at port 2     Figure 8. FFT magnitude of coupled output at port 2 

6 Conclusions 
A time domain, surface based, full-wave coupled-EM and circuit matrix system was developed. Loss was mod-
eled with a recursive convolution. Coupling schemes were discussed and examples were shown that included 
common mode currents, non-linear circuits, and coupling to interference. Current and future work includes 
adaptive time stepping, mesh refinement, and fast solvers.  
 
This work is partially supported by the DARPA NeoCAD  program, by NSF-SRC Mixed Signal Initiative 
Grant CCR-0120371, and by NSF CAREER Grant ECS-0093102. 
 

References 
[1] A. E. Ruehli, “Equivalent circuit models for three dimensional multiconductor systems,” IEEE Trans. Microwave The-
ory Tech., vol. 22, pp. 216–221, Mar. 1974. 
[2]P.J. Restle, A.E. Ruehli, S.G. Walker, and G. Papadopoulos, “Full-wave PEEC time-domain method for the modeling of 
on-chip interconnects,” IEEE Trans.  Comp.-Aided Des. of Integ. Circuits Systems,  vol. 20,  no. 7, pp. 877-886, July 2001. 
[3] S. M. Rao and D. R.Wilton, “Transient scattering by conducting surfaces of arbitrary shape,” IEEE Trans. Antennas 
Propagat., vol. 39, pp. 56–61, Jan. 1991. 
[4] S. M. Rao, Time Domain Electromagnetics, Academic Press, San Diego, CA, 1999. 
[5] K.S. Kunz and R.J. Luebbers, The Finite Difference Time Domain Method in Electromagnetics, CRC Press, Boca 
Raton, FL, 1993. 
[6] Y. Wang, V. Jandhyala, and R. Shi, “Coupled electromagnetic-circuit simulation of arbitrarily-shaped conducting struc-
tures,” Proceedings of Electrical Performance of Electronic Packaging, pp. 233-236, 2001. 
[7] V. Jandhyala, Y. Wang, D. Gope, and R. Shi, “A surface-based integral equation formulation for coupled circuit-
electromagnetic simulation,”  Microwave Optical Technology Letters, July 20, 2002. 
[8] W. Pinello, A. Ruehli, A. Cangellaris, “Analysis of interconnect and package structures using PEEC models with radi-
ated emissions,” Proc. IEEE Int. Symp. Electromagnetic Compatibility, pp. 353-358, 1997. 



Integral Equation-Based Coupled Electromagnetic-

Circuit Simulation in the Frequency Domain 
 

Yong Wang, Dipanjan Gope*, Vikram Jandhyala, and C.J. Richard Shi 

 

Dept of Electrical Engineering, University of Washington, Seattle WA 98195 

Email: jandhyala@ee.washington.edu, Ph: 206-543-2186, Fax: 206-543-3842 

 
In this paper, an approach to couple electromagnetic surface integral equations and 

circuit simulation is presented. Terminals are defined that connect lumped circuit models 

to objects modeled with distributed electromagnetic simulation. A modified form of the 

charge-current continuity equation is proposed for connectivity at terminals. The 

resulting scheme enables simultaneous solution of electromagnetic integral equations for 

arbitrarily-shaped objects and SPICE-like modeling for lumped circuits, and permits 

design iterations and visualization of the interaction between the two domains.  

 

1.  INTRODUCTION 

There are several existing methodologies aimed at incorporating EM effects in circuit 

simulations. One such approach, the partial element equivalent circuit (PEEC) method 

[1,2] has been developed as a successful means to discretize objects and to directly 

represent the coupling between the discretized elements using SPICE compatible RLC 

elements and dependent sources. Due to the dense nature of the interactions and the fact 

that SPICE is tuned for solving sparse matrices, the direct PEEC method is size limited. 

To obviate this limit, ongoing work has focused on reduced order models and fast 

solvers. 

Another approach is to directly use a regular Method of Moments (MoM) solver to 

derive the port parameters. Thereafter, equivalent circuits are generated in conjunction 

with model reduction methods in order to obtain characteristics at the ports that 

approximate the frequency-dependent EM simulation results. This approach can become 

unattractive for a variety of reasons, including ill-defined ports at chip and package level, 

complexity of modeling for multi-port parameters, and loss of information about the 

electromagnetic problem once the port model is obtained. 

In this paper a new approach to formulating and simulating the coupled EM-circuit 

problem is presented. The distributed EM effects and the lumped circuit models are 

formulated in conjunction in one system matrix amenable to fast direct and iterative 

solutions. Although standard port and terminal models for EM structures can also be 

generated using the approach discussed herein, it is shown that solving the EM-circuit 

system simultaneously provides more detailed field information and also obviates the 

equivalent circuit generation step, thus automating the design flow. In addition, the 

coupled formulation not only handles circuit excitations, but also the effects of incident 

electric field radiations on the EM-circuit system. The methodology is inherently 

hierarchical, with seamless transitions possible between circuit and EM representations 

depending on the level of detail required. 

 

2.  FORMULATION 

Consider a conducting object with surface S  to be modeled with distributed 
electromagnetic simulation, connected to arbitrary circuits, excited through voltage and 



current sources within the circuit, and optionally illuminated by one or more 

electromagnetic wave excitations. The surface S  is divided into two sub-surfaces, 

denoted by CKS and EMS , where CKS denotes terminals, the regions where lumped 

circuits are connected to S . On the entire surface S  the boundary condition for the 
electric field is: 

tan( )s i
sZ + = E J E J                                         (2.1) 

where 
s
E is the scattered electric field produced by the induced equivalent surface 

current J , 
i
E is the incident electric field, subscript tan denotes the tangential 

components on the surface S, / 2sZ jωµ σ= represents surface impedance. On EMS  the 

standard continuity equation relating the surface current J and surface charge ρ  holds: 
                                       ( ) ( ) 0s EMj Sωρ∇ ⋅ + = ∀ ∈J r r r                         (2.2) 

where s∇  represents surface divergence, with standard notation used for material 

parameters and frequency above. On CKS , the following condition is proposed. The 

current flowing out of the circuit node associated with a terminal flows into the patches 

on CKS . This coupling current introduces an additional source term that alters the surface 

current and surface charge on S  through a modified continuity equation valid for CKS . 

The modified continuity equation has the following form: 

                       ( ) ( ) ( )m
s c CKj J Sωρ∇ ⋅ + = ∀ ∈J r r r r                     (2.3) 

where 
m

cJ  represents the scalar current density into the terminal m. Therefore the 

scattered electric field can be expressed in a modified form as: 
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While other approaches such as delta gap methods or wire basis functions can also be 

used to describe the coupling, they are either not general enough for connection with 

arbitrary circuits or need artificial parameters such as basis lengths, directions and radii.  

Based on the assumption that the scalar potential produced on electrically small 

terminals 
m

CKS  is equal to the voltage of the circuit node associated, an additional set of 

equations can be setup: 
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In addition, the regular Kirchoff’s Current Law (KCL) is enforced at each terminal circuit 

node n , which involves all circuit currents entering or leaving the node in addition to the 
coupling currents.   

With the above coupling schemes, and using Rao-Wilton-Glisson basis functions, the 

coupled problem can be formulated as: 
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11Z  and 12Z  represent the tested electric field produced by the scalar and vector 

potentials due to EM currents, and by the scalar potential due to coupling currents, 

respectively. Similarly 21Z  and 22Z  represent the tested scalar potential at the terminal 

patches produced by the charge associated with the RWG currents and the coupling 

currents, respectively. C  is the EM-circuit connectivity matrix with one non-zero entry 

per row. MNA  represents the Modified Nodal Analysis for the lumped circuit elements. 

I  and 
c
I  are the strengths of RWG currents and the coupling currents respectively while 

ckt  represents the circuit voltage and current unknowns. The excitations on the RHS 

include EMex , the tested incident electric fields and cktex , the current and voltage 

sources. 

3.  NUMERICAL RESULTS 

One typical application is circuit/layout co-simulation for RF electronics systems 

where on-chip inductors are often employed. Figure 2a shows the topology of a 5.6GHz 

differential mode Low Noise Amplifier (LNA) where several on-chips inductors are 

included either for frequency selection purpose (L1 L2) or for impedance matching 

purpose (L3, L4, L5, L6).   

Shown in Figure 1b are a series of S21 curves plotted by varying the distances 

between two inductors L1 and L2, and the resultant shift in center frequency due to 

changing mutual coupling effects; d=inf corresponds to ignoring mutual coupling. In the 

above design example, the coupled circuit-EM solver avoids the port model 

generation/curve fitting steps, which are necessary for traditional design methods.  

The second example is to study the power/ground plane voltage bounce distribution 

due to a high-speed noise source. Consider a typical mixed analog/digital PCB board as 

shown in Figure 2.  

 

 

 

 

 

Fig 1a: A 5.6GHz Low Noise Amplifier Fig 1b: S21 curve versus distance between inductors 
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Fig 2: Mixed Signal PCB 



With traditional port model based EM-circuit simulation methods, it is difficult to know 

the bounce voltage distribution all over the plane since voltage/field spatial distribution 

information is lost in a port model. If all the spatial points on the plane are treated as 

ports, then the scale of the problem will be extremely large. On the other hand, since the 

coupled circuit-EM solver uses equivalent surface current as system unknowns, the 

voltage/field distribution can then be easily derived by a single post processing once the 

coupled system is solved. Figure 3a shows the ground bounce voltage distribution for a 

PCB board of dimensions 12cm X 8cm, at 3GHz, with a 1mA noise source. 

By continuously pinning down the peak bounce voltage using 10nF decoupling 

capacitors, the distribution of noise voltage was controlled as in Figure 3b after adding 

approximately twenty capacitors. The coupled nature of the proposed approach enabled 

field-based placement of decoupling capacitors, which would be difficult with port-based 

methods. 

4.  CONCLUSIONS 

This paper presents a coupled EM-circuit approach that enables seamless transition 

between the two domains. Although the proposed method can be used to generate 

frequency-dependent port models, it also permits fully-coupled simulation, thereby 

automating design flow, and retaining EM  information which can provide design insight. 
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1.lntroduction 
Time domain electromagnetic solvers are useful for simulating coupled circuit- 

electromagnetic (EM) problems involving integrated circuit packages and systems-on-chip, 
wherein effects of nonlinearities of circuit elements can be modeled accurately [I]. The surface- 
based time domain integral equation (TDIE) approach has been gaining in popularity owing to its 
flexibility in modeling arbitrarily-shaped structures and its enhanced computational performance 
due to advances in fast solution methods. 

Existing methods to couple TDIE formulations to circuits have been based on port 
models, convolution methods, and the partial element equivalent circuit (PEEC) approach [2,3]. 
However, a seamless approach to integrate circuit and EM interactions without converting to 
circuits has not been developed within the scope of TDIEs. 

In this work, a generalized rigorous coupling scheme, to simultaneously simulate circuits 
with SPICE-like time-domain simulation, and EM interactions with a TDIE method, is presented. 
This approach enables direct solution of circuit-EM equations without the need for generating 
port models. The method permits both circuit and EM excitations and thereby has potential as a 
signal integrity and as an EMIEMC modeling tool. 

2. Formulation 
Consider a conducting object to be modeled with distributed EM simulation, with surface 

S, connected to arbitrary circuits, through terminals to be defined later, excited through voltage 
and current sources within the circuit, and optionally illuminated by one or more EM wave 
excitations. Assuming a surface impedance approximation for modeling finite connectivity, the 
boundary condition for the electric field on the surface of the object is 

[Es(J)+E”‘],,,= Z *- (1) [ $Itm 
where E” is the scattered electric field produced by the induced equivalent surface current J , 
E’”‘is the incident electric field, tan denotes the tangential components on the S, * denotes 
temporal convolution, and 2, ( I )  = is the time domain representation of surface 
impedance. The surface S comprises of two disjoint surfaces, SE,  and S ,  such that on SE,  the 
standard continuity equation relating the surface current and charge holds 

Vs . J(r,t)+ - aP(r 1 )  = 0 Vr E S E ,  
at 

where V, represents surface divergence. On S ,  , the terminal surfaces, the circuit current 
flowing onto S ,  from a corresponding circuit node introduces an additional source term that 
alters the surface current and charge on S . This permits connection of two disparate domains, the 
topology-based (connectivity only) circuit domain, and the geometry-based EM domain. 
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Lets, itself be comprised of Mdisjoint surfaces S:K m = I, ..., M . Each such unique 

sub-surface S& is termed one of M terminals. On S& the modified continuity equation has the 
following form 

v , . J ( r , r ) + ~ = J ~ ( r , r )  a1 vres:K m = l , . . ,  M (3) 

where J,” represents the scalar volumetric current density produced on S:Kvia a circuit 
interconnection. The current density introduced by the circuit interconnection produces an 
additional source or sink of charge that alters the time-dependent scalar potential and the resulting 
electric ficld. 

Whcn triangle-pair-based RWG spatial basis functions are used [4,5], the scattered field 
is written as 

where N e  is the total number of triangular patches, PIp, , - -  is the total number of triangular 

patchcs on all terminals, TTcK denotes the kth triangular patch on terminal m, and T,  and T- are 
the two patches associated with the ith edge. The standard procedure of testing [4,5] the above 
equation in space and time leads to a matrix equation of the form 

N e  N~ M NK,w N ‘. 
Z:, ( 1 1 )  + At  c Z:, ( 1 1 )  f At  1 Q;”k (1, ) =  A t  F, (11) + c Zz; (11-1.) f 2: ( 1 1 )  ( 5 )  

where the first matrix on the left relates to ficld from vector potential, the second matrix relates to 
field from scalar potential, and the third relates to field from scalar potential due to coupling 
currents. The first term on the right is the incident field, the second term is the history of vector 
potential and the third term is surface impedance contributions in a recursive convolution form. In 
addition to the scattered field, two more conditions are required for the circuit interconnection; 
electrically small terminals are assumed to be equipotential, leading to 

Z = l  ,=I n=l  k = I  , = I  

for n = I, ...,M; k =I,,. ,  N;,CK where V, is the circuit potential at the circuit node connected to 
terminal m, the first matrix represents scalar potential from surface current, and the second term is 
due to scalar potential from coupling currents., The final set of self-consistency equations relates 
to the application of Kirchoff s Current Law at the Mnodes connected to the terminals : 

for n = ],..,,A4 where adj(n)denotes the number of nodes adjacent (neighboring) to the circuit 
node associated with terminal n, iyis the circuit current entering node n from its j-th immediate 

neighbor, and J,“ is the volume conduction current density at terminal n 

The systems of Equations (5-7) can be combined to yield the time-domain circuit-EM 
coupled system. The linear and non-linear circuits connected to the terminals are modeled by 
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Modified Nodal Analysis (MNA). The details for the linear and non-linear stamps in the MNA 
matrices and related solution methods are not discussed here. The combined system has the form 

where the unknown vector at time f, relates to the strengths of surface currents, coupling 
currents, and circuit quantities. The sub-matrix subscripts refer to the type of matrices generated 
earlier. The vector srcEM (t, )represents the tested incident field, and the vector 

srccK (ti) denotes the values of circuit sources. The matrix C i s  a sparse bipolar adjacency 
matrix that is used for enforcing Kirchoffs Voltage and Current Laws at the circuit nodes 
connected to the terminals. This approach enables both linear and non-linear (through local 
Newton-Raphson on the MNA sub-matrix) circuit simulation in conjunction with EM simulation. 

3. Numerical  Results 
In the first example, the coupled noise between an active signal pin and a passive signal 

pin located in the center of the structure is computed, and the impact of ground pins on the 
crosstalk between the two signal pins is analyzed (Fig. I). Either end of the active pin is 
connected to its corresponding ground through a 52 SL resistor, with a ramp voltage source in 
series with the resistor at top end. The passive pin is connected to the grounds through two similar 
resistors only. The voltage drop across the top and bottom end resistors of the passive pin are 
plotted. As more ground pins are added, the crosstalk dramatically decreases due to shorter retum 
paths. 

In the second example, incident field coupling to a nonlinear circuit through distributed 
bends is simulated (Fig. 2). A trapezoidal voltage source is applied to the nonlinear circuit, and a 
Gaussian pulse excitation is used to model the incident field. The simulation result shown is the 
output voltage at the inverter without and with the disruption of the incident field. The field 
causes switching times to change and also introduces an extra noise pulse, which can cause 
spurious switching. 

4. Conclusions 
A coupling scheme to simultaneously time-step MNA and TDIE equations was developed in 

this paper in order to model complex circuits with different levels of hierarchy. The method 
enables nonlinear simulation as well as EMIEMC modeling. 
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Figure 1: Near and Far end Noise voltage across a victim via due to an active via in the presence of 
grounding pins. Inset: Structures with 6 and 20 grounding pins 
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Figure 2: Output voltage (bottom) at inverter with and without a Gaussian pulse disruption of 10 KV/m. The 
input is a trapezoidal pulse to a three-conductor bend structure with ground on two conductors (top). 
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Abstract—This paper presents an accurate integration method for 

computing Green’s function operators related to lossy conducting 

media. The presented approach is ultra-wideband i.e. the 

integration schemes cover the entire range of frequency behavior, 

from high frequencies where skin current is prevalent to low 

frequencies where volume current flow dominates. The scheme is 

a step towards permitting exact ultra-wideband frequency 

domain surface-only-based integral-equation simulation of 

arbitrarily-shaped 3D conductors, and towards obviating the 

need for volume-based explicit frequency-dependent skin effect 

modeling. This work deals specifically with the computation of 

Green’s functions and not with the unrelated but important low-

frequency conditioning issue associated with the standard electric 

field integral equation. 

 

Index Terms— Boundary Element methods, Conducting bodies, 

Electromagnetic Scattering, Integral Equations, Skin Effect. 

I. INTRODUCTION 

URFACE and volumetric integral equation techniques are 

powerful paradigms for modeling electromagnetic (EM) 

interactions in integrated circuit (IC) and packaging 

problems. While coupled electromagnetic and circuit analyses 

have been successfully realized through the popular volumetric 

partial element equivalent circuit (PEEC) approach [1],[2] the 

search for more general approaches, especially for modeling 

frequency-dependent skin effects and for arbitrarily-shaped 

structures, has led to circuit-coupled surface-based electric 

field integral equation (EFIE) formulations [3],[4]. In these 

and other works [5]-[12] it has been shown that surface 

integral equations and method of moments (MoM) 

formulations can be interpreted and applied as generalizations 

of volumetric EFIE - based PEEC. At high frequencies, 

surface impedance approximations are sufficiently accurate to 

model losses and inductive behavior caused by skin effects. 

However, at lower frequencies, standard surface impedance 

approximations are invalid. Therefore, for broadband 

simulation as necessitated in digital or ultra-wideband systems, 

a volumetric formulation is typically required at low 
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frequencies. However in a volumetric formulation, the skin 

effect needs to be modeled explicitly through a volume 

meshing. It is noted that some recent efforts have been aimed 

at obtaining new surface impedance approximations.  

Handling a mix of full-wave and skin-like effects with a 

surface-only formulation is desirable since frequency-

dependent effects can be tracked without changing geometric 

discretization and without taking recourse to a special volume 

formulation at low frequencies. This is particularly true for 

small microelectronic structures where geometry detail and not 

wavelength is the guiding factor in mesh discretization. To 

accomplish a surface-only formulation valid for realistic 

conductors over a broad range of frequencies, the interior 

lossy medium EM problem must be addressed and coupled to 

the external medium model [10], and such a formulation 

requires explicit computation of the Green’s function integrals 

in the interior lossy medium, in contrary to the volumetric 

formulation, where the Green’s function integrals are always 

computed in the background medium.  

This paper presents an exact formulation and accurate 

numerical quadrature scheme to efficiently compute highly 

damped Green’s functions in lossy conductors. The presented 

method is general in terms of geometries, frequencies, material 

parameters, and relative separation and orientation of source 

and observer regions, and potentially forms an important step 

towards the realization of a surface-only ultra-wideband 

integral equation formulation.  

It should be noted that the low frequency-dependence and 

modeling issue being addressed here is distinct from the 

classical low frequency ill-conditioning of an EFIE 

formulation. In fact, depending on the conductance involved, 

the issue discussed here can arise at much larger frequencies 

than those where the EFIE is inherently ill-conditioned. The 

treatment here is complementary to advances in improving 

EFIE conditioning [9] at low frequencies. 

The presented quadrature scheme, discussing computation of 

the relevant Green’s function integrals in lossy media using 

RWG functions in a PMCHW formulation, is initially 

facilitated by transforming the Green’s function computation 

associated with RWG functions into polar coordinates. 

Subsequently, the proper order of integration results in one 

analytic integration along one coordinate. Finally, the 

remaining one-dimensional integral is computed as a 

summation of several superposed integrals over different 

bands in the integration coordinate.  

Evaluation of Green’s Function Integrals                  

in Conducting Media 

Swagato Chakraborty and Vikram Jandhyala, Member IEEE 
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Section II of this paper presents the two-region formulation 

that utilizes the integrals that are the subject of this paper. 

Existing quadrature schemes are discussed in Section III. The 

specific frequency dependence of the integrals under study is 

outlined in Section IV.  Section V presents the polar-

coordinate-based integration schemes. Numerical results, self-

consistency checks and comparisons with other techniques are 

detailed in Section VI, and Section VII presents conclusions 

and continuing work.  

 

II. FORMULATION AND RESULTANT INTEGRALS 

In a two-region surface equivalent problem [10], with the two 

regions being a homogeneous lossless background medium, 

typically free space or a lossless dielectric, and the interior of a 

realistic conductor, the exterior equivalent problem utilizes the 

background medium Green’s function, while the lossy medium 

Green’s function is required for the interior equivalent 

problem.  For the electric field integral equation (EFIE), scalar 

and vector potential integrals will be necessitated, while for 

the magnetic field integral equation (MFIE), an integrand that 

represents the curl of the vector potential is required. In 

general, for PMCHW [10] and combined field integral 

equation (CFIE) formulations, all three types of integrands 

need to be computed.  

Typically for a region characterized with material properties 

given by the permeability µ  and permittivity ε , the electric 

and magnetic field E and H can be represented by the 

equations  

FAEE ×∇−∇−−=
ε

φω
1

jinc                (1a) 

AFHH ×∇+∇−−=
µ

ψω
1

jinc               (1b) 

where incE  and incH  are the incident electric and magnetic 

fields in the region,A and F are the magnetic and electric 

vector potentials, φ and ψ  represent the electric and 

magnetic scalar potentials, fπω 2= where f is the frequency 

of operation. 

The scalar and vector potentials can be written in terms of the 

Green’s function G and the electric and magnetic current 

density, J and M as: 

∫
′

′′′=
S

sdG )(),(
4

)( rJrrrA
π
µ

             (2a) 

∫
′

′′′=
S

sdG )(),(
4

)( rMrrrF
π
ε

            (2b) 

∫
′

′′⋅∇′=
S

sdG
j

)(),(
4

)( rJrrr
ωεπ

φ   (2c) 

∫
′

′′⋅∇′=
S

sdG
j

)(),(
4

)( rMrrr
ωµπ

ψ  (2d) 

where the Green’s functions ),( rr ′G  for a source point r′  

located in the source region S ′ , and an observation point r is  

 
rr

rr

rr

′−
=′

′−− kj
e

G ),(                             (3) 

  k  is the wave number at an angular frequency ω  for a 

material with σ , rµ , rε  as the conductivity, relative 

permeability and permittivity respectively, and is given by 

 )(
0

00 εω
σ

εεµµω
j

k rr +=                      (4) 

Two auxiliary potentials Π , and Γ  are introduced to 

represent the four potentials in (2) as, ΠA µ= , ΠF ε= ; 

ε
φ

Γ
= ,

µ
ψ

Γ
= , where 

∫
′

′′′=
S

sdG )(),(
4

1
)( rXrrrΠ

π
                (5a) 

∫
′

′′⋅∇′=Γ
S

sdG
j

)(),(
4

)( rXrrr
ωπ

            (5 b) 

Additionally, the curl operators in (1) are represented as   

∫
′

′′×′∇′−=×∇
S

sdG )(),(
4

1
)( rXrrrΠ

π
           (5c) 

where Χ  represents the electric or magnetic current density. 

The popular triangle-pair-based Rao-Wilton-Glisson (RWG) 

functions [7] are used to represent )(rΧ ′ , wherein current is 

modeled by edge-based piecewise linear vector functions, and 

the divergence of current is represented by piecewise constant 

scalar functions as 
±

±′
=

A

l

2
)(

ρ
rΧ , and 

±
=⋅∇

A

l
)(rΧ    [7] 

where ±′ρ represents the vector joining the node opposite to 

the edge in question to (from) the source point r′  in the 

positive (negative) triangle, ±A  denotes the area of the 

positive(negative) triangle, and l is the length of the edge. 

The generalized potential integrals (5) can be written for RWG 

sources as 

)(
8

)( scal
c

vect M
A

l
ρΜrΠ +=

π
                  (6a) 

scalM
A

jl

πω4
)( =Γ r                         (6b) 

)]([
8

)( scal
c

vect
i

N
A

l
ρNRrΠ +×=×∇

π
           (6c) 

where  

sd
R

e

T

Rjk

vect ′= ∫∫
−

ρM                       (7a) 

sd
R

e
M

T

jkR

scal
′= ∫∫

−

                     (7b) 

sd
R

jkRe

T

jkR

vect ′
+

= ∫∫
−

3

)1(
ρN                (7c) 
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sd
R

jkRe
N

T

jkR

scal ′
+

= ∫∫
−

3

)1(
              (7d) 

 

and iR  represents the vector joining the vertex of the source 

triangular region T (Fig. 1) opposite to the edge in question to 

the observation point, cρ is the vector from the same vertex to 

the projection of the observation point onto the plane of T, and 

ρ  is the vector from the projection of the observation point r  

on the plane of T to a source point r′ on T. rr ′−=R , is the 

radial distance between the source and the observation point.  

 
Figure 1:  Region of integration is shown for ( 321 ,, ρρρρ = ), for a 

triangular region T , for the projection of the observation point on the plane 

of triangle O . Gray sections denote intervals of θ where the source 

point ),( θρP lies within the triangle. 

 

 

III. EXISTING ANALYTICAL AND NUMERICAL QUADRATURE 

SCHEME FOR EVALUATING GREEN’S FUNCTIONS 

In the extant literature, evaluation of the potential integral (5) 

in free-space and low-loss media has been done by a variety of 

numerical schemes. For near-field terms, singularity extraction 

of the kernels in (5a, 5b) is performed analytically [11],[12] to 

leave a function that can be integrated numerically with a low-

order quadrature rule [13]. Recently, methods based on the 

Duffy transform have emerged, wherein the triangular 

integration region is transformed to a rectangle with a 

subsequent cancellation of the singularity. The integral in (5c) 

has been evaluated in free space [14], and in lossless 

dielectrics [10]. 

When the medium is conducting, even the singularity-extracted 

part may exhibit a rapid spatial decay, i.e. the extracted 

integral appears nearly singular when the observation point is 

sufficiently close to the source triangle. Hence, standard 

singularity extraction [11] fails to evaluate the integral 

accurately.  

A suitable approach to Green’s function computation in lossy 

media is polar coordinate integration, which can render the 

non-essential singularity cancelled through the Jacobian of 

transformation. Such methods are discussed previously in [15], 

[16] for lossless media and in [17] for lossy media, for the 

restricted case of the scalar Green’s function in (7b).  However 

these methods are not sufficiently general for the integrals in 

(7a, 7c, 7d) that are related to the vector potential or its curl. 

Another polar coordinate approach is proposed in [18] to 

evaluate the vector integral for the specific case of self-term 

integration. The method is extendable to the case when the 

observation point is located anywhere in the plane of the 

source triangle itself. This precludes the important case of 

observation at a near-singular point located above or below the 

source triangle, as occurs in thin conductors.  

In Section V we propose a general method for evaluating 

scalar, vector, and gradient Green’s functions in lossy media 

with RWG basis functions. The presented technique works for 

all frequencies and for all relative positions between source 

triangles and observation points. The next section discusses 

the frequency-dependent behavior of the generalized potential 

integrals in conducting media that necessitates the specialized 

quadrature presented in later sections.  

 

IV. FREQUENCY DEPENDENCE OF GREEN’S FUNCTIONS IN 

CONDUCTING MEDIA     

The behavior of the Green’s functions in (7) for conducting 

media is highly dependent on frequency. Consider a Method of 

Moments (MoM) [7] matrix created for interactions between 

RWG functions for the interior medium equivalent, which uses 

the conducting medium Green’s functions. At high 

frequencies, the MoM matrix is nearly diagonal because of a 

very rapid exponential spatial decay of the conducting medium 

Green’s function owing to the large imaginary part of the 

wave-number in  (4).  

At lower frequencies, the interactions between non-

overlapping RWG functions are not negligible; and the MoM 

matrix becomes progressively less sparse but has sections 

which are numerically sparse (e.g. in double precision 

arithmetic) due to large exponential decays. As the frequency 

is further lowered the MoM matrix is completely full while 

showing a weak exponential decay with distance. Eventually, 

the MoM matrix is full and the exponential decay is very weak 

or absent.   

To summarize, at intermediate frequencies, between sharp fall-

off and no fall-off regimes, special numerical treatment is 

required; the integrands presented by the lossy medium 

Green’s function have sharp radial decay, and non-self 

interactions are also prominent. Depending on the frequency, 

the entire MoM matrix might be numerically significant. 

Fixed-order 2D Gaussian quadrature rules in [13], that are 

popular in RWG-based MoM implementations will not 

provide accurate answers at such frequencies, owing to rapid 

decays of the Green’s functions over finite distances.  
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V. COMPUTATION OF GENERALIZED POTENTIAL INTEGRALS IN 

CONDUCTING MEDIUM   

The generalized potential integrals in (6) for RWG sources are 

constituted by the four terms in (7), which can be transformed 

into polar coordinates as, 
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3)22(
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)221(

  (8d) 

In the above equations, the x̂  and ŷ  coordinates are local to 

the source triangle T (Fig. 1) and define the plane in which T 

lies. Also, d is the perpendicular distance of the observation 

point from the plane of T, and ( θρ , ) is the polar coordinate of 

a source point in T, with the projection of the observation 

point onto the plane of T as the origin. The scalar integrals in 

(8b, 8d) and the scalar components of the vector integrals in  

(8a, 8c) can be written in a generalized form, as 

∫ ∫=
ρθ

θρθχρϕϕχ ddI )()(                 (9) 

where ϕ is one of vectM ,ϕ , scalM ,ϕ , vectN ,ϕ , scalN ,ϕ defined 

below as 
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Also χ is one of cχ , sχ , 0χ  defined below as 

θθχ cos)( =c                          (11a) 

θθχ sin)( =s                           (11b) 

1)(0 =θχ                              (11c) 

Owing to the simple closed form expressions for the integral of 

)(θχ , the integral ϕχI can be recast as a function of ρ as  

∫∫ ∫==
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dddI
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)()()()(

ρ

ρ
ϕχ ρρξρϕθρθχρϕ            (12) 

  where minρ and maxρ  are the extremal ρ for which 

TP ∈∋ℑ ),( θρθ , ),( θρP denotes a point having coordinate 

),( θρ  (Fig. 1), and ξ is one of cξ , sξ , 0ξ  with 
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Also, )(ρK  is the number of intervals (Fig. 1) in 

θ , πθ 20 <≤ , for which ),( θρP  lies in T, and i
maxθ and 

i
min

θ are the limits on θ for the thi  interval. The values of 

)(max ρθ i  and )(
min

ρθ i for each section are computed by 

obtaining the intersection of T and the circle of radius ρ  

centered at the projection of the observation point onto the 

plane of T. If the circle with radius ρ lies entirely in T, 

1)( =ρK , πθ 21
max= , and 01

min =θ . Hence  
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Alternatively, if for a given ρ , if the circle is completely 

outside T then the integral contributions are all zero. 

Consequently, the constituents of the generalized potential 

integrals (8) can be computed using  (10-13) as  

ρρξρϕρρξρϕ
ρ

ρ

ρ

ρ
dd svectMcvectMvect )()(ˆ)()(ˆ

max

min

max

min

,, ∫∫ += yxM                        

(15a) 

ρρξρϕ
ρ

ρ
dM scalMscal )()(

max

min

0,∫=             (15b) 
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ρρξρϕρρξρϕ
ρ

ρ

ρ

ρ
dd svectNcvectNvect )()(ˆ)()(ˆ

max

min

max

min

,, ∫∫ += yxN                       

(15c) 

ρρξρϕ
ρ

ρ
dN scalNscal )()(

max

min

0,∫=              (15d) 

It is important to note that the kernels ( ) ( )ρϕρϕ scalNvectN ,, ,  

of the integrals in (15c,d) are singular for 0,0 =→ dρ  in 

evaluating the self-term.  However, for such case in (6c), iR , 

vectN , and cρ , lie in the plane of the source triangle. Hence  

( )rΠ×∇  in (6c) is perpendicular to the plane of the source 

triangle, which is also the observation triangle for the self-term 

evaluation. Thus when tested with a testing function tangential 

to the observation triangle (e.g. Galerkin testing, etc.), the 

resulting contribution always vanishes. Hence special 

treatment to take care of the non-removable singularity in the 

integrals in (15c,d) is not required for the special case of 

planar discretization discussed in the paper.  

 

VI. NUMERICAL RESULTS 

In this section, the proposed integration schemes are used to 

compute integrals for all the cases in (15). Comparisons with 

2D Gaussian quadrature are presented along with the results 

obtained by incorporating the presented technique in a two-

region circuit coupled field solver. 

For purposes of illustration, and without loss of generality, the 

source triangle sourceT  for the presented results has nodes 

located at ( )0,1,1 − , ( )0,5.0,1 , ( )0,5.0,2− , and the observation 

point obsP lies outside the plane of sourceT , at ( )1,0,0 , with 

all distances measured in mm. The conductivity of the medium 

is that of copper 7108.5 × Sm
-1
. 

 A relative accuracy comparison between the proposed scheme 

and fixed order 2D Gaussian quadrature with singularity 

extraction is demonstrated in Fig. 2 and Fig. 3. At low 

frequencies, the Green’s functions in lossy media exhibit slow 

decay over distance and hence, for example, a 7-point 2D 

Gaussian quadrature scheme [13] works adequately, and the 

relative difference between the two methods is small.  As the 

frequency is increased, the details of the decay in the Green’s 

functions due to the increased imaginary part of the wave-

number (2.4) are not captured by the low-order 2D Gaussian 

rule and the proposed methodology of this paper is required. 

The fact that the discrepancy between the results from the 

proposed method and from low-order 2D Gaussian quadrature 

is due to the Gaussian quadrature becoming inaccurate is 

further evident from comparisons with a higher-order 2D 

Gaussian quadrature rule using 25 points on a triangle. In this 

case the frequency at which the 25-point quadrature breaks 

down increases compared to the 7-point quadrature. In general, 

for any order of 2D Gaussian quadrature, there is a frequency  

 
Figure 2: Comparison between 2D Gaussian rules with singularity extraction 

and proposed method for evaluation of the integral vectN , vectM  in (7c,7a) 

(a), and scalN  and  scalM  in  (7d,7b) (b) for the non-self-term integral, for a 

triangle with vertices ( 0,, αα − ),( 0,2/,αα ),( 0,2/,2 αα− ), and observation 

point located at ),0,0( α ,where 1=α mm , with 7108.5 ×=σ     Sm-1. 

 

point beyond which the fixed order 2D quadrature will be 

inaccurate due to insufficient sampling of the details in the 

decay of the Green’s function. The presented method 

accurately models the decay through an analytic integration 

and is therefore accurate at any frequency. This is seen in both 

the vector integrals (15a,c) (Fig. 2a) and the scalar integrals 

(15 b,d) (Fig. 2b), where the observation point does not lie on 

the plane of the source triangle. Similar plots for vector (15a) 

(Fig. 3a) and scalar (15b) (Fig. 3b) are provided for the self-

term integration. While the main aim of this work is the 

formulation and development of the quadrature rules 

themselves, one example of the behavior of the rules when 

included in a complete two-region PMCHW formulation is 

shown next. 
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Figure 3: Comparison between 2D Gaussian rules with singularity extraction 

and proposed method for evaluation of the integral vectM  in (7a) (a) and 

scalM  in (7b) (b) for the self-term integral, for a triangle with vertices 

( 0,, αα − ),( 0,2/,αα ),( 0,2/,2 αα− ), and observation point located at 

)0,0,0( ,where 1=α mm , with 7108.5 ×=σ Sm-1. 

 

Figure 4 demonstrates the comparison between analytic and 

extracted resistances using the presented quadrature in both 

quasi-static and full-wave codes.  

As expected, the two codes give same results as analytic 

computations at low frequencies; eventually, at high 

frequencies, the full-wave code also predicts additional 

radiation resistance. 

Figure 5a compares the extracted resistance using a coupled 

circuit-EM formulation [3] and the quadrature scheme 

presented in this paper, versus standard 2D Gaussian 

quadrature rules in the same formulation, as well as versus an 

(approximate) impedance boundary formulation where interior 

quadrature is not required [19].  

 
Figure 4: Extracted resistance of a cylinder with radius 0.5mm and length 5 

mm, using PMCHW formulation with the proposed quadrature scheme, for a 

full-wave and a quasi-static formulation, and the analytic value of resistance 

using skin effect approximation. 

 

 
Figure 5: Extracted resistance of a cylinder with radius 0.5mm and length 5 

mm, using PMCHW formulation with the proposed quadrature scheme, 

Gaussian quadrature, and impedance boundary condition for low frequencies 

(a), and high frequencies (b). 

At low frequency, the expected match between the two 

quadrature-rules is validated (owing to small decay in the 

Green’s function). At high frequencies, (Fig. 5b) the new 

quadrature also matches with the impedance 
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boundary formulation [19] results; the impedance boundary 

condition is inaccurate at low frequencies (Fig. 5a) relative to 

skin depth, and fails to capture the leveling off of the 

resistance at low frequency. Conversely, the 2D Gauss 

quadrature scheme becomes inaccurate at high frequencies, 

which is demonstrated in Fig. 5b. At such frequencies the 

proposed quadrature scheme produces same result as the 

impedance boundary condition formulation, while at low 

frequencies the two quadrature schemes produce the same 

result. The proposed quadrature scheme has been used to find 

the Q-factor of a realistic on-chip spiral inductor in Fig. 6.  

 
Figure 6: Q-factor (b) computation of a spiral copper inductor on a substrate 

with shown (a) dimensions. Conductivity of the substrate is 5101 −× Sm-1 

VII. CONCLUSION 

In this paper, a new approach to evaluate the Green’s function 

operators for RWG functions in conducting media is 

presented. The method works for arbitrarily located sources 

and observers for any frequency. This technique has been 

incorporated into a broadband two-region surface formulation 

for accurate computation of frequency-dependent parameters, 

and shows the potential to obviate the need to switch to 

volumetric formulations at frequencies where volumetric 

current flow is dominant.  
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1.Introduction 
Method of moments (MOM) solvers are usehl for simulating coupled circuit- 

electromagnetic problems [ 11 involving integrated circuit packages and systems-on-chip, 
wherein frequency-dependent skin effects can be modeled, and arbitrarily-shaped 
structures such as on-chip inductors can be analyzed with surface-only formulations. For 
broadband analog and digital applications, spectral current and field components can 
arise at sufficiently low frequencies where surface impedance approximations [2] for 
approximating skin effects are not valid. For seamless surface-based broadband 
simulation, it is important to explicitly model the interior of conducting materials in order 
to avoid ad-hoc mixing of surface and volume based formulations. This paper focuses on 
broadband computation of lossy medium scalar, vector, and gradient Green’s function 
integrals for arbitrarily located sources and observers. 

Existing methods for computing Green’s function integrals address subsets of the 
above problem; for instance, singularity extraction [3] in conjunction with 2D Gaussian 
quadrature [4] can be used for computation of Green’s function integrals in lossy media 
at very low frequencies where exponential spatial decays are weak. Methods suitable for 
computing Green’s hnction integrals at high frequencies are discussed previously in [5] 
for lossless media and in [6] for lossy media, for the restricted case of the scalar Green’s 
function. A similar approach is proposed in [7] to evaluate the scalar and the vector cases 
for self-tenn integration, with extensions possible in-plane observation. However, the 
crucial case of near-singular observation points outside the plane, as in the modeling of 
very thin conductors cannot be handled by thc approach in [7]. The computation of 
gradient Green’s function integrals has not been addressed by the methods [5-71. 

In this work we propose a polar-coordinate transformation and new mixed 
analytic and numerical quadrature for accurate evaluation of RWG function [8] based 
scalar, vector, and gradient Green’s fimction integrals in lossy conducting media in a 
form more general than other existing methods. The presented technique is broadband 
and applicable to any distribution of source and testing function locations and 
orientations and to any lossy material. 

2. Formulation and Resultant Integrals 

medium can be described as linear combinations of four two-dimensional integrals M 
The magnetic and electric potentials due to an RWG basis function in a lossy 

VI, M,, [5-61, N,, and Nscv, [91 given as 

(2.la) 

where T denotes a source triangle, p is the vector from the projection 0 of the 
observation point r on the plane of T to a source point r’ in T, and R =I r - r’l is the 
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radial distqce between the source and the observation point. R can be written as 
R = 4- , where d denotes the distance of the observation point r from the plane of 
T. The complex wave-number in the interior of the conductor is denoted by k. Equation 
(2. la) can be expressed in polar coordinates as 

where local two-dimensional x-y coordinates have been used in the plane of T and 0 is 
the polar angle of a source point r' relative to, the local coordinate system with origin at 
0. The limits on pare given by its extremals for which a circle with radius pcentered at 
0 intersects T. The limits on B for a given pare obtained by finding the intersection 
points of T with the circle of radius p .  In general, the four integrals in Eqns. (2.la,b) can 
be recast into polar coordinates to obtain separable integrals of the form 

PO"" %"(P) 

I = j f ( P ? k  4 jb-@)d@ dP (2.3) 
Pml" L) 1 

The integral in Eqn. (2.3) is separable in its variables pand 0,  and the integral in 0 has 
a simple closed form expression, Thus the overall integral can finally be expressed as a 

ID integral in pas,  I = ju(p)dp.  
P" 

P"". 
It is important to note the change in order of integration c,ompared to that in [5-  

71, where the (analytic) integration is done first on p .  While 15-61 consider only the 
scalar integral, in [7] the on-plane observer locations ( d  = 0 )  lead to functions of pfor 
the vector integral that are easily integrable, which is not the case for general observation 
points ( d  # 0). To obviate this problem, particularly for the crucial case of near singular 
off-plane observation points, the change in order of integration is performed in OUT work. 
In the proposed method, g(0) is always a simple sinusoidal function or a constant, due to 
the fact that the Green's functions are not dependent on the polar angle 0 .  Therefore the 
B integral can be computed analytically in all cases (arbitrruy locations, materials, 
frequencies, and scalar, vector, and gradient integrals), leading to a final ID numerical 
integration in p ,  of the integrand U@), which is a continuous and piece-wise smooth 
function in the interval (p,,,,D,p,,,u). Boundaries of the subintervals of pover which 
u(p) is smooth, are the radii values for which the circle touches the vertices of Tor its 
edges tangentially. An adaptive 1D integration rule has been developed for the functions 
above using an approach similar to Matlab's quud8. 

3. Numerical Results 
A relative accuracy comparison between the proposed scheme and fixed-point 

two-dimensional Gaussian quadrature with singularity extraction is demonstrated in Fig. 
1 for the interior of a Copper conductor. At low frequencies, the Green's functions in 
lossy media exhibit slow decay over distance and hence a 7-point Gaussian quadrature 
scheme [4] functions adequately. As the frequency is increased, the details of the sharp 
exponential decay in the Green's functions are not captured by the low-order Gaussian 
rule. The presented formulation explicitly models the exponential decays and is thus'not 
affected by the added detail. To confirm that the 7-point Gaussian rule has broken down 
for this case, a higher-order 25-point Gaussian quadrature scheme is also used. This 
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method shows better accuracy than the lower order rule in the range of 100-1000 Hz. 
However, as is evident, as the frequency is increased further, the 25-point rule also 
becomes inaccurate. In general, any fixed-order two-dimensional rule will become 
inaccurate after a certain frequency. While this has not been explicitly verified in this 
paper, it is expected that a well-designed 1D adaptive quadrature scheme should 
outperform an adaptive two-dimensional quadrature rule for the reasons that the 
exponential decay is explicitly extracted in the 1D form, making amenable the use of a 
specialized quadrature rule (e.g. Gauss-Laguerre [4]), and that the explicit independence 
of the Green’s function on the polar angle is exploited in the 1D form. 

Figure 2 demonstrates the ability of the proposed method in conjunction with a 
coupled two-region circuit-EM MOM formulation [ 11 to compute the frequency- 
dependent resistance of a cylinder, with radius 0.5 nun. and length 5 nun, including the 
low-frequency leveling off behavior to the DC value of 0.109 a, using a two-region 
PMCHW formulation [lo]. Also shown is the solution from the surface impedance 
approximation, which becomes inaccurate at low frequencies (Fig.2, left) but provides the 
correct answer at higher frequencies (Fig.2, right). A fixed-point two-dimensional 
Gaussian rule gives correct answers at very low frequencies (Fig.2, left) but is inaccurate 
above a certain frequency (Fig.2, right). 

4. Conclusions 
In this paper, a new approach to evaluate the Green’s function operators for 

RWG functions in conducting media is presented. The method works for arbitrarily 
located sources and observers for any frequency. This technique has been incorporated 
into a broadband two-region surface formulation for accurate computation of frequency- 
dependent parameters, and shows the potential to obviate the need to switch to volumetric 
formulations at low frequencies where skin effect is not well developed. 
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Figure I : Comparison between 2D Gaussian rules with singularity extraction and proposed 
method for evaluation of the integrals M , a n d  N,, in Eqns. (Z.la,b) for a non-self-term 
integral, for a hiangle with vertices (a,-a,O ),( a,a/2,0),( -2a,a/2,0), and observation point 
located at (0,O ,a) ,where a = lmm , with (T = 5.8x107S/m. 
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Figure 2: Extracted resistance of a cylinder of radius O S m m  and length 5 mm with 
ff =5.8x1O4 S/m using a two region PMCHW formulation with the standard 7-point 2D 
Gaussian quadrature method and the method proposed in this paper, and an impedance boundary 
condition formulation, for a low frequency band (lert) and higher frequencies (right). 
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INTRODUCTION 

Standard surface impedance approximations are invalid at lower frequencies approaching 
DC since the cross sections of conductors are smaller than the skin depth. Hence, a 
volumetric formulation is typically used at these low frequencies for broadband 
simulation as necessitated in digital or ultra-wideband systems since the skin effect can 
be modeled explicitly. This modeling requires fine and frequency dependent volume 
meshing. However, an approach using higher-order elements and/or bases may alleviate 
these requirements. The intent of this paper is to present a tightly coupled circuit and 
hybrid boundary element (or integral equation)/finite element based electromagnetic 
simulation that has been coded in EIGER [1]. 

HYBRID FORMULATION 

The approach used for the hybrid formulation has been presented in [2]. The body of 
interest is shown in Fig. 1. The surface of the body is used to create a boundary to 
separate the problem into interior and exterior regions. Finite elements are used in the 
interior volume V. A boundary element formulation is applied on the body surface S to 
model the exterior. The interior volume of the body is modeled with finite elements using 
the electric field Helmholtz equation, represented as 
 

( )1 2
0r rk j 0ωµ−∇× ⋅∇× − ⋅ = −µ E ε E J ,                                      (1) 

 
where E is the electric field, k0 is the freespace wave number, ω is the radian frequency, 
and and rε rµ are the relative permittivity and permeability dyads, respectively. The body 
exterior is modeled using boundary elements on the body surface, in this case using the 
electric field integral equation (EFIE), which is given by  
 

1ˆ ˆ ,
2

ij Sω
ε

⎛ ⎞− × +∇Φ+ ∇× = − × ↑⎜ ⎟
⎝ ⎠

M n A F n E r ,                        (2) 

 
where  is the normal to the surface at the observation point, En̂ i is the impressed electric 
field, and A, Φ, and F are the magnetic vector, electric scalar, and the electric vector 
potentials, respectively. Also, the jump discontinuity of the curl term in (2) has been 
removed and expressed explicitly in terms of the magnetic current M. The fields and 
currents are expanded using the basis functions described in [3]. 



CIRCUIT–CONNECTION ALGORITHM 

The contact-connection algorithm [4,5] is employed to couple the circuit to the 
electromagnetic surface. A circuit is attached to a spatially localized surface Sc by 
enforcing at this contact a modified current-continuity equation, a KCL connection, and a 
KVL connection from the contact to the circuit node. This is shown in Fig. 2. These three 
conditions are fundamental to the coupled hybrid-circuit formulation. On a contact 
surface Sc, the continuity equation is changed to account for injecting branch current from 
the circuit. This current introduces an additional source term in the continuity equation 
and thus affects the distribution of both the electromagnetic surface currents and surface 
charges. Hence, the continuity equation is modified to become 

,    ,
0,  otherwise,

c cI r S
jωρ

∈⎧
∇⋅ + = ⎨

⎩
J                                                    (3) 

where Ic is the contact current. This contact current provides a virtual extension from the 
distributive electromagnetic surface to the circuit node. The coupling between the 
electromagnetic formulation and the circuit is done by enforcing (2) at the boundary and 
coupling them to the circuit by including the contact current from (3). The localized 
circuit source attached to the contact produces an additional source or sink of charge that 
alters the scalar potential and the resulting electric field. Because of this additional 
current, the scalar potentials must be tied to the circuit node voltage Vn. A KVL 
expression sets the scalar potentials at the equipotent circuit voltage Vn. Finally, the 
contact current is connected to the circuit by including an addition term Ic to the KCL 
based circuit equation associated at circuit node n. 
 
The hybrid-circuit formulation, including the connecting KCL and equipotential KVL 
equations, may be summarized as the following block-matrix equation: 

0
0,

0

A EM

B
T

ckt

FEM C V
C BEM X I

IX MNA

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥

EM =
⎢ ⎥ ⎢ ⎥− ⎣ ⎦⎣ ⎦

                                                      (4) 

where the FEM block matrix represents the finite elements, BEM represents the boundary 
elements and contacts, and the C blocks represent the cross-coupling between the finite 
elements and boundary elements. The X and XT block matrices are the connection 
matrices between circuit nodes and contacts, and the MNA block matrix represents the 
modified nodal circuit analysis. 

RESULTS 

A rectangular connector (1 mm × 1 mm × 4 mm) is modeled to determine the 
convergence of the resistance curve around the first resonance of the structure. The 
results shown in Fig. 3 include the hybrid formulation (164 triangles and 216 
tetrahedrons) and the boundary element method formulation (48 rectangles) from [5]. 
The complete basis order is denoted by p. The various results agree well except when 
p=0 for the boundary element method since convergence had not been obtained. 

SUMMARY 

A hybrid boundary element/finite element formulation is coupled with a technique for 
representing circuit-to-EM connections. Higher-order bases functions and elements 



may be used in the analysis. Results were presented to validate the hybrid formulation 
compared to the boundary element formulation. 
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Figure 2. This schematic shows the approach for creating the contact-circuit connection. 
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and inverted, compared to the radiating-basis triangular element, is
introduced on this antenna (Fig. 5). The goal here is to combine the
matching frequencies of the two created antennas (one with h1 �
7.5 mm, and the other h2 � 15 mm) and thus to widen the
resultant bandwidth of the structure.

This results in a VSWR of about 1.5 (Fig. 6) and a much better
adaptation from 3 to 7 GHz (Fig. 7). By comparing these results
with those obtained experimentally, a widening of the bandwidth
after 7 GHz (which was not observed in the simulation, can be
noted. This variation is certainly due to the phenomenon of loss
adaptation related to the poor performances of epoxy at high
frequencies. The fact that this antenna is fed by a broader CPW
line than that of the preceding one (the wave only propagates in the
substrate under the feeding line) may explain why this phenome-
non was not perceived in the first antenna.

The addition of the slot does not disturb the radiation pattern,
in comparison with the first structure, while the efficiency is better
and fluctuates around 80% over the entire bandwidth (Fig. 8).

6. CONCLUSION

Two new omnidirectional antennas for short-range UWB commu-
nications have been presented; the first one amply covers the
WPAN standard, and the other one presents a very good adaptation
and good radiation efficiency on a very broad frequency band.
Both antennas are approximately the same size as a standard
business card, have low manufacturing cost, and are matched to
50�. Optimizations of radiation pattern and tests on better quality
substrate should increase the high-frequency performances of
these two antennas.
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ABSTRACT: Integral-equation methodologies applied to extract para-
sitics for board, package, and on-chip structures involve solving a dense
system of equations. In this paper, we present an improved matrix-com-
pression technique for fast iterative solution of such dense systems,
which applies QR decomposition on multilevel oct-tree-based interaction
sub-matrices. The regular-tree structure of the fast-multipole method
and the rank-revealing QR-based matrix-compression scheme are com-
bined in order to achieve superior time and memory efficiency. As is
demonstrated by the numerical-simulation results presented herein, the
new algorithm is found to be faster and more memory efficient than both
existing QR-based methods and FastCap. © 2004 Wiley Periodicals,Figure 7 Real and imaginary parts of the input impedance

Figure 8 Radiation efficiency
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1. INTRODUCTION

Due to the increasing complexity of design structures on boards,
packages, and chips, numerical techniques that utilize field solu-
tions for parasitic extraction are preferred when high accuracy is
necessary. Among the existing numerical tools, a surface-based
integral-equation methodology such as the method of moments
(MoM) [1] is ideally suited to address the problem. It leads to a
well-conditioned system with reduced size, as compared to volu-
metric methods [2], but the system of equations generated is
inherently dense, thereby creating a time and memory bottleneck.
Several fast iterative techniques have been developed to efficiently
sore and solve a MoM system with linear time and memory
complexity. All these methods, including QR-based approaches [3,
4], fast-multipole methods (FMMs) [5], and FFT-based techniques
[6] accelerate matrix-vector products and therefore expedite the
Krylov-subspace iterative solution [7].

The QR-based fast iterative solver (IES3) [3, 4] adopts a binary-
tree multilevel decomposition of the geometry and consequent
low-rank compression of the MoM sub-matrices which represent
the interaction between well-separated geometrical regions. This
scheme is particularly attractive for circuit problems, since it can
be directly applied with multilayered dielectric Green’s functions.
Even in terms of free-space capacitance extraction, IES3 has been
demonstrated as being more efficient in terms of memory and
solve time. However, this method suffers from a higher setup-time
cost, due to the irregular nature of the adopted binary-tree structure
for the geometry subdivisions and the unpredictable nature of the
optimal matrix structure.

In this work, we have developed a predetermined interaction
list oct-tree (PILOT) QR algorithm that greatly reduces the setup
time while maintaining the memory and solve-time efficiency of
the rank-map-based binary tree QR (RMBT-QR), which is based
on the same principles as IES3. PILOT exploits the properties of a
multilevel oct-tree implementation (common to multilevel fast
multipole method (FMM) approaches), to create a predetermined
tree structure, thereby considerably reducing the setup time.

2. INTEGRAL EQUATION

Capacitance problems formulated using the MoM are solved via
Poisson’s equation �2�(r) � ��(r)/�, relating potential � and
charge-density �. The discretization of the integral form of this
equation results in a matrix system of the form Z� I � V where the
N � N MoM matrix Z� is a dense Green’s function matrix, I
represents the unknown coefficients of known charge density basis
functions, and V is the known potential excitation. Each element of
the MoM matrix denotes the interaction between a testing and a
basis function and is written as follows:

Z� � j, i� ��
Sj

dstj�r� �
Si

ds�g�r, r�� fi�r��, (1)

where t and f are the testing and basis functions, S is their domain,
and g(r, r�) is the relevant Green’s function.

3. EXISTING MULTILEVEL QR ALGORITHM

The IES3 fast iterative solver reduces the cost of performing the
matrix vector product Z� I to O(N log N) from quadratic time. It is

based on using the modified Gram–Schmidt (MGS) method [8] for
QR decomposition of a low-ranked interaction sub-matrix A� of the
MoM matrix Z� :

A� mxn � Q� mxrR� rxn, (2)

where R� is upper triangle, Q� is unitary, that is, Q� TQ� � I� and r 		
(m, n). At the same time, it is possible to construct the compressed
representations without forming the entire submatrix from sampled
rows and columns, thereby reducing the setup time to O(N log N).

In RMBT-QR, which is based on the same principle as IES3,
the algorithm has the following three main steps.

1. Geometry subdivisions into cells. binary decompositions
with density balancing and tight bounds, technically known
as tightly bound k-d trees [9], are employed in a manner
similar to those used in IES3.

2. Rank-map predicted QR formations. a rank-map is a stati-
cally-determined lookup table that identifies large and low-
ranked submatrices for QR formation so as to ensure max-
imum compression with minimum setup time. Each entry of
the tale outlines the expected rank of a cell-to-cell interac-
tion, which is a function of various parameters pertaining to
the source and observer cells and the kernel involved.

3. Fine-tuning through splits and merges. the rank-map only
predicts the starting tree structure for a MoM matrix, and the
rank estimation is often inaccurate and may result in under-
estimation of rank or missing larger low-rank blocks. These
problems are addressed by splits and merges, respectively
[3].

The setup cost of the algorithm is largely controlled by the
accuracy of the rank-map predictions. An accurate and exhaustive
rank map would preclude the necessity for merges and unneces-
sary splits, and the optimum tree structure would be achieved
without any backtracking or fine-tuning. However, a foolproof
rank-map cannot be unfeasibly constructed, due to the fact that the
algorithm can lead to cells of any shape and size. This leads to a
high constant being associated with the setup-time cost of the
algorithm.

4. NEW MULTILEVEL QR ALGORITHM

The proposed PILOT-QR algorithm develops a predetermined
multilevel matrix structure for the geometry under consideration,
which guarantees maximum compression. The algorithm has three
main steps as follows.

1. Oct-tree spatial decomposition in 3D. each cube is recur-
sively decomposed by loosely bounded, spatially balanced
spits along orthants [9], which leads to a maximum of eight
child cubes in 3D. The cell data structure is in the form of
an oct-tree, identical to that in multilevel FMMs [6].

2. Basic multilevel interaction list. every cube ci has a nearest
neighbor list [Fig. 1(a)] and an interaction list [Fig. 1(b)].
The nearest neighbor list is defined as

Kci � 
cj�cj is in the same level as ci

and has at least one common vertex with ci� (3)

and the interaction list is denoted by

Ici � 
cj�Pcj � KPci
; cj�Kci�, (4)
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where Pci
denotes parent of ci. In FMM, multipole expan-

sions are used to construct T(cj, ci) @j�cj � Ici
, where T(cj,

ci) denotes the interaction between testing functions of cj

and basis functions of ci. Since PILOT does not explicitly
require cubical regions, but simply deals with interaction
matrices, there is scope for further compression by com-
bining cubes in Ici

in an a priori manner into a new
interaction list called the merged interaction list (MIL).

3. Merged interaction list. it is observed that the interaction
lists of siblings share many cubes in common, as illustrated
in Figure 2 (a 2D version is shown here for ease of illus-
tration). It is possible to group source and observer cubes of
different interaction lists in order to compress larger low-
rank matrices, and thereby gain, in terms of overall com-
pressibility. The common interaction list is carefully decom-
posed into disjointed parts such that the overall compression
is optimized. Each such disjointed part is an interaction
between grouped source cubes and observer cubes and
forms an entry of the MIL denoted by �, which can be
expressed as a combination of cube-to-cube interactions as
follows:

�k � 
Tp�cj, ci�� � p�1 � p � ng, (5)

where ng is the number of regular interactions grouped.

Higher compression is achieved, since a larger matrix is
compressed to low rank, given by

�m�k � n�k�r�k 	 �
i�1

ng

�mi � ni�ri, (6)

where m, n, and r denote the number of rows, number of
columns, and the rank of a submatrix, respectively. The
subscript i denotes a regular multilevel interaction list
entry that is now a constituent of the MIL. Figure 3
demonstrates the decomposition of the common interac-
tion list of Figure 2 into merged interactions.

In PILOT there are a total of 16 MIL entries in 2D and 40 in
3D. The same MIL pattern is valid for all sibling pairs across the
levels. The MIL thus leads to a predetermined tree structure. MoM
submatrices pertaining to interactions of the MIL are compressed
by forming QRs from samples. At the finest level, dense blocks are
retained for interactions of the smallest cube with its neighbors.

5. SIMULATION RESULTS

In this section, simulation results are presented to demonstrate the
accuracy and time and memory efficiency of PILOT. For a com-
parative analysis, results obtained from RMBT-QR and FastCap
[5] are presented side-by-side. A QR decomposition tolerance of
1e-3 is used for both PILOT and RMBT-QR, whereas for FastCap
the adaptive algorithm with a multipole order of 2 is employed. An

Figure 1 (a) Neighbor list and (b) interaction list for the given cube in
FMM at level 4. [Color figure can be viewed in the online issue, which is
available at www.interscience.wiley.com]

Figure 2 (a) Individual interaction shells of each cube belonging to the
sibling combination; (b) common interaction shell for the sibling combi-
nation formed by the intersection of individual interaction regions of cubes
belonging to the sibling combination (for visualization purposes, 2D shells
are illustrated). Similar common interaction regions exist for 3D geome-
tries. [Color figure can be viewed in the online issue, which is available at
www.interscience.wiley.com.]

Figure 3 Merged interaction list entries corresponding to the common
interaction region of Fig. 2(b). Each entry gives rise to a low-rank matrix
block
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absolute residual of 1e-3 is used for the Krylov subspace iterative
solution. All tests were run on a processor with 4-GB RAM and
1.6-GHz CPU speed. The tolerances are chosen such that the
results are of comparable accuracies for all the algorithms.

In the first example, the capacitance matrix of the multinet
structure [Fig. 2(a)] is simulated for validation. The surface of the

structure is meshed with 0.113 million patches. The absolute
values of the first column of the matrix are plotted in Figure 4.

In the next example, a 5 � 5 bus structure is considered. The
number of triangular patches is varied from 1000 to 0.7 million.
The memory efficiency of PILOT is demonstrated first by a com-
parison with regular direct and iterative solvers, as shown in Figure
5, and then to RMBT-QR and FastCap, as shown in Figure 6. The
relative errors (Euclidean norms) in the capacitance matrices ob-
tained by all the algorithms are on the order of 1e-3.

The next example demonstrates the relative advantage of QR
methods for a higher number of nets. A package structure with 14
leads is considered. The surface is meshed with 0.101-million
patches and then solved for an increasing number of right-hand
sides (1 to 14). The time requirements are plotted in Figure .7 The
constant offset between the plots of PILOT and RMBT-QR is due
to the superior one-time setup cost. The memory required for the
process by PILOT is 441 MB, by RMBT-QR is 445 MB, and by
FastCap is 700 MB.

The largest problem solved by using our method thus far is a
10 � 3 array of the structure in example 1. The entire geometry is
discretized with 0.913-million patches. The problem took 3.3 Gb
and 48 min to set up and 90 min to solve for three specific excited
nets. Both the other methods could not fit the problem in the 4-Gb
available.

6. CONCLUSIONS

A new oct-tree-based QR technique for fast-parasitic extraction,
PILOT, has been presented. The best features of FMM and IES3

are exploited; along with the generation of new merged-interaction
lists in order to yield superior run times and reduced memory
consumption. In the battle of reducing constants in the era of
mature linear-complexity algorithms, PILOT can potentially
emerge as an optimal paradigm for parasitic extraction. While this
paper is related to parasitic extraction, the PILOT paradigm can

Figure 4 Absolute values of the first column of the capacitance matrix
for the structure shown are plotted for all three algorithms (relative error in
the capacitance matrix for all algorithms is on the order of 1e-3). [Color
figure can be viewed in the online issue, which is available at www.
interscience.wiley.com.]

Figure 5 (a) Time and (b) memory of PILOT compared to those of the
regular iterative and direct solvers. It can be observed from these logarith-
mic plots that PILOT requires linear time and memory, unlike the regular
methods. [Color figure can be viewed in the online issue, which is available
at www.interscience.wiley.com.]

Figure 6 (a) Time and (b) memory of PILOT compared to those of the
other fast solvers. It can be observed from these linear plots that PILOT has
lower constants associated with its linear time and memory growths. [Color
figure can be viewed in the online issue, which is available at www.
interscience.wiley.com.]
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also be applied to full-save applications for small electrical struc-
tures in multilayered micro-electronic environments.
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ABSTRACT: In this paper, a number of photonic band-gap (PBG)
structures, which are formed by periodic circuit elements printed on
transmission-line circuits, are studied by using a well-known numerical
method, the finite-difference time-domain (FDTD) method. The results
validate the band-stop filter behavior of these structures, and the com-
puted results generally match well with ones published in the literature.
It is also found that the FDTD method is a robust, versatile, and power-
ful numerical technique to perform such numerical studies. The pro-
posed PBG filter structures may be applied in microwave and communi-
cation systems. © 2004 Wiley Periodicals, Inc. Microwave Opt Technol
Lett 41: 173–177, 2004; Published online in Wiley InterScience (www.
interscience.wiley.com). DOI 10.1002/mop.20084

Key words: PBG; FDTD; microstrip

1. INTRODUCTION

Recently, there have been a number of studies on photonic band-
gap (PBG) structures in the area of electromagnetism and com-
munications systems. PBGs are structures typically formed by
periodic circuit elements, in which a band-gap filter behavior is
exhibited in a certain frequency range. They were first proposed in
the area of optics, as given in [1], but were then applied in the
microwave area [2, 3] by downscaling the operating frequencies.

In this paper, a number of PBG planar structures printed on
transmission-line circuits, such as microstrip lines, coplanar
waveguides, and striplines, are studied using a well-known numer-
ical method called the finite-difference time-domain (FDTD)
method [4]. These PBG circuits can be diversely applied into
microwave and communications systems, such as the printed cir-
cuit boards (PCB) in computer motherboards or mobile antennas.
The circuit characteristics, particularly their band-gap filtering
nature, are validated through the analysis of the S parameters.
Results also show that the FDTD method is robust, versatile, and
reliable for such numerical calculations.

2. FDTD METHOD AND COMPUTATIONAL SETUP

The main idea of the FDTD lies on solving the Maxwell’s curl
equation pair:

� 
 H� �
�D�

�t
� J� and � 
 E� � �

�B�

�t
� M� . (1)

Figure 7 Performance comparison showing the efficiency of QR-based
algorithms for increasing number of RHS: (a) multipin structure considered
for simulation consisting of 14 pins; (b) setup and solve times for an
increasing number of RHS. [Color figure can be viewed in the online issue,
which is available at www.interscience.wiley.com.]
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ABSTRACT 

A full-wave time domain integral equation formulation for the simulation of finite conductors and dielectrics, linked 
to linear and non-linear lumped elements, is presented. The method permits coupled rigorous simulation including 
accounting for EMI and non-linearities in the presence of material effects. In addition, a new quadrature scheme is 
incorporated for exactly computing temporal delays between every section of finite basis functions defined over 
triangular patches. This enables finer time step resolution for non-uniform meshes than is permissible with standard 
Gaussian quadrature and singularity extraction.  

I. Introduction 
    Time domain electromagnetic solvers are useful for simulating coupled circuit-electromagnetic problems 
involving IC packages and systems-on-chip, wherein effects of nonlinearities[1] of circuit elements can be modeled 
accurately. Furthermore, broadband simulation for digital and multi-frequency systems can be rendered efficient by 
time domain simulation. The surface-based time domain integral equation (TDIE) approach has been gaining in 
popularity due to its flexibility in modeling arbitrary-shaped structures and recent advance in associated fast 
algorithms [2]. 
     Existing methods to couple TDIE to circuits have been based on port models, convolution methods, and the 
partial element equivalent circuit approach [3,4]. In this work, a generalized rigorous coupling scheme, to 
simultaneously simulate circuits with SPICE-like time domain simulation, and EM interactions with a TDIE 
method, is presented, for both conductors and dielectric materials.  

 
 
 
 
 
 
 
 

 
Fig. 1 Dielectric and Conductor Composite Structure

II. Formulation 
 The modeling of dielectrics in the circuit is facilitated by utilizing the equivalence principle [5,6]. The dielectric 
body is replaced by a equivalent surface on which there are electric current  and magnetic current M  
flowing. The scattering field outside and inside of the dielectric body can be written in terms of the equivalent 
current  and . On the conductor surface there is only electric current flowing. Here  (
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The conductor surface  comprises of two disjoint surfaces and , and such that on the standard 
continuity equation relating the surface current and charge holds, which is also the case on the dielectric surface 
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where s∇  denotes the surface divergence. However, on , which we call terminal surfaces or connecting 
surfaces, the circuit current flowing onto S  from a corresponding circuit node introduces an additional source 
term that alters the surface current and charge on S . This permits connection of two disparate domains, the 
topology-based circuit domain, and the geometry-based EM domain. 
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The current density introduced by the circuit interconnection produces an additional source or sink of charge that 
alters the time dependent scalar potential and the resulting the scattering electric field from and .  cS dS−
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The scattering field from and  can be written in term of magnetic vector potential, A, electric scalar potential, 
, and electric vector potential F where  is the contribution from the EM current,  
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the contribution from the circuit current, and eε  is the permitivity of the medium exterior to the dielectric body.                              
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where dε is the permitivity of the medium interior to the dielectric body. In addition to the scattering field, two more 
conditions are required for the circuit interconnection: electrically small terminals are assumed to be equipotential,  
leading to  
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for where V is the circuit potential at the circuit node connected to the terminal m, and the final 
set of self-consistency equations relates to the application of Kirchoff’s Current Law at the M nodes connected to the 
terminals. 
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The system of equations can be combined to yield the time-domain circuit-EM coupled system. The linear and non-
linear circuits connected to the terminals are modeled by Modified Nodal Analysis (MNA). The coupled system has 
the form, (8) 
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The vector SR represents the tested incident field, and the SR   denotes the values of circuit sources. The 
matrix 

( )jtc
EMC ( )jtCKC

C  is a sparse bipolar adjacency matrix that is used for enforcing Kirchoff’s Voltage and Current Laws at the 
circuit nodes connected to the terminals. This approach enables both linear and non-linear (through local Newton-
Raphson on the MNA sub-matrix) circuit simulation in conjunction with EM simulation. 
 

III. Stability and Accuracy Enhancement 
 
    A new integration scheme in polar coordinates which significantly improves the late time stability associated with 
TDIE and accuracy as well is implemented, for realistic non-uniform meshes. The new formulation takes the exact 
delay difference into account between every section of two interacting basis functions and uses the polar coordinate 
integration scheme for each patch-patch interaction calculation. And this method is exact in the sense that all source 



points are modeld with exact retarded time. The advantage of this technique is the ability to reduce the smallest time 
step in an implicit scheme beyond what is possible by standard Gaussian quadrature and singularity extraction 
methods.  Figure 2  demonstrates the smallest time step possible with the standard method (old) and the proposed 
polar coordinate quadrature (new). The proposed approach has been incorporated into a TDIE scheme and is 
particularly useful for non-uniform mesh examples. 
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    Fig.2 Stability Comparison Between New and Old F
 

IV. Simulation Result 
 
   The ACES IEEE/EMC Society TC9 Challenging Problems have been des
techniques. One of the 2001 Challenging Problems “Differential Pair Over Sp
coupled solver. In this example, a ground plane with or without split is loc
consisting of two trapezoidal voltage sources with rising and falling time of 
internal impedance, delivers a differential mode signal to two symmetric line
decoupling capacitor may be placed across the split. The decoupling capacitor 
a 10nf capacitor, 10nh inductor and 0.03ohm resistor. The pair of wires exte
differential lines are terminated by a 100ohm resistor. The task is the find 
ground point in three case, (1) no split in plane, (2) split in plane and no decou
decoupling capacitor. Fig. 4 and Fig. 5 are the simulation result with or witho
well with results in the available literature. 
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Abstract

The goal of this paper is to describe a methodology for
modeling and simulation of circuit-electromagnetic (EM)
effects that fits into a current electronic design flow. Our
methodology is based on using time-domain macromodels
implemented in a hardware description language (HDL).
Simulation of the entire coupled circuit-EM system can be
carried out either entirely in HDL simulator or in SPICE-
type circuit simulator (using model compiler for macro-
model import). We also describe in detail a circuit-EM con-
tact interface and a neutral mesh format necessary to allow
for flexibility in choice of EM simulators. At each step of
our methodology, we provide an overview of current prob-
lems and solutions with reference to existing publications.

As a demonstration example, we consider a simple cou-
pled system (MEMS resonator connected to a lumped cir-
cuit) and show that simulations using VHDL-AMS macro-
model match full-wave EM results but easily fit in the de-
sign flow and take significantly less time. Our methodology
is straightforward and permits the use of various EM simu-
lators and macromodel identification algorithms1.

1 This research was supported by DARPA NeoCAD Program

1. Introduction

Electromagnetic effects have always been impor-
tant in microwave circuits but now they have become
an increasingly significant factor that affects the per-
formance of modern integrated circuit (IC) systems,
especially at multi-gigahertz frequencies [18]. Such sys-
tems include very large scale integrated (VLSI) chips as
well systems-on-chips (SoC), and the examples of ob-
jects exhibiting EM behavior are interconnects, spiral
inductors, traces, etc. This leads to a necessity of using ac-
curate computer-automated design (CAD) tools for EM
modeling and efficient use of those models in circuit simu-
lation [6].

A variety of numerical electromagnetic field solving
tools have been developed in the past, all of which have
different limitations, capabilities, input and output formats,
and computational costs. Choosing the best tool for a partic-
ular task and successfully employing and integrating it into
an IC CAD design flow are challenging tasks.

Both circuit and EM simulations can be carried out ei-
ther in time domain or frequency domain but mixed-signal
circuit simulations are mostly performed in time domain
(due to nonlinearity of analog circuits and sharp rise and
fall times of digital signals) whereas EM simulations are
mostly performed in frequency domain (due to well devel-
oped frequency domain EM methods).

There are three main approaches to incorporate EM sim-
ulation results in SPICE-type time-domain circuit simula-
tors. First approach is to extract an equivalent RLC cir-



cuit [1], which can be very large (i.e. for substrate cou-
pling) and cumbersome to deal with (model order reduction
is often needed). Second approach is to concurrently cou-
ple a circuit and EM simulator. While adding lumped pas-
sives to a full-wave EM simulation is straightforward, cou-
pling a full-wave EM solver with a non-linear circuit solver
is not a routine procedure (e.g. FDTD-SPICE coupling has
been done but on case-by-case basis [15]). Third approach,
which we describe in this paper, is to develop compact lin-
ear EM macromodels [10].

The last approach is very convenient because macro-
models can be implemented in high-level hardware descrip-
tion languages used for design (such as VHDL-AMS [3]
or Verilog-A [12]), easily interfaced to non-linear circuits,
and re-used. Macromodeling permits significant speed-up
of simulations and thus gains more and more attention in
CAD community (e.g., for MEMS [17]). We should note
that propositions to extend HDL’s to directly support PDE’s
and hence EM modeling have also appeared in the litera-
ture [13] but this work is still in the research stage.

In this paper, we describe a methodology for modeling
and simulation of circuit-EM effects on system performance
by using compact linear EM macromodels implemented
in a hardware description language. We provide an exam-
ple – a simple circuit-driven MEMS system analyzed using
VHDL-AMS macromodel extracted from time-domain EM
simulation. We also describe specifics of circuit-EM contact
interface and EM mesh format in a way that can be used by
different circuit and EM simulators.

2. Methodology

Modern electronic design flow includes such steps as
schematic capture and simulation, system layout, parasitic
extraction, post-layout simulation, etc. At each stage, dif-
ferent tools and file formats, standard and proprietary, are
used [9].

Analog and digital circuitry is typically described using
SPICE- or VHDL-type netlists, which specify how lumped
components or digital logic blocks are connected together.
Layout is typically described using CIF or GDS II format
files. These files contain 2D data about structures located
at different chip layers and together with technology files
(which contain information about thickness, material prop-
erties, and stacking of different layers) give a complete 3D
description of a chip.

Having an ability to do an accurate post-layout simu-
lation is critical for verification of functionality and per-
formance of the complete system. Fully coupled circuit-
electromagnetic simulations are very computationally in-
tensive and are not commonly used. A typical approach
used in the design process today is to perform parasitic ex-

traction and include equivalent RLC circuits into a circuit
simulator.

The process of RLC extraction from EM simulations is
difficult, but works well in many cases, especially for capac-
itances of interconnects. Complex coupled problems result
in large RLC networks and require a subsequent application
of model order reduction methods, which are not well inte-
grated into design flow. Thus there is a clear need for new
approaches in coupled circuit-EM simulation.

Figure 1. Methodology.

The methodology that we propose is illustrated in Fig-
ure 1. An IC system of interest contains lumped circuits
connected at certain contact points to geometrical structures
that exhibit EM behavior and need to be meshed and accu-
rately modeled. Volumetric or surface mesh is stored in neu-
tral mesh format reusable by various electromagnetic sim-
ulators. From frequency- or time-domain simulation data
(depending on application and frequency range of inter-



est), time-domain macromodel can be identified and ex-
tracted [20]. Such model can easily be implemented in a
hardware description language (such as VHDL-AMS) and
used either in HDL simulation of the whole system (circuit
netlist needs to be converted from SPICE to HDL format)
or, with recent advances in model compilers [7, 23], com-
piled for direct use in a SPICE-type circuit simulator.

2.1. EM simulation, contact interface,
mesh format

In circuit simulation, the most popular method is node-
based modified nodal analysis (MNA) [16]. In electromag-
netic simulation, the variety of methods is richer and in-
cludes differential methods (FDTD – finite difference time
domain, FEM – finite element method, etc.), integral equa-
tion methods (MoM – method of moments, BEM – bound-
ary element method, etc.), hybrid methods [21], etc. Many
of these methods can be utilized both in frequency or time
domain but traditionally only FDTD has been used for time-
domain modeling, and FEM and MoM have been used
in frequency domain. Recently, new time-domain methods
(TD-FEM [24], TD-MoM [26]) have been developed and
successfully applied to a variety of problems. An excellent
survey of existing EM methods can be found in [11].

Each method listed above has many variations and de-
serves a separate overview but most EM commercial
tools are based on three major methods and their flavors
– method of moments (e.g., Sonnet by Sonnet Technolo-
gies), finite element method (e.g., HFSS by Ansoft Cor-
poration), and finite-difference time domain method (e.g.,
XFDTD by Remcom, Inc.). All electromagnetic solvers re-
quire creation of some sort of grid or mesh: either vol-
umetric one that includes all problem space (FEM and
FDTD) or surface mesh that covers only certain sur-
faces (MoM).

An electromagnetic solver applied to coupled circuit-EM
problem must recognize the existence of ports or terminals
that connect circuit and EM subsystems and through which
the interaction happens [22]. Exact definition is different for
different EM solving techniques [2]. Examples of specify-
ing such interaction for FDTD can be found in [15] and
for MoM in [26, 5]. Circuit world understands currents and
voltages, and thus latter serve as common shared quantities
at the points of circuit-EM interaction.

Assume that we have identified EM objects and lumped
circuit elements connected to them (identification of IC
package parts that must be modeled as EM objects is a sep-
arate challenging problems that we do not address here).
Then circuit-EM contact interface can be defined as an area
of the EM object surface to which a circuit element is at-
tached. This concept is shown in Figure 2 (two contacts may
form a microwave port).

Figure 2. Circuit-EM contact interface.

The contact interface area can be specified in two ways:
mesh-dependent and mesh-independent. Mesh-dependent
method can be defined as specifying mesh elements that be-
long to the contact interface. Mesh-independent method can
be defined as specifying 3D coordinates of contact points
(using either x, y, z coordinates in the integrated chip ref-
erence frame or text labels in layout/technology files). Af-
ter the mesh is created, mesh faces in the vicinity of that
point (e.g, a spherical region of a certain radius) are recog-
nized as part of contact interface.

Both ways described above have advantages and disad-
vantages. Mesh-dependent method is less portable as it re-
quires the existence of prior mesh but is better for accu-
rate coupled simulations. Mesh-independent method does
not require prior mesh existence and has better portability
but may suffer from potential problems related to mesh re-
finement in the process of EM solution.

Figure 3. Mesh format.

Mesh itself can also be stored in a variety of ways. Cur-
rently, many different mesh formats for EM simulation ex-
ist. Unfortunately, there is no standard analogous to netlist
standard for circuits. We propose to use the following neu-
tral mesh format, simple and intuitive. To completely define
a mesh, three files are needed: node file, element file, and
material file. The format of those files can be illustrated with
the example shown in Figure 3, where a surface of a per-
fectly conducting object positioned in free-space is meshed



with triangles.
Node file lists coordinates of all nodes (in units selected

by user) in the cartesian coordinate system. The node file
for the example shown in Figure 3 is:

Node x y z
1 x1 y1 z1
2 x2 y2 z2
...

Element file lists all surface and volume elements (trian-
gles, tetrahedra, etc.) formed by nodes which serve as ele-
ment vertices. If an element belongs to a surface dividing
two regions with different properties, those regions must be
specified by their numbers. In the example shown in Fig-
ure 3 the elements are triangles on the surface dividing re-
gion 1 and region 2, and the node file is:

Element n1 n2 n3 region1 region2
1 5 6 9 1 2
2 6 9 10 1 2
...

Material file lists all regions (by number), their type (vol-
ume, surface, layer), and their properties (permittivity, per-
meability, and conductivity). Infinite conductivity for per-
fect electric conductors can be denoted as PEC. The exam-
ple shown in Figure 3 contains free-space (region 1) and a
PEC object (region 2). The material file for this example is:

Region eps mu sigma type
1 1 1 0 volume
2 1 1 PEC volume
...

The mesh format, described above, can be used for dif-
ferent EM simulators and translated into mesh formats un-
derstood by any of the commercial tools. Once an EM sim-
ulation of the multi-port structure is completed, a macro-
model needs to be extracted. This process is described in
the next subsection.

2.2. Macromodeling

Macromodeling is extremely important for speed-
ing up simulations of complex systems, such as coupled
circuit-electromagnetic systems. In order to be easily im-
plementable in a hardware description language, a macro-
model must be casted into a time-domain differential
equation form. Such model can be obtained from ei-
ther frequency- or time-domain EM simulation.

A number of different algorithms for extracting macro-
models and reduced order models from data are avail-
able [14, 8]. An advantage of using time-domain data
is that in most cases passivity and stability of obtained
macromodel are easier to guarantee than when work-
ing with frequency-domain data. Thus, for illustration of

our methodology, we choose an approach where a lin-
ear compact macromodel is identified from a time-domain
electromagnetic response as described in [25].

All possible information about system dynamics is the-
oretically contained in an impulse response – a system re-
sponse to a delta-function excitation. System response to
any input can be found as a convolution of the impulse re-
sponse with the input signal. This process is very compu-
tationally expensive, especially for highly-resonant devices
with long impulse responses. In addition, delta-function
causes numerical problems in time-domain EM solvers, and
more commonly used excitation is Gaussian pulse:

u(t) = uo e
−

(t−τ)2

2T2 (1)

with -3dB bandwidth of 0.13/T.
System response to a Gaussian pulse can allow one to

identify a continuous time-domain macromodel in its clas-
sical state-space form:

~̇x = Â ~x + B̂ ~u + K̂ ~e ,

~y = Ĉ ~x + D̂ ~u + ~e , (2)

where ~x(t) is the vector of state variables, ~u(t) is the excita-
tion, ~y(t) is the output, and ~e(t) is the noise signal. The pro-
cess of identification can be described as finding Â, B̂, Ĉ ,
D̂, and K̂ from given ~u(t) and ~y(t).

There exists a large number of different methods and
tools for system identification (see, e.g., MATLAB2 sys-
tem identification toolbox). The order of the model (dimen-
sion of the Â matrix) can be determined from the data.
The accuracy and other issues associated with macromodel
identification, such as passivity and stability, are not dis-
cussed here since they are well covered in the literature (see,
e.g., [4, 19]) and lie outside the scope of this paper.

The time-domain state-space model (2) is essentially a
set of ordinary differential equations that can easily be im-
plemented in a hardware description language for later use
in circuit simulation, as it is shown in the next section.

3. Example

For demonstration of modeling flow methodology de-
scribed above, consider a simple example: MEMS res-
onator (micromachined comb structure, approximately
1.5 mm × 0.5 mm in size, and positioned in free-space)
driven by an external voltage source as shown in Fig-
ure 4. This MEMS structure represents an electromagnetic
subsystem and can be thought of as part of a larger inte-
grated package. The voltage source and the resistor repre-
sent a lumped circuit subsystem (which can be any transis-
tor circuit).

2 Trademark of Mathworks, Inc.



Figure 4. Circuit-driven MEMS resonator.
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Figure 5. Results of the simulations for the
system shown in Figure 4.

The voltage source generates a Gaussian pulse of the
form (1) with uo = 1 V, τ = 70 ps, and T = 14 ps (band-
width ≈ 10 GHz). The resistor is R = 100 Ohm. The mesh
for MEMS structure was generated and stored in the neu-
tral format described in the previous section. The problem
was solved using a full-wave time-domain integral-equation
method [26]. It contained about 1000 triangles (approxi-
mately 1500 unknowns) and took approximately 1 minute
of runtime on a 1 GHz PC.

Consider a macromodel of the system that includes
MEMS resonator in series with 100 Ohm resistor. The in-
put u(t) to this system is the excitation voltage from the
source Vs and the output y(t) is the current I through the
system. For identifying the continuous state-space sys-
tem model of the form (2), we used ’pem’ and ’d2c’
functions in MATLAB system identification toolbox. The
response y(t) was well approximated with the 3rd or-
der model, where noise component was set to zero. The
model was implemented in VHDL-AMS as shown be-
low and simulated using VHDL-AMS simulator Ham-

ster3. The runtime was 0.2 s on 2.5 GHz PC. As one can see
from Figure 5, macromodel simulation results match the re-
sults of full-wave EM simulation very well.

----- Macromodel of MEMS resonator ---
-------- in series with resistor -----
ENTITY macromodel IS
PORT (TERMINAL a, b : ELECTRICAL);
END;
ARCHITECTURE behav OF macromodel IS
QUANTITY u ACROSS i THROUGH a TO b;
QUANTITY x1,x2,x3: real;
CONSTANT A11 : real := -4.929E11;
.....
CONSTANT C3 : real := -2.04e-8;
CONSTANT D : real := 0.00518;
BEGIN
x1’dot == A11*x1+A12*x2+A13*x3+B1*u;
x2’dot == A21*x1+A22*x2+A23*x3+B2*u;
x3’dot == A31*x1+A32*x2+A33*x3+B3*u;
-i == C1*x1+C2*x2+C3*x3+D*u;
END ARCHITECTURE;

------ System description ----------
ENTITY system IS END;
ARCHITECTURE behav OF system IS

TERMINAL n1: ELECTRICAL;
BEGIN
Vs: ENTITY gaussian_source (behav)

GENERIC MAP (1.0,70.0E-12,14.0E-12)
PORT MAP (n1,electrical_ground);

Mm: ENTITY macromodel (behav)
PORT MAP (n1,electrical_ground);

END behav;

This example demonstrates that macromodels are an
accurate and efficient way of simulating coupled circuit-
electromagnetic systems in time-domain. Macromodels in
general contain much fewer internal variables than full EM
problems (in our example, 3 vs. 1500) and thus provide a
significant simulation speedup. They are easy to implement
in HDL and can be used in today’s design flow.

4. Conclusions

In this paper, we described in detail the methodology of
modeling and simulation of coupled circuit-electromagnetic
effects using time-domain EM macromodels implemented
in a hardware description language. This methodology fits
well into electronic design flow existing today. Simulation
of complete integrated circuit system can be carried out ei-
ther entirely in HDL or in SPICE-type circuit simulator

3 Now part of Simplorer, trademark of Ansoft Corp.



(using HDL-to-SPICE model compiler). We have also de-
fined a circuit-EM contact interface and a neutral geome-
try meshing format that can be used by various electromag-
netic solvers used in the design process.

For demonstration, we considered a simple coupled sys-
tem (MEMS resonator connected to a lumped circuit) and
showed that VHDL-AMS macromodel simulation results
match full-wave EM results but take significantly less time
to obtain. This shows that EM macromodeling is a very ef-
fective way to include circuit-electromagnetic effects into
simulation. Implementing macromodels in a hardware de-
scription language allows one to use them in the current IC
design flow.
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ABSTRACT 
Parasitic parameter extraction is a crucial issue in Integrated 
Circuit design. Integral equation based solvers, which guarantee 
high accuracy, suffer from a time and memory bottleneck arising 
from the dense matrices generated.  

In this paper we present a hybrid FMM-QR algorithm that 
combines the best features of the Fast Multipole Method and the 
QR based matrix compression method to achieve faster setup and 
solve time and lower memory requirements. The method is 
applied to extract parasitic capacitances from the layout of 
arbitrarily shaped conductors and dielectrics. Examples 
demonstrating the accuracy and the superior time and memory 
performances as compared to existing solvers are also presented. 

Categories and Subject Descriptors 
J.6 [Computer-Aided Engineering]: Computer-Aided Design 

General Terms 
Algorithms, Performance, Design. 

Keywords 
Parasitics, Multilevel, Low-rank, conductors and dielectrics 

1. INTRODUCTION 
In deep-submicron technology diminishing wire spacing and 
higher aspect ratio structures lead to increased parasitic effects   
[1]. As a consequence, the interconnect delay may significantly 
increase and eventually dominate over the gate delay causing 
erroneous clock-timing that leads to a malfunctioning circuit. 
Hence proper modeling of interconnects is key for meeting timing 
requirements in a circuit level simulation of VLSI packages. Also 
in rapidly growing MEMS application electrostatic analysis of 
large MEMS array has become extremely important.  

Analytic models like charge-based capacitance measurement 
method [2] often suffer from oversimplification of the geometry 

of interconnects.  Stochastic models like the floating random walk 
method [2] suffer from problems of convergence and the effects of 
multilayered dielectrics. Therefore to achieve a guaranteed high 
degree of accuracy a numerical 3D electromagnetic solver is 
necessitated. The direct application of integral equation solvers 
leads to the generation of a dense matrix with large number of 
unknowns, the solution of which presents a time and memory 
bottleneck.  

Existing fast solver algorithms aimed at solving the dense system 
of integral equations through fast matrix-vector product based 
iterative solutions include the Fast Multipole Method (FMM) [3], 
the QR-based method (IES3) [4] and the Pre-corrected Fast 
Fourier Transform (FFT) method [5]. The pre-corrected FFT 
method degrades in efficiency for non-uniform distribution of 
basis-functions, which is often encountered in circuit problems, 
due to the inherent necessity of a uniform global grid. The FMM 
and the IES3 algorithms on the other hand are ideally suited for 
application to arbitrarily shaped circuit structures. However they 
suffer from discrepancies in the setup and solve times and the 
memory requirements. The FMM method has a faster setup time 
but a higher memory requirement and a slower solve time. On the 
other hand the IES3 method leads to higher compression and 
consequently a faster solve time at the cost of a slow setup time. 
Due to these discrepancies, the applicability of the algorithms 
become problem specific: QR-based methods are ideally suited 
for large number of nets which involve a single setup but multiple 
solution phases, and the FMM method is better applicable for a 
single or small number of excitations. 

In the new algorithm presented here, the multilevel oct-tree 
structure (common to FMM approaches) and the QR compression 
technique in IES3 are combined. Further optimizations in the form 
of a merged interaction list developed here ensure significantly 
better all-round performance of the hybrid algorithms. The 
reasons behind the superior performance of this algorithm as 
compared to FMM and IES3 are discussed. The method is then 
applied to extract parasitic capacitance from the layout of 
conductors and dielectric structures. Accuracy, memory and 
timing results are compared with FastCap [3], which is an FMM-
based open source code and RMBT-QR (Rank-Map based Binary 
Tree), which is our prototype implementation of IES3. In the last 
example it is demonstrated that the algorithm can also be applied 
for the fast computation of electrostatic forces on MEMS 
structures. 

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
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2. INTEGRAL EQUATION 
The conductor and dielectric interfaces are discretized into 

panels. Basis functions are defined on the discretized panels and 
appropriate boundary conditions are enforced on the conductor-
to-dielectric and dielectric-to-dielectric interfaces [6]. Let CS  and 

DS  represent the set of discretized panels on the conductor-to-
dielectric and dielectric-to-dielectric interfaces. The application of 
the method of moments formulation leads to the following matrix 
equation: 

' '
CCC CD

DDC DD

    =    
   

σ VZ Z
σ 0Z Z

                      (2.1) 

where, Cσ  represents the set of total-charge on CS , Dσ  
represents the set of total-charge on DS  and V  represents the set 
of potentials on CS . The first set of equations ensures 
equipotentiality on conductor surfaces.  
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j i
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t t

j i ds h ds g f t S t S
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∫ ∫Z r r r r  

(2.2) 
where h and f  are the testing and basis functions 

respectively, g represents the Greens function and t is the domain 
of definition of each basis function. The second set of equations 
enforces the continuity of the normal component of the electric 
displacement vector D , across the dielectric-to-dielectric 
interfaces: 
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(2.3) 
where ijδ is the Kronecker delta function, n̂  is the outward-

pointing unit vector, rε +  and rε −  are the dielectric constants for 
the 2 sides of the dielectric-to-dielectric interface. 

The entries of the capacitance matrix for p conductors 
( | 1, 2,3,.....Y i pi = ) can be evaluated thereafter by the well-
known formulation: 

( )
i

ij F
Y

r drσ
  ′ ′=  
  
∫C                       (2.4) 

when                 ; 1;  0 | 1, 2,3....,j m m j m p≠= = =V V          
(2.5) 

where Fσ represents the free-charge density on the 
conductor- dielectric interface and is obtained as: 

( ) ( ) ( )F r Cr r rσ ε σ=                           (2.6) 
where rε is the dielectric constant of the dielectric at the 
conductor-to-dielectric interface. 

3.  MULTILEVEL OCT-TREE BASED QR 
ALGORITHM 
The pre-determined interaction list oct-tree (PILOT) QR 
algorithm efficiently compresses the method of moments matrix in 
a multilevel scheme. The algorithm has 4 main constituents: 

3.1 Oct-tree spatial decomposition in 3D 
The basis functions are grouped together by a regular geometric 
pattern of cells. The best combination, which yields a regular cell 
pattern, is loosely bounded, spatially balanced decomposition 
into orthants (quadrants in 2D and octants in 3D).The starting cell 

0
0c  is the smallest cube that encloses the entire geometry. The 

superscript indicates the level of decomposition to which the cube 
is associated and the subscript denotes the cube number in that 
level. Each cell is then recursively decomposed into a maximum 
of 8 cubes in 3-D, depending on the distribution of basis 
functions. Thus each cube l

ic , which is the ith cube at level l is 
decomposed by spatially balanced splits along each coordinate, x, 
y and z. Each cube 1l

jc +  resulting from this decomposition is 

called a child of l
ic  and the latter is denoted as the parent of 1l

jc + : 

1l
j

l
ic

P c+ =                                      (3.1) 

All the child cubes of l
ic  are siblings of each other, where a 

sibling set is defined as: 

1 1 1
1{ | }l l l

j k j

l
kc c c

S c k P P+ + +
+= " =                 (3.2) 

The geometric decomposition is hence exactly similar to that of 
multilevel FMM and therefore its interaction scheme can be 
leveraged in the presented algorithm.  

3.2 Basic multilevel interaction list 
Every cube , | 0 ; 0l l

i c cc i l l l i n∀ ≤ ≤ ≤ < , where cl  is the 

total number of levels and l
cn  is the total number of cubes at level 

l, has a nearest neighbor list l
ic

K  and an interaction list l
ic

I . The 

nearest neighbor list, is defined as: 
           { | is in the same level as and

                       has atleast one contact point with }

l
i

l l l
j j ic

l
i

K c c c

c

=
     

(3.3) 
Consequently the interaction list is defined as: 

{ | ; }l l lli j ici

l l
j P jc c c

I c P K c K= ∈ ∉                   (3.4)                       

 
The neighbor and the interaction list of a typical cube in 

level 4 is   shown in figure 1: 
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3.3 Merged interaction list 
It is observed that the interaction lists of siblings share many 
common cubes: 

 l
i

S c
I I φ= ≠I         | l

j

l
i c

i c S" Î            (3.5) 

The common cubes in the interaction lists of the siblings are 
denoted by sI . For visualization purposes, parts of the 2D 
common interaction shell is illustrated in figure 2, though our 
algorithm is designed for 3D geometries.  

 

 
It is possible to merge overlapping interaction lists belonging to 
siblings in order to compress larger matrices to low epsilon-ranks 
(numerical rank under a user-defined tolerance) and thereby gain 
in terms of overall compression. It must be noted that the common 
interaction list does not directly translate into a low-ranked 
merged interaction. The common interaction list is decomposed 
into disjoint parts such that the overall compression is optimized. 
Each such part denoted by µ  is an interaction between grouped 
source cubes and observer cubes and forms an entry of the 
Merged Interaction List (MIL). A µ  can be expressed as a 
combination of multilevel oct-tree cube-to-cube interactions: 

{ ( , )} |1l l
k p j i gT c c p p nm = " £ £              (3.6) 

where ( , )l l
p j iT c c  denotes the interaction between the source basis 

functions in cube l
ic and testing functions in cube l

jc and gn  is the 
number of multilevel oct-tree interactions grouped. Higher 
compression is achieved since a larger matrix is compressed to a 
low epsilon-rank under the same tolerance: 

( ) ( )
1

g

k k k

n

i i i
i

m n r m n rµ µ µ
=

+ < +∑               (3.7) 

where m, n and r denote the number of rows, number of columns 
and the epsilon-rank of a sub-matrix. The subscript i denotes a 
regular multilevel interaction list entry that is now a constituent of 
the MIL. Figure 3 demonstrates the decomposition of the common 
interaction list of figure 2 into merged interactions.  

 

 
 

Thus the regular interaction list is replaced by the merged 
interaction list, which has fewer interactions to consider and 
larger low epsilon-ranked matrices to compress with the same 
tolerance.  In PILOT, the interaction lists of 4 siblings in 2D are 
replaced by 16 merged interaction entries. Each MIL entry 
constitutes of the grouping information for source cubes and 
observer cubes and the corresponding expected epsilon-rank. The 
expected epsilon-rank is the maximum rank observed for sources 
and observers randomly placed in an MIL setup. The MIL entries 
along with the expected ranks are setup as a one-time process for 
a given kernel. Though there are 16 entries in the MIL, there are 
only 3 different types of interactions to be evaluated and the rest 
could be derived from symmetry considerations. The same MIL 
pattern is valid for all sibling pairs across levels. Although for 
visualization purposes the 2D MIL construction is illustrated in 
detail, PILOT supports MIL for both 3D and 2D geometries. A 
similar MIL is derived for 3D geometries with 40 entries, with 
only 5 unique entries owing to symmetry. 

3.4 QR compression of MIL entries 
MoM sub-matrices pertaining to interactions of the MIL are 
compressed separately for testing functions belonging to CS  and 

DS  by forming QRs from samples [4]. Consider n source basis 

functions fi  for i = 1, 2, …, n belonging to ksµ , which is the kth 

MIL source group. Similarly, consider m testing functions 
belonging to CS  inside koµ ,  which is the observer group of the 

same MIL. Let the sub-matrix 
sub
m n×Z  of the full MoM matrix Z  

represent the interactions between the basis and the testing 
functions through the designated Green’s function g( , )′r r . The 

column of 
sub

Z  pertaining to the interaction of fi with all testing 
functions is closely related to other columns.  

Figure 3: Merged interaction list entries corresponding to 
the common interaction region of figure 2. Each such 
entry gives rise to a low-rank matrix block. 

Figure 2: (a) The individual 
interaction shells of siblings 

(b) Common interaction shell 
for the sibling combination 

(a) 

(b)  

Sibling Combination 

Common 
interaction 
region for 
the sibling 
combination 

Interaction Shell 

Figure 1: (a) Neighbor list and  
(b) Interaction list for the given cube at level 4. 
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Figure 5: Performance comparison of PILOT with 
regular direct (dense-LU) and iterative solvers 

(a) (b)

Using the Modified Gram-Schmidt (MGS) process [6] and a 

user-specified tolerance ε , 
sub

Z  can be decomposed into a 
unitary matrix m r×Q  and an upper triangular matrix r n×R  such 
that:  

sub

sub
ε

−
<

Z QR

Z
                         (3.8) 

   where,                            
H

=Q Q I                              (3.9)   

and the matrix norm X  is defined as the maximum 

singular value of the matrix X . Similarly the interactions 
corresponding to testing functions belonging to DS can be 
compressed for the same MIL. 

4. ADVANTAGES OF PILOT  
The main idea behind PILOT is to maintain the superior 
compression efficiency inherent to QR-based methods compared 
to FMM based methods, while expediting the process of matrix 
compression. In other words the setup time is reduced while 
preserving the solve time and memory efficiency. 

The absolute setup time for RMBT-QR (our prototype 
implementation of IES3) is largely controlled by the accuracy of 
rank map predictions. An accurate and exhaustive rank map 
would preclude the necessity for unnecessary merges and splits 
and the optimum tree structure would be achieved without any 
backtracking or refinement within the tree structure. However, a 
foolproof rank-map is difficult if not impossible to construct 
owing to the fact that the algorithm can lead to cells with any 
shape and size as can be seen in figure 4.  

 

 
It is infeasible to cover the infinite combinations of parameters, 
thus introducing a scope of error in the rank map. A conservative 
rank map will require more merges, whereas a liberal rank map 
will induce wastage of time by constructing unacceptable QR 
factorizations which are then discarded. Thus the setup time is 
considerably influenced by the variability of the tree structure and 
the resulting backtracking and refinement.  In PILOT, the setup 
time is significantly reduced without compromising on memory or 
solve-time compression. The new algorithm exploits the regularity 
of cell size, shape and location of a spatially balanced oct-tree as 
in a multilevel FMM algorithm. By recourse to the FMM 
interaction list and by adding a few additional features to 
maximize compression, a regular and compressed interaction 
pattern is generated. The number of different interactions to be 
evaluated is finite and small and therefore exhaustive and accurate 
a priori epsilon-rank estimation is possible. PILOT therefore 

incorporates the best features of the regular tree structure of 
multilevel FMM and the kernel-independent low-epsilon-rank 
compression of IES3. 

5. RESULTS 
In this section we present simulation results to demonstrate the 
accuracy and time and memory efficiency of the PILOT-QR 
algorithm as compared to other existing solvers. All experiments 
are performed on a 1.6GHz processor with 4GB available RAM 
space. For PILOT and RMBT-QR analytic integrations are used 
for the near field terms in conjunction with the collocation 
scheme. For off-diagonal blocks, a QR decomposition tolerance of 
1e-3 is used for both PILOT and RMBT-QR whereas for FastCap, 
the adaptive algorithm with multipole order of 2 is employed. A 
relative residual of 1e-3 is used for the GMRES iterative solution. 
The number of iterations required is observed to be similar for all 
the methods.  

In the first example we consider a 3 level interconnect structure in 
a 10mm x 4mm x 1mm space. Each interconnect is 0.1mm x 
0.1mm in cross-section. The separations between the levels are 
0.4mm and the minimum separation between traces on the same 
level is 0.15mm. 

The problem is solved with 10 interconnects as active nets and the 
rest as floating conductors. The norm2 errors observed for all the 
algorithms in the capacitance matrix so extracted are around 1e-3. 

 

In figures 5a and 5b the performance of PILOT is compared with 
that of regular direct (LU) and iterative solvers for the 3 level 
VLSI interconnect structure as discussed above. It can be 
observed that both the time and memory requirement scales 
linearly for PILOT as compared to the quadratic memory and time 
scaling for the regular iterative solver and the quadratic memory 
and cubic time scaling for the regular direct solver. It must be 
mentioned that for very small number of unknowns the regular 
approaches (direct/iterative) could be more profitable owing to the 
computational overhead of the fast solvers. 

In figures 6a and 6b, the linear scaling coefficients of PILOT are 
compared with those of other existing fast solvers, FastCap and 
RMBT-QR. It is observed that PILOT maintains the compression 
efficiency of RMBT-QR while improving on the time 
requirements owing to a faster set-up time, thereby achieving an 
all-round superior performance over the existing fast solvers.  

Figure 4: Multilevel tight bound k-d tree  used in  
RMBT-QR (IES3)  

797



Figure 9: a) Memory comparison of PILOT with 
FastCap in the presence of dielectrics b) The total time 
required by the different algorithms for multiple right 
hand side solutions for the package structure in figure 8. 

(a) 
510× (b)

Figure 10: Micro-mirror array element. Two static combs are 
anchored to the base by 3 µm thick 2SiO slabs. Each static 
comb has 16 teeth each with dimensions of 20µm×1µm teeth, 
separated by 3 µm . Each mirror is 45µm×32µm×2µm and 
can be tilted about the axis of the supporting torsion beam. 
Two comb structures are attached one on each side of the 
mirror, each containing 15 teeth each with dimensions of 
20µm×1µm teeth. 

Torsion Beam 
Static Comb (SC) 

Anchor

Mirror Rotational Comb (RC)

4rε =

11.9rε =

Figure 8: Comparison of results of PILOT with FastCap with
or without dielectrics compared with/without dielectrics for the
package structure in figure 8. 

In the next example we consider a package structure with 56 
conducting leads as shown in figure 7:  

 
The first row of the capacitance matrix obtained for the 2 cases, 
with and without dielectrics, are plotted in figure 8 using PILOT-
QR and FastCap. It can be observed that the results demonstrate 
excellent match between the values obtained from the 2 different 
algorithms. It can also be noted that due to the presence of the 
dielectrics the coupling-capacitances between the leads increase. 

 

 

 

 

 

 

 

 

 

 

 

The required memory is compared with FastCap in figure 9a.  In 
figure 9b, the advantage of PILOT is demonstrated over RMBT-
QR for multiple nets for the package structure shown in Fig. 7, 
without the dielectrics. Time taken by RMBT-QR is always more 
compared to the time taken by PILOT, by an offset amount, 
though they demonstrate to have the same slope. This observation 
supports an improved set-up time performance of PILOT 
compared to RMBT-QR which is emphasized for a multiple net 
problem. 

 
 

 

 

In the last example we demonstrate the applicability of PILOT in 
the electrostatic force analysis for MEMS array structures where 
large number of unknowns necessitates fast solution. The structure 
under consideration is a prototype of an array of micro-mirrors, 
which are used as electro-statically controlled optical switches. 
One array element is shown in figure 10. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Application of voltage on any of the static combs (SC) can 

rotate the micro-mirror about its supporting torsion beam. The 
PILOT-QR algorithm is applied to compute the electrostatic fields 

Figure 6: Performance comparison of PILOT with existing 
fast solvers, FastCap (FMM based) and IES3 (QR-based) 

(a) (b)510× 510×

Figure 7: Package structure 280µm×680µm×56µm with 56 
leads. The package is sandwiched by a top and a bottom 

2 3Al O ceramic layer ( rε =9.8 ) of thickness 20µm . A dielectric 
slab of rε =11.9 and thickness of 10µm is placed in the space 
between the leads ( 96µm×220µm ). 
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Figure 12: The cross-coupling effects in a micro-mirror array 
are demonstrated by plotting the electrostatic pressure 
distribution at points on rotational-comb-1left due to 
excitations at various static-combs. 

and forces on the structures at various mirror angles. Since in an 
array of micro-mirrors the combs are placed close to each other 
there is electrostatic cross-coupling between the elements. This 
necessitates the simulation of the entire array for accurate 
prediction of the pull-down voltage of every mirror.  

In this example the pressure distribution on a 10 10× array of 
micro-mirrors due to electrostatic actuation is simulated. The 
results are demonstrated in figure 11 on a part of the array.  
 

 
In figure 12, the cross-coupling effects between the elements of 
the micro-mirror array structure are demonstrated. The static right 
comb of element 1 (SCR1) is excited by applying 1Volt. The 
electrostatic pressures on points at the edge of the rotational comb 
to the left of element 1 (RCL1) are plotted. Maintaining the 
excitation on the SCR1, additional excitations are applied in 
succession on static combs intended to rotate other elements. 
However, due to cross coupling, the electrostatic pressure on the  

 

 

 

 

 

 

 

 

 

 

 

 

 

RCL1 change and the effects are demonstrated in figure 9. It is 
observed that as we move the second excitation closer to the 
RCL1 (observation comb), the coupling effect becomes 
pronounced. The simulation results confirm that the excitation of 
neighboring elements could change the electrostatic torque on a 
mirror, which in turn affects its rotational angle.The number of 
patches used for the simulation of the entire array is 0.342 

million. The PILOT solved the problem with 3.5GB memory, 54 
minutes of one-time setup and 16 minutes of solve-time per right 
hand side. FastCap could not fit the problem in the given RAM 
resources.  

6. CONCLUSIONS 
In this paper an improved multilevel scheme for QR-based matrix 
compression and subsequent fast iterative solution is presented. 
The method is based on exploiting the regular geometry structure 
of oct-tree decomposition along with merged-interaction 
optimizations to achieve a pre-determined block-matrix structure 
and consequently a faster setup time for QR-based compression. 
The memory and solve-time efficiency common to QR based 
approaches is preserved and hence overall superior performance is 
achieved. 

The method is applied to parasitic capacitance extraction for 
structures on boards, packages and chips. The superior time and 
memory performance of the algorithm is demonstrated as 
compared to existing fast solvers. The method is also applied to 
predict the electrostatic pressure distribution on a MEMS array 
structure.  

The algorithm is kernel independent and hence can be applied to 
solve multi-layered dielectric problems. It is also amenable to fast 
solution of full-wave kernels for electrically small structures. 
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Figure 11: Electrostatic pressure (N/m2) distribution 
obtained on a 4 element part of a 10 × 10 array of MEMS 
micro-mirror structure, by placing 1Volt on SCL1 and 
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1 Introduction 
Padé via AWE (Asymptotic Waveform Expansion) [1] and other model order reduction techniques 
such as PVL (Padé via Lanczos) [2] and PRIMA [3] have been used for efficient solution of a 
wide variety of problems.  PVL and PRIMA use Lanczos and Arnoldi processes, respectively, to 
extract the dominant eigenvalues of system matrices of the form CG s+ .  Extending PVL or 
PRIMA to handle system matrices with other functional forms is difficult for a number of reasons 
[4].  AWE based methods do not suffer from some of these limitations, so EM (electromagnetic)  
MOR (model order reduction) has focused on applying AWE to various types of problems.  Of 
particular interest is treatment of the system matrix as the superposition of several other matrices 
that form a polynomial in frequency [5]. 
 
This work considers a coupled EM-circuit system [6] where the EM portion of the system is 
expressed using boundary element integral equations represented by the method of moments 
(MoM), and the circuit portion is described using modified nodal analysis (MNA).  The system 
therefore contains two different kinds of physics.  The advantage of the coupled approach is the 
ability to observe circuit effects on EM quantities, and to design EM-aware microelectronic 
circuits.  Here we show that Padé via AWE can be used successfully to implement fast frequency 
sweeps for coupled EM-circuit systems. 
 
2 Single Point AWE Expansion and Padé Approximation 
As described in [6], coupled EM-circuit simulation can be performed by forming the system 
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where 11Z  is the pure electromagnetic part of the system and 12Z , 21Z , and 22Z  extend the 

electromagnetic system to provide terminals where the circuit part of the system, MNA , can be 
coupled to the electromagnetic part.  12C  expresses the coupling between the electromagnetic and 
circuit systems.  J  is a vector of electromagnetic unknowns and ckt  is the voltage and current 
unknowns in the circuit part of the system.  cI  is the unknowns for the EM connection points.  

emex  is the electromagnetic excitation of the system and cktex  is a circuit excitation vector 
containing independent voltage and current sources. Such a system enables fully-coupled 
simulation as well as terminal-based EM models for use in circuit simulation. 
 
For the EM portion of the system, we use the electric field integral equation (EFIE) with surface 
impedance.  The EFIE enforces tangential continuity of electromagnetic fields through 
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where r is some position on the surface of a conductor, A is the magnetic vector potential in the 
Lorentz gauge, φ the electric scalar potential, Zs the surface impedance, Js the surface current, and 
Eincident the incident electric field strength.  For electrically small systems, such as mixed-signal 
systems-on-chip, the quasi-static Green’s function applies.  A is therefore frequency independent, 
∇φ is inversely proportional to frequency, and Zs is proportional to the square root of frequency.  
Similarly, the circuit part of the system is 

 CR
L f

f
YY

Y
MNA ++=  (3) 

where LY , RY , and CY  are the admittances associated with inductive, resistive, and capacitive 
elements in the circuit portion of the system, respectively.  In turn, the coupled system matrix is 
expressed as the sum of frequency dependent matrices 
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Rewriting in terms of fg =  yields the system equation 

 ( ) zxLZRC 2432 gggg
sZf =+++  (5) 

We then expand x  in a Taylor series of k terms about 00 fg =  with γ+= 0gg , using a 
conditioning factor ξ as in [2], and derive the AWE recursion relationships as in [6] to find the 
AWE moments kxx K0 .  A vector Padé approximation Padéx̂  is then computed for x  by 
forming and solving the Padé Hankel matrix for denominator coefficients of each element in x  
and using the direct formula for numerator coefficients ([7], Chapter 1, equations 1.6 and 1.7). 
 
3 Multipoint Expansion and Numerical Conditioning 
Typically, the frequency range of interest is known a priori, and it is desired to find an 
approximation or set of approximations which is accurate over the entire range.  We use a binary 
search which places the Padé expansion point in the middle of the frequency range.  The resulting 
expansion is evaluated at the interval’s endpoints and compared to the exact solution at the 
endpoints.  If the approximation’s error is larger than some specified tolerance, the interval is 
divided into two sub intervals of equal size, new expansions performed, and checked against exact 
solutions at their intervals’ endpoints.  If necessary, additional subdivision is performed 
recursively until the desired accuracy is obtained. 
 
Calculation of Padé approximants directly from AWE moments is notoriously poorly conditioned 
[7].  The scaling factor ξ used in (7) has great impact on the Padé Hankel matrix’s conditioning.  
A variety of possible choices for ξ have been proposed [1]; our current method is to compute an 
initial 1x  with ξ=1 and then update ξ as 
 ( )01 /.mean xx=ξ  (6) 
where ./ denotes element by element division and near zero elements in 0x  are ignored.  kxx K1  
are then computed with the new value of ξ.  Such single step adaptation of ξ is not, in principle, 
optimum.  However, effective values of ξ have reliably been produced using this method.  The 
authors have also implemented the WCAWE method of [5] and found WCAWE and Padé via 
AWE with adaptive ξ produce near identical results on a variety of test cases. 
 
Each node present in MNA  whose voltage is invariant in frequency results in an exact AWE 
expansion with ii Vx =0,  and 0,1, =kii xx K , where iV  is the node’s voltage.  The Hankel matrix 
is thus singular for all Padé approximants of order higher than zero.  A similar situation arises 
where any unknown in the system is almost exactly a polynomial in frequency.   Adaptive Padé 
order reduction is needed to handle such cases. 
 



4 Numerical Results 
As an example, we consider the low noise amplifier (LNA) shown in figure 1.  The operating 
frequency of inductively decoupled LNAs, such as this design, is determined by the resonance of  
the output inductor with the output and device capacitances.  This is a difficult case for Padé via 
AWE, as  effectiveness of AWE decreases near resonance.  For both amplifiers, the inductors are 
modeled using an EM MoM approach and the rest of the amplifier is represented with a circuit 
system.  The operating points of the amplifiers are found in Spice using the inductors’ DC 
resistances and then small signal models are evaluated for the MOSFETs and used with the Padé 
fast frequency sweep.  Table 1 compares the time needed for Padé solution relative to that of a 
conventional frequency sweep which solves the system at some number of frequency points.  Both 
Padé and the conventional sweep use only LU factorization to solve the systems.  In principle, fast 
matrix-vector methods can further accelerate the frequency sweep, provided appropriate pre-
conditioners for improving the condition number (on the order of 109) can be developed. 
 
solve time for conventional 
frequency sweep 

Padé setup 
time 

Padé solve time for 
frequency sweep 

reduction in solve time by 
using Padé with ε<0.01 

100 points: 4.32 hours 
250 points: 10.8 hours 

6 expansions 
53.5 minutes 

100 points: 340ms 
250 points: 850ms 

100 points: 79.4% 
250 points: 91.7% 

Table 1  Padé simulation results 
 
Figure 2 shows the LNA gain and the Padé accuracy as a function of the number of Padé 
expansions used.  As a way of measuring the accuracy of a Padé expansion, we use the error norm 
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5 Conclusion 
A fast frequency sweep for coupled EM-circuit systems, enabling rapid characterization of circuits 
with EM components, has been demonstrated using a simple Padé via AWE approach. In future 
work, a fast direct solver [8] will be used in conjunction with the sweep to obtain rapid solution of 
poorly conditioned systems for realistic on-chip structures.  Extension to nonlinear MOR [9] is 
also of interest for handling devices outside of the small signal range. 
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Figure 1  single ended LNA 
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Figure 2  Padé results for single ended LNA 
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Abstract 
A novel methodology is presented that expedites the electromagnetic analysis in the design cycle of 
individual layout components in close proximity to other radiating and electromagnetic structures. The 
proposed method retains all the advantages of a surface based moment method technique, but avoids 
explicit modeling of the interactions between the object under design and the neighboring ones, without 
compromising on the accuracy of capturing the electromagnetic coupling between them. As a result the 
simulation time in individual design cycle is greatly reduced.   
 

I. Introduction 
“Faster” and “smaller” are two key foci of today’s electronic industry; the operating frequency or 

switching speeds and the packing density are increasing in modern day packages. As a result, full-wave 
electromagnetic and proximity effects are playing increasingly more important roles in determining the 
package performance. Also, low power applications reduce the noise tolerance and therefore demand 
greater fidelity in modeling the aforementioned effects especially in densely coupled environments. As a 
result accurate electromagnetic analysis of complex coupled system is of paramount interest in today’s 
packaging technology.  

In a package design process, the final layout is achieved through a number of design iterations where 
the electrical behavior of the layout is numerically modeled at each iteration step. In a densely packed 
system, such computation becomes very expensive due to the coupling effects from the interacting objects, 
such as mutually coupled inductors, located in close proximity to the component under design. 

Finite element methods [1] are based on the differential form of Maxwell’s equations and lead to a 
sparse matrix system of equations. This system also has the advantage that different components are 
represented independently in a decoupled manner, thereby enabling design. FEM based methods do suffer 
from some disadvantages that include large system sizes due to volumetric discretization, frequency 
dependent meshing to capture exact skin effects, and the requirement for accurate absorbing boundary 
conditions (ABCs) to truncate FEM meshes. As an alternative, surface integral equation based techniques 
such as the Method of Moments (MoM)[2] have become popular in package-level EM simulation due to 
smaller system sizes, automatic built in radiation conditions (and hence no ABCs), and frequency 
independent meshing upto foreseeable frequencies of interest.  For design purposes, however, the MoM 
poses a challenge. The Green’s function-based underlying formulation results in a highly dense and highly 
coupled system, where every piece of the discretization interacts with every other piece through a mutual 
coupling term. Circuit-centric variations of the MoM such as the Partial Element Equivalent Circuit 
(PEEC) [3] method also suffer from the similar problem, as all the circuit elements representing the cross-
coupling between the discretized representation of a design-iterated object and the discretized 
representation of unaltered objects in close proximity need to be recomputed and re-solved at each design 
iteration step.  The reason for the inherent inefficiency is the inability to exploit the unchanging nature of 
interacting components that have already been designed or are fixed in design. 

The proposed method retains the strengths of surface based MoM formulations while removing the 
bottleneck of explicitly modeling the coupling between the geometry under design and all the neighboring 
layout components in every design iteration. The paradigm is based on using the surface equivalence 
principle [4] on an enclosing mathematical surface, followed by storing the Schur complements [5] of the 
sub-set of the system matrix that do not change with the design iterations. It is important to note that the 
proposed technique bypasses the cost of modeling all the mutual coupling explicitly without compromising 
on the accuracy in accounting for the coupling. 
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II. Formulation 
Isolation 
The electromagnetic isolation of the object under design is achieved by introducing a smooth mathematical 
surface around the object. The surface isolates the problem into an exterior equivalent problem (Fig.1b) and 
an interior equivalent problem (Fig. 1c), where the object under design belongs only to the interior problem 
and the neighboring layout components belong to the exterior problem.  
 
 
 
 
 
 
 
 
 
 
 
It is important to notice that the exterior equivalent problem does not change with a change in the design or 
location of the object o1 within the mathematical surface. However if the shape and size of the object o1 
change drastically, it may require a change in the smooth surface o2, to maintain a desired level of 
accuracy. As a result of decomposing the actual problem into the equivalent problems the mutual couplings 
between the object under design (o1) and the other neighboring objects (o3) are captured in two separate 
problems and are never required to be modeled explicitly.  

Figure 1 depicts the equivalent surface currents in both exterior and the interior problems for a simple 
case where all the physical objects (o1 and o3) are modeled as perfect electric conductors. However the 
methodology presented here is generally valid for any object where the material property is modeled using 
surface impedance approximations or more rigorous lossy dielectric models [6]. Here the metal objects o1 
and o3 support equivalent electric currents J1 and J3 respectively, whereas the mathematical bounding box 
o2 supports both electric current J2 and magnetic current M2. On the metal surface, the electric field integral 
equation [2] is enforced, whereas on the dielectric surface, the continuity of tangential electric and 
magnetic fields across dielectric boundary is enforced, as in a PMCHWT formulation [4]. Thus combining 
all the interactions the overall system of linear equations is written in a matrix form as  

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−

−

−

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

++−

++−

−−

inc

inc

inc

inc

extextext

extintextintextint

extintextintextint

intintint

J
M
J
J

3

2

2

1

3

2

2

1

,3,3,3

,2,2,2,2,2,2

,2,2,2,2,2,2

,1,1,1

0

0

1

E

H

E

E

EEE

HHHHHH

EEEEEE

EEE

322

322221

32222

221

JMJ

JMMJJJ

JMMJJJ

MJJ

                     (1) 

Where in general represents the tangential electric or magnetic field ( or ) on the surface k,α
βYX X E H

α (o1,o2 or o3), due to the source current (electric current J or magnetic current M) on surface Y β (o1,o2 
or o3), radiating in the k (interior or exterior) region. The unknown vector represents the strengths of the 
electric and magnetic currents, and the right hand side vector (RHS) consists of the incident electric or 
magnetic field in the corresponding media, tangential to the surface. Typically for an external radiation-free 
microelectronic environment there is no direct excitation on the surface o2, but circuit excitations (modeled 
here as simple gap-source excitations) [7] exist for the appropriate basis functions on the surfaces o1 and 
o3.  

At each step of the design iteration for the object o1, only the blocks associated with the surface of o1, 
i.e. the blocks in the first row and the first column change. However, since there is no direct interaction 
between the surfaces of o1 and o3, the corresponding blocks are null.  Typically, there is a large number of 
unknowns associated with o3 that represents the union of all the discertizations of surfaces of objects 

(b) 
Fig.1  (a) Original problem (b) Exterior equivalent problem (c) Interior Equivalent problem 

o2

o3

J2

M2
J3

J3

J3
00 ,εµ -J2Object 

under 
design 

o2 Bounding 
Box 

o2 
J1

o1
-M2 

o1 

o3 Neighboring 
objects 

00 ,εµ
00 ,εµ

(a) (c) 

 2



interacting with o1. Thus the isolation prevents the larger size matrices involving basis functions on o3 
from changing through the design iterations.  
Matrix Decomposition 

The linear system in (1) can be represented in a more convenient and compact way by representing the 
unknowns on o1, o2 and o3 by , and , and all the tested fields by , and , as 1Y 2Y 3Y 1X 2X 3X
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where R1 and R3 represents the excitation. 
Finally using variable substitution, the unknown on the object under design, i.e. o1, can be written as 
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Clearly, the terms , and do not change during the design 

iterations of object (o1), and can be pre-computed for all the design steps.  
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If are the number of unknowns on the surface o1, o2, o3, the cost of solving for during the 
stages of the design iterations where the appropriate blocks are pre-computed is given by , where 
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If the flexibility of changing the excitation on the neighboring geometry is not required the cost can be 
further reduced to  given by                                           (4b) 1C ′ 21112111 )( NNNNNNNNC ++++=′ 23

The direct approach without any isolation or decomposition has the cost given by , where 2C

                                           (5) 2
31

3
312 )()( NNNNC +++=

Also, it is straightforward to identify the unchanging nature of the neighboring object (o3).  Therefore using 
just decomposition without the isolation the solution can be computed as  1Y
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1
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−−− +−=                       (6) 

Where the cost is given by , where                (7) 3C 2
331

2
13131

3
13 )( NNNNNNNNNC +++++=

For accurate analysis of a small component in the layout we need to consider the coupling effects due to all 
the nearby components, i.e. . Thus from (4,5 and 7) we conclude for such cases 

. 
{ 213 , NNN >> }

{ }321 , CCC <<

III. Numerical Results 
The presented method is applied in extracting the scattering (S) parameters of a transmission line 

structure(Fig. 2a) in the presence of a near-by spiral inductor and a ground plane. The structures are 
residing in a medium with relative dielectric constant of 4. In the design iteration, where the line width is 
changed from mµ3  to mµ5 , and the gap between the two conductors is reduced from mµ10  to mµ8 , the 
new S-parameters are modeled using the isolation technique presented in the paper. The result is in 
excellent agreement (Fig. 2b) with that obtained by a fully coupled analysis of the perturbed design 
including all the neighboring objects. Table 1 demonstrates the ability of the proposed isolation technique 
in modeling the coupling effects from the nearby objects, for a 4 by 4 spiral inductor array (Fig. 3a). It is 
important to note that the coupling effects increase as frequency is increased. Also, the S-parameters 
corresponding to ports 1 and 2s behave asymmetrically due to the uneven nature of coupling from the 
neighboring inductors, as opposed to the case where the coupling is not modeled where the S- parameters 
are symmetric.  

IV. Conclusion 
The proposed methodology develops and utilizes a surface-equivalence based isolation technique to 

accelerate repeated electromagnetic analysis through the design iterations of a layout component in a 
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densely coupled environment.  The accuracy and the relative cost advantage of the proposed method have 
been demonstrated compared to the existing techniques.  

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                                        
 
 
 
 
 
 
 
 
 
 
 

Freq  S11 S12 S21 S22
1 01198. −∠  010216. −∠  010216. −∠  01198. −∠  
2 01298. −∠  010115. −∠  010117. −∠  01198. −∠  

 
60 
GHz 

 3 01298. −∠  010115. −∠  010117. −∠  01198. −∠  
 1 06599. −∠  015608. −∠  015608. −∠  06599. −∠  
 2 06996. −∠  012804. −∠  016809. −∠  0610.1 −∠  

 
 
100 
GHz  3 07096. −∠  012704. −∠  016909. −∠  0610.1 −∠  

Fig. 2a Transmission line near a 3 turn spiral inductor,
mµ10  above a ground plane. The inductor turns are
mµ10 wide with mµ10  gaps between the turns. The

conductors of the transmission line are mµ3 wide with
a mµ10 gap for DESIGN1, and mµ5 wide with a mµ8
gap for DESIGN2 

Fig. 2b Scattering parameter for DESIGN1(D1) and
DESIGN2(D2), using the fully coupled method (C )
and the proposed method (P)  
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Table1. Scattering parameters of the top-left inductor in Fig.3
 
 
 
 

Fig. 3a Four 3 turn mm µµ 150150
spiral inductors The inductor turn
are 

×

mµ10 wide with mµ10  gaps
between the turns.  
using the fully coupled analysis (2), proposed isolation technique
(3) and ignoring the coupling effects (1) 
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Abstract 
Quasi-static parasitic extraction is a crucial design issue in digital 
circuits and mixed signal IC analysis. A surface-based, integral 
equation methodology aimed at modeling the problem results in a 
dense system of equations. Fast iterative algorithms developed to 
efficiently handle such systems, are limited by the speed of conver-
gence and the number of nets involved. In this paper, we present a 
faster and improved oct-tree based implementation of the QR itera-
tive solver. We demonstrate the relative efficiency of QR based 
solvers in fast matrix-vector products, which is critical to multiple 
RHS problems. Also a fast non-iterative QR/LU algorithm is devel-
oped with adaptive fill-in reduction, applicable mainly to medium 
sized problems with massive number of nets. 
 

I. Introduction 
 

Parasitic capacitance extraction has become more and 
more significant with increase in circuit performance (high 
speed) and density (shrinking feature size). A surface – based 
integral equation methodology like the Method of Moments 
(MoM) is ideally suited to address the problem. It leads to a 
well-conditioned system with reduced size, but the system of 
equations generated is inherently dense, thereby creating a 
time and memory bottleneck. 

Several fast iterative techniques have been developed to 
efficiently store and solve an MoM system. All these methods 
(e.g. the fast multipole method (FMM), QR-based method, 
FFT-based technique) rely on algorithms to accelerate matrix 
vector products and therefore expediting the iterative solution. 
The memory requirement and the setup time is reduced from 
O(N2) to O(N) or O(NlogN) and the solve time is reduced 
from O(N3) (Gaussian Elimination) or O(N2)*p*r (Regular 
Iterative Solver) to O(N)*p*r or O(NlogN)*p*r, where p is 
the number of iterations for convergence per RHS and r is the 
number of RHS vectors.  

The QR based fast iterative solver developed by Kapur and 
Long (IES3) [1] is particularly attractive for circuit problems. 
It is independent of the kernel (Green’s function), and can be 
applied directly to multi-dielectric cases without increasing 
the size of the problem unlike the other competitive methods.  
Even in terms of free-space capacitance extraction IES3 has 
been demonstrated as being more efficient in terms of mem-
ory and solve time. This method is based on low rank decom-
position of MoM sub-matrices by SVD or Modified Gram 
Schmidt method. The method however, suffers from a higher 

setup time cost. For problems with large number of nets, that 
require many RHS solutions, the higher setup cost is more 
than offset by faster matrix vector multiplies. However for 
well-conditioned fewer nets systems where the setup cost 
dominates, IES3 is not a good choice.  

In this paper, we present DICOT-QR, a Deterministic In-
teraction Capacitated Oct Tree based QR algorithm, that 
greatly reduces the setup time while maintaining the memory 
and solve time efficiency of RMBT-QR, Rank-Map oriented 
Binary Tree based QR, which is based on the same principles 
as IES3. The DICOT-QR algorithm exploits the properties of 
an oct-tree implementation, to create a predetermined set of 
interaction list, thereby reducing the setup time considerably. 
Performance comparison of DICOT-QR, RMBT-QR and 
Fast-Cap (an FMM based open source code [2]) are pre-
sented.  

Problems involving a large number of nets (massively 
coupled interconnects) or large number of excitation points 
(substrate coupling), entails the solution of many RHS vec-
tors. A fast direct solver, which bypasses the need for an it-
erative scheme, associated preconditioning and the uncer-
tainty and time of convergence, is a better choice for such 
problems.   

The multilevel schemes developed for fast matrix-vector 
products do not inherently lend themselves to obtain fast 
methods for direct decomposition or inversion. To accom-
plish fast direct solution Canning and Rogovin [3] suggested 
sparse-LU and Sherman-Morrison-Woodbury schemes based 
on a multilevel sparse representation of the MoM matrix. But 
the a priori matrix block structure assumed by their algorithm 
prevents it from being applicable equally to general 3D struc-
tures. In this work, the QR-based low-rank representation and 
the sparse-LU computation are integrated in order to alleviate 
the computational overhead associated with fill-ins and 
thereby generating a dynamically optimized block structure.  

 
II. Theory 

 
a) MoM formulation: Capacitance problems formulated using 
MoM are solved by the integral form of the Poisson’s Equa-
tion:   
 
relating potential φ and charge-density ρ. The discretization 
of the integral equation results in a matrix system of the form 

2 ( ) - ( ) /∇ φ = ρ εr r



=ZI V  where the N N×  MoM matrix Z is a dense Green’s 
function matrix, I represent the unknown coefficients of 
known basis functions for charge density, and V represent the 
known potential excitations. Each element of the MoM matrix 
denotes the interaction between a testing and a basis function 
and is written as follows: 
                                                                    
 
 
 
where tj is the testing function defined over Sj,  fi is the basis 
function defined over Si and g( , )′r r  is the relevant  Green’s 
function. In the electrostatic case for P disconnected conduc-
tors, each column of the required P P× capacitance matrix is 
obtained by enforcing a voltage of 1V on the excited conduc-
tor, 0V on all other conductors, solving the above system, and 
integrating the charge density over each conductor. The 
N N× system of equations is therefore solved P times to ob-
tain the capacitance matrix. 
b) QR decomposition of MoM sub-matrices: This method 
exploits the rank-deficiency of far-field MoM sub-matrices 
using QR decomposition. A sub-matrix A of the MoM matrix 
Z can be decomposed as where R  is 
upper triangular and Q  is orthonormal i.e. T

=Q Q I .  If 
*m nr

m n
<

+
 the Q and R matrices together require less storage 

than the matrix A and the latter is said to be compressed into 
its QR form. Also under the same situation, a matrix vector 
product involving A  will take less operations if done in the 
correct order with Q  and R .  
c) RMBT-QR (based on IES3 principles): This method is 
based on recursively dividing the geometry into 2 parts along 
its largest coordinate, thereby forming a binary tree for the 
geometric subsections. The primary objective of the algorithm 
is to identify the low-rank sub-matrices representing interac-
tions between well-separated geometric sections and are 
therefore low-rank candidates. A conservative estimate of the 
optimum matrix structure is created and is called the Rank-
Map. This map is created only once for a given dielectric en-
vironment and is utilized for all extraction cases there-in. A 
simplified algorithm for the process is given : 
Algorithm 1:  
Step 1. Consider the matrix:  
If Rank-Map predicts low rank, then go to Step2. 
Else Split (divide the structure into 2 parts, therefore matrix 
into 4 parts) and for each sub-matrix go to Step 1. 
Step 2. Make the QR of the matrix from samples [3]: 
If rank is acceptable then go to Step 3. 
Else delete QR, Split and for each sub-matrix go to Step 1. 
Step 3. Check if sibling matrices are low rank: 
If yes then go to Step 4. 

Else this sub-matrix has attained its optimal form. 
Step 4. Merge the 4 sibling matrices (develop parent Q and R 
from children Qs and Rs): 
If merge successful (parent Q and R memory less than com-
bined children memory) send merged matrix to Step 3. 
Else this sub-matrix has attained its optimal form. 
The RMBT-QR algorithm optimizes the matrix structure for 
minimum memory. However, since memory and the number 
of matrix vector products per iteration, have a one-to-one 
correspondence, solve time is also optimized. As shown in 
the results the RMBT-QR algorithm performance is signifi-
cantly better than Fast-Cap for many RHS problems, both in 
terms of time and memory, even for the free-space environ-
ment.  However, in problems where the setup time dominates 
the algorithm cost, RMBT-QR performance is  worse. The 
setup cost of the algorithm is largely controlled by the accu-
racy of rank map predictions. An accurate and exhaustive 
rank map is difficult if not impossible to construct. This is 
because of the fact that the algorithm can lead to boxes with 
any shape and size, due to the binary nature of the split. It is 
impossible to cover the infinite combinations of boxes, thus 
introducing a scope of error in the rank map. A conservative 
rank map will require more Merges, whereas a liberal rank 
map will induce wastage of time constructing unacceptable 
QRs. Thus the setup time is largely increased by the uncer-
tainty of the matrix structure.   

DICOT-QR employs an oct-tree to construct the geomet-
ric subsections, leading to the formation of same sized cubes 
at every level, as in static FMM (Fast-Cap). The rank map is 
replaced by the concept of interaction list or shell similar to 
multilevel FMM. The matrix block-structure is therefore pre-
determined and thus setup time is greatly reduced without 
sacrificing on the memory or the solve time of the RMBT-QR 
algorithm.  

 
III. Faster Iterative Solver (DICOT-QR) 

 
The DICOT-QR algorithm can be analyzed in 3 parts: 

a) Geometric Subdivisions: The geometric split employed, 
follows directly from the FMM box structures. Every cube is 
split into half in all dimensions through the geometrical cen-
ter, resulting into 8 children cubes in 3D of equal shape and 
size (Fig. 1a). 
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Fig. 1a) Cube Split Fig. 1b) FMM shell 



b) Creating Interaction List: This is the most crucial part of  
the algorithm and is closely related to that of multilevel FMM. 
Every cube (e.g. cube A) has a neighbor list and an interaction 
list. The neighbor list comprises of cubes that are adjacent to 
cube A. The interaction list of cube A comprises of cubes that 
do not feature in its neighbor list and also whose parents do 
not feature in the interaction list of the parent of cube A (Fig. 
1b). In FMM, matrices are formed involving interactions of 
every cube with all cubes in its interaction list and every cube 
at the lowest level with its neighbors. Also, multipole expan-
sions are formed only once for each cube and is used for all its 
interactions with other cubes. However, since DICOT-QR 
does not group sources/observers but simply deals with inter-
action matrices, there is further scope of combining interac-
tions into a new interaction list called the merged interaction 
list (MIL). This is possible because siblings share a part of 
their interaction shell (Fig. 2a). The same pattern for merged 
interactions is repeated for each interaction shell and at all 
levels. The MIL is thus the rank map substitute for DICOT-
QR. An illustration of a merged interaction entity is shown 
(Fig 2b), where interactions of siblings are combined.  
 
 
 
 
 
 
 
 
 
 
 
 
c) Performing QR compression of MIL entities: Row and col-
umn samples are created for each merged interaction matrix 
based on the same principles as IES3 [1]. The Q and R matrices 
are computed from samples using the modified Gram-Schmidt 
Method [4].  
 

III. Fast Direct Solver  
 

The proposed method presented herein relies on a combi-
nation of QR-based compression of MoM sub-matrices, fol-
lowed by a fast method to obtain the LU-decomposition of the 
compressed matrix. To illustrate the QR-based sparse LU 
paradigm, consider the low ranked sub matrix A in Fig. 3.  

 
 
 

 
 
 

For ease of illustration assume A  has rank 1 i.e. 
mxn A1xnmx1A

=A Q R . While performing the LU transformation 

on this block, the first row will remain unchanged. Notice 
that all the elements of the second row are transformed by 
changing the second element of AQ as follows 

lu
A A A(2) (2) (1) L(1)= −Q Q Q where L(1) is the appropriate 

coefficient from the lower triangular part. Thus the sparse LU 
transform of block A is lu

AAQ R . For block B, in addition to 
modifying BQ , contributions from block A in the form of fill-
ins are also necessitated. The sparse LU representation for 
block B will thus be of the form of lu

B AB AB −Q R F R  where 
ABF is the fill in contribution to block B from block A. In a 

similar manner, the sparse representation of block C is of the 
form lu

C AC A BC BC − −Q R F R F R . When the blocks A,B, and C 
have arbitrary rank, then the relevant LU transforms for each 
block are of the form  

A AA
lu

Ar nAm rA× ×Q R , where 
i-1lu lu

A A A
n=1

(i,r)= (i,r)- (n,r)*L(n)∑Q Q Q , B B B A A AB
lu

B AB Ar n m r r nBm r -
B× × × ×Q R F R , 

and C C A AC A B B BC
lu

B AC Ar n r nC m rm r - BC Bm r r ncC× × ×× − × ×Q R F R F R , 

where 
m

A lu
AB A

n 1
(i, r) (n, r) * L(n)

=
= ∑F Q , and 

m m
A Blu

AC ABA
n 1 n 1

(i, r) (n , r) * L(n ) (n, r) * L(n)+
= =

= ∑ ∑F Q F . The situation 

is reversed for lower triangular blocks, where Q factors are 
unaltered and fill-in factors act as substitutes for R instead of 
for Q .  

The crucial component of the algorithm is the manipula-
tion of the matrix block structure in order to reduce fill-ins 
generated in the sparse LU process.  

 
IV. Results: DICOT-QR 

 
The performance of the DICOT-QR is compared to that 

of RMBT-QR and FastCap on several complicated structures. 
The results pertaining to a 5x5 bus crossover is presented 
below. A tolerance of 1e-3 is chosen for QR compression and 
a corresponding multipole order of 3 was chosen. The 
GMRES tolerance was set to 1e-3.  

 
 
 
 
 
 
 
The memory and time   
 

Fig. 3: Upper trian-
gular blocks 

A 

B 

C 

Fig. 4b) Time Fig. 4a) Memory 

Fig. 2a) Common 
Interaction space 

Fig. 2b) A Merged 
Interaction entity 



The first set of results demonstrates the memory (Fig. 4a) 
and setup + solve time (Fig. 4b) for the 3 algorithms in com-
puting the 10x10 capacitance matrix (10 RHS solution).  

The memory and time were also compared for obtaining 
3 columns of the capacitance matrix (solving for only 3 RHS). 
The results are presented in Fig. 4c and 4d.  

 
 
 
 
 
 
 
 
 
 

 
 
From Fig. 4 it is seen that at high number of RHS (solve 

time dominates) both DICOT and RMBT QR algorithms are 
superior than its FMM counterpart, DICOT being superior to 
RMBT. This is more prominent at lower number of RHS 
where RMBT is worse than FastCap, however, DICOT is still 
faster. 

V. Results: Fast Direct Solver 
 
Timing and memory results for a variety of complex 3D 

problems were analyzed. The Sparse LU (SLU) setup time 
(Fig. 5a), solve time (Fig. 5b) and memory (Fig. 5c) scaling as 
compared to the regular LU method are presented below, for a 
14 pin package. The accuracy of a column of the 14 X 14 ca-
pacitance matrix as compared to standard solvers is also dem-
onstrated (Fig. 5d).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

Table 1 demonstrates the reduced complexity of the SLU 
method. The LU setup cost is reduced from 3N to exponents 
as low as 2.31 for a true 3D problem. Solution costs and 
memory are also reduced considerably from the 2N require-
ments of the LU method.  

 
Structure N Setup  Solve Memory 
Thin strip 3500 2.29 1.29 1.29 

Plate 3448 2.43 1.65 1.65 
Bus cross 3574 2.41 1.667 1.65 

Comb drive 3440 2.31 1.68 1.61 
14-pin package 3158 2.51 1.667 1.61 

 
 

VI. Conclusions 
 

QR compression based fast iterative and direct solver al-
gorithms are presented. The performance of the QR based 
iterative solvers is shown to be superior for many RHS prob-
lems compared to its FMM counterpart. A new QR iterative 
solver with faster setup time is introduced. Also, a fast direct 
solver for medium sized problems with many nets (RHS) 
based on QR compression and fill-in controlled LU is imple-
mented. The same algorithms can be applied unchanged to 
multilayered dielectric problems.  
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Tool Name: Fast Quasi-static Frequency Solver for PILOT 
 
Developers: Gong Ouyang, Todd West, Vikram Jandhyala  
 
Related papers: 
Todd West, Vikram Jandhyala, “A Pade via AWE fast frequency sweep for quasi-static 
coupled electromagnetic and circuit simulation,” Antennas and Propagation Society 
Symposium, 2004. IEEE, Volume: 4, June 20-25, 2004 
 
Brief description: 
A fast frequency sweep solver based on Pade via quasi-static AWE of coupled circuit and 
integral equation electromagnetic systems is developed. The Taylor expansion is applied 
on each matrix to form the reduced order moment matrices over a wide bandwidth. The 
moments of approximation unknowns are solved through moments matching. Then the 
Pade approximants of unknown of interest are computed and used to approximate system 
behavior over a wider frequency range. Binary search method is used to find all 
expansion points needed.  
 
Funding Sources: DARPA 
 
 
Coding language: C 
 
Platform: Windows, UNIX 
 
Approximate number of source files: 60 
 
 
Input description:  
1. The code can read in a neutral file format, CFDRC mesh (dtf), ANSOFT mesh and 

ACE in house geometry input (node_list, patch_list). 
2. Excitation (Circuit, Planewave, Delta-Gap, etc.) 
3. Material (PEC, Conductivity of metal, permittivity of the dielectrics) 
 
 
Control parameters: 

1. Frequency sweep range, frequency step, convergence criterion, binary search 
criterion 

2.   Output request (circuit unknown, S-parameter, EM unknown) 
 
Available output types: 
1. Port-parameters (S) 
2. Circuit unknowns 
3. EM current distribution on surface 



 
Examples: 
This example shows the efficiency and accuracy of fast frequency sweep solver. Fig.(a) 
show the mesh of transmission line. In this example, we used current source at four ports 
and extract S-parameter over 1-3GHz range. 13 expansion points needed to get accurate 
results. (b) and (c) show the comparison between brute force method and fast sweep 
method. The plots shows excellent match and here total frequency sample points number 
is 121. The speed up ration between fast method and brute force method is 10.2:1. 

 
(a) Meshing of transmission 

line

 
 (b)Magnitude of S-parameter 

 
 

(c)Phase of S-Parameter 



 
 
Tool Name: Coupled-EM-PILOT 
 
Developers: Yong Wang, Dipanjan Gope, Vikram Jandhyala and Richard Shi 
 
Related papers:  

[1] D. Gope and V. Jandhyala, “PILOT: A Fast Algorithm for Enhanced 3D Parasitic 
Capacitance Extraction Efficiency”, Microwave Optical technology Letters Vol. 41, 
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[2] V. Jandhyala, Y. Wang, D.Gope and R. Shi, “A surface based integral equation 
formulation for coupled electromagnetic and circuit simulation,” Microwave Optical 
technology Letters, Vol. 34, No. 2, pp. 102-106, July 2002. 
[3] Yong Wang, Dipanjan Gope, Vikram Jandhyala, and C.J. Richard Shi, “Integral 
Equation-Based Coupled Electromagnetic-Circuit Simulation in the Frequency 
Domain,” Proc. IEEE APS-URSI Ohio, vol. 3, pp. 328-331, June 2003.  
[4] Y. Wang, D. Gope, V. Jandhyala and C.J. Shi, “Integral equation-based coupled 
electromagnetic-circuit simulation in the frequency domain,” SRC TechCon 
Technical Digest, Dallas, August 2003. 
Awarded Best Paper in Session (Mixed Signal Technology). 
[5] D.Gope, S. Chakraborty, Y.Wang, Vikram Jandhyala and Richard Shi, “A Surface 
based 3D coupled circuit electromagnetic simulator with accurate lossy conductor 
modeling,” Proc. IEEE APS-URSI San Antonio, June 2002. 
[6] V. Jandhyala, Y. Wang, D. Gope and R. Shi, “Coupled electromagnetic-circuit 
simulation of arbitrarily shaped conducting structures using triangular meshes,” Proc. 
International Symposium on Quality electronic Design, San Jose, March 2002. 
[7] V. Jandhyala, Yong Wang, D. Gope, S. Chakraborty and R. Shi, “A surface-
integral equation based technique for general coupled circuit electromagnetic 
simulation,” (invited) Proc. Progress in Electromagnetic research Symposium, 
Boston, July 2002. 
 

Brief description: The formulation employs full-wave integral equations to model the 
electromagnetic (EM) behavior of 2D or 3D structures while using modified nodal 
analysis (MNA) to model circuit interactions. A coupling scheme based on charge 
and current continuity and potential matching, realized as a generalization of 
Kirchoff's voltage and current laws, ensures that the EM and circuit interactions can 
be formulated as a seamless system. While rigorous port models for EM structures 
can be obtained using the approach discussed herein, it is shown that the coupling 
paradigm can reveal additional details of the EM-circuit interactions and can provide 
a path to analysis-based design iteration. 

 
Funding Sources: NSF and SRC 
 
Coding language: C 
 
Platform: Visual Studio (Windows)/ Visual Studio.net (Windows)/ gcc(UNIX) 



 
Approximate number of source files: 40 
 
Input description:  

1. EM components: The code can read in neutral file format, CFDRC dtf file format, 
Ansoft meshes or ACE in-house geometry and material description files 
(node_list, patch_list, material). 

2. Circuit components: SPICE like netlist for circuit elements. 
3. Interface information between circuit elements and EM objects. 

  
Control parameters:  

1. Kernel: Full-wave / Quasi-static 
2. Frequency sweep: Start frequency, end frequency, frequency step (.dec or .lin) 

 
Available output types:  

1. The current density distribution on EM objects (visualization) 
2. S-Parameters 
3. Time and memory profiling 
4.  Circuit node voltages and branch currents 

 
Example:  

One of the typical applications is circuit/layout co-simulation for RF electronics 
system design where on-chip inductors are often employed. In radio frequency circuit 
design, accurate characterization of the inductor is the most challenging task. Figure 1 
shows the topology of a 5.6GHz differential mode Low Noise Amplifier (LNA), where 
several on-chip inductors are included either for the frequency selection purpose (L1 L2) 
or for the impedance matching purpose (L3 L4 L5 L6). 

 

outp L1

d 

A 
outm

2 5

L2

Vbias VbiasL4L3

L6L5

inp inmItail 

Figure 1: Schematic of a 5.6GHz Low Noise Amplifier. 



 
With 5.6 GHz central working frequency, performance of LNA will be affected by 

both the distributed effect and the cross talk of on-chip spiral inductors. The precision of 
two inductors L1 and L2 is most important since it affects the central frequency where 
the maximum gain can be derived. While the transistor sizes are fixed by the requirement 
of the optimum noise figure to be 123 µm, the main design task is to adjust the turns and 
spacing of spiral inductors to tune the resonant frequency of the LC tank to the central 
frequency 5.6 GHz.  

Spiral inductor L1 is first simulated using the coupled solver to decide the number of 
turns according to the extracted equivalent inductance. With a total parasitic capacitance 
to be 105fF at node A, the inductor is designed to be 5 turns with an area of 
500µm×500µm. Figure 2 shows the extracted equivalent inductance of such a single 
spiral inductor.  
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Figure 2: Extracted inductance of a single spiral inductor. 

Due to the radiation and inductive coupling effects, the two inductors will mutually 
couple, and lead to a shift in the central frequency. Figure 3 shows a series of S21 curves 
versus different distances between the two inductors:  

 

 
Figure 3: S21 curve versus distance between inductors; “inf” or infinite
distance corresponds to ignoring all mutual coupling between the inductors. 



 
As the two inductors close in the coupling effect becomes prominent and leads to 

poorer performance. In actuality, the coupling effect could be used to advantage; due to 
the differential mode nature of the currents through the two inductors, a larger effective 
inductance can be realized by tight coupling between the two inductors. In other words 
the same inductance value could be achieved using less number of turns and thus less 
chip area. Some multi-level inductor designs are based on this concept. 

To simulate the coupled system in frequency domain, an operating point analysis is 
first performed to linearize the nonlinear BSIM3 transistor model [23]. Then, a frequency 
sweep is performed for the range of interest. The coupled circuit-EM solver avoids the 
steps of port model generation, curve fitting, and equivalent passive circuit generation, 
which are necessary in traditional design methods. Using the presented method, not only 
is a higher accuracy achieved due to the exclusion of curve fitting and finite filter size 
errors, but the entire process is also faster since the coupling between the EM and circuit 
has been automated. 
 
Tool Name: Full-Wave-EFIE-PILOT 
 
Developers: Dipanjan Gope, Swagato Chakraborty and Vikram Jandhyala 
 
Related papers:  

[1] Dipanjan Gope and Vikram Jandhyala, “Enhanced Efficiency, Hybrid 
FMM-QR Fast Parasitic Extractor For Conductors and Dielectrics”, Submitted 
to IEEE Trans. on Antennas and Propagation..  

 
Brief description: The Pre-Determined Interaction List Oct-Tree (PILOT) algorithm is 

applied to the fast iterative solution for Electric Field Integral Equation (EFIE) based 
formulations. The algorithm is based on predetermining interaction sub-matrices and 
efficient compression of the scalar and the vector potentials. The solver has been 
applied to S-parameter extraction and radar cross section estimations. 

 
Funding Sources: NSF, SRC, and DARPA 
 
Coding language: C 
 
Platform: Visual Studio (Windows)/ Visual Studio.net (Windows)/ gcc(UNIX) 
 
Approximate number of source files: 27 
 
Input description: The code can read in neutral file format, CFDRC dtf file format, 

Ansoft meshes or ACE in-house geometry and material description files (node_list, 
patch_list, material) 

 
Control parameters:  

1. The desired accuracy (choices range between: 1e-2 to 1e-6) 
2. Pre-conditioner to be applied (choices are: diagonal, block, near-field)  



 
Available output types:  

4. The current density distribution 
5. S-Parameters 
6. Time and memory profiling 
7. Radar cross section/Far field radiation pattern 
 

Example:  
1. Chip example: This is a circuit example where a test chip consisting of meander lines, 
inductors, capacitors and interconnects (Fig. 1a) is simulated at frequency 6GHz. The 
number of unknowns is increased gradually to demonstrate the time and memory scaling 
of PILOT as compared to the regular solvers. While the memory and matrix vector 
product time of regular solvers scale as O(N2) the same scaling for PILOT is linear as 
shown in Fig. 1b and 1c respectively. The setup time for PILOT also scales linearly since 
the compression is achieved without the formation of the entire matrix (Fig. 11d). 

 2. RCS example: This example deals with the structure of the predator drone (Fig. 2). The 
surface of the structure is discretized into 2480 patches which leads to 3604 RWG basis 
functions.  
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Figure 1c: Matvec Time Scaling Figure 1b: Setup Time Sc

Figure 1a: Hughes Test Chip Figure 1b: Memory Scaling 
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Figure 8: Structure of Predator Drone 

The current density on the structure at 30 MHz., obtained using the regular LU solver and PILOT 
is plotted on a log scale in Fig. 3. 

 

Figure 3a: The current density 
obtained using LU

Figure 3b: The current density 
obtained using PILOT 

The RCS of the structures at computed using the regular methods and PILOT at are 
plotted in Fig. 4. 
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Figure 4: The Bistatic RCS of the predator drone at 30MHz. 

The backscattering angle corresponds to ( ). As seen in the figure, there is 
reasonable agreement between the methods. The time and memory requirements for the 
solution process are demonstrated in Table 1. 

180oθ =

 



 Memory  Setup Time (sec) Matvec Time (sec) Solve Time (sec)

Regular LU 207MB 30 X 3306 

Regular Iterative 207MB 30 3.62 765 

PILOT Iterative 61MB 85 1.43 299 

 
It can be seen that the PILOT has superior time and memory performance for the 
problem. If the number of basis functions is increased, the setup time of PILOT will 
better the other algorithms since it has a linear scaling as compared to the quadratic 
scaling of the other methods.  
 
Tool Name: Fast Fullwave Frequency Sweep Solver 
 
Developers: Gong Ouyang, Swagato Chakraborty, Vikram Jandhyala  
 
Related papers: 
Todd West, Vikram Jandhyala, “A Pade via AWE fast frequency sweep for quasi-static 
coupled electromagnetic and circuit simulation,” Antennas and Propagation Society 
Symposium, 2004. IEEE, Volume: 4 , June 20-25, 2004 
 
Brief description: 
A fast frequency sweep solver based on Pade via fullwave AWE of coupled circuit and 
integral equation electromagnetic systems is developed. This solver incorporate fullwave 
Green’s function kernel of EFIE and fullwave kernel for PMCHW formulation. So it is 
capable of dealing with multi-region problem. The simple version can do Taylor 
expansion for PEC or lossy metal with EFIE formulation. The complex version can do 
Taylor expansion of PMCHW formulation which can handle lossy dielectric. The 
moments of approximation unknowns are solved through moments matching. Then the 
Pade approximants of unknown of interest are computed and used to approximate system 
behavior over a wider frequency range. Binary search method is used to find all 
expansion points needed.  
 
Funding Sources: DARPA 
 
Coding language: C 
 
Platform: Windows, UNIX 
 
Approximate number of source files: 20 
 
Input description:  
1. The code can read in a neutral file format, CFDRC mesh (dtf), ANSOFT mesh and 

ACE in house geometry input (node_list, patch_list). 
4. Excitation (Circuit, Planewave, Delta-Gap, etc.) 



5. Material (PEC, Conductivity of metal, lossy material, permittivity of the dielectrics) 
 
Control parameters: 

2. Frequency sweep range, frequency step, convergence criterion, binary search 
criterion 

2.   Output request (circuit unknown, S-parameter, EM unknown) 
 
Available output types: 
3. Port-parameters (S) 
4. Circuit unknowns 
3. EM current distribution on surface 
 
Examples: 
This example shows the efficiency and accuracy of fast frequency sweep solver. Fig(a) 
show the mesh of two spiral inductors with ground plane. In this example, we used 
current source at four ports and extract S-parameter over 900-1000GHz range. 9 
expansion points needed to get accurate results. (b)(c) show the comparison between 
brute force method and fast sweep method. The plots shows excellent match and here 
total frequency sample points number is 61. The speed up ratio between fast method and 
brute force method is 2.63:1. 

 
(a) Meshing of two spiral inductors with ground plane 

 
 

(b)Magnitude of S-parameter 



 
 

(c)  Phase of S-parameter 
 
 
Tool Name: Static-PILOT 
 
Developers: Dipanjan Gope, Swagato Chakraborty and Vikram Jandhyala 
 
Related papers:  

[1] Dipanjan Gope, Swagato Chakraborty and Vikram Jandhyala, “Enhanced 
Efficiency, Hybrid FMM-QR Fast Parasitic Extractor For Conductors and 
Dielectrics”, IEEE Design and Automation Conference, pp. 794-799, 2004.  
[2] D.Gope and V.Jandhyala, “PILOT: A Fast Algorithm for Enhanced 3D Parasitic 
Capacitance Extraction Efficiency”, IEEE meeting on Electric. Perf. of Electron. 
Packaging, Princeton, pp. 337-340, Oct. 2003. 
[3] Dipanjan Gope and Vikram Jandhyala, “Fast direct solver for massively coupled 
parasitic extraction problems,” SRC TechCon Technical Digest, Dallas, August 2003. 
[4] D. Gope and V. Jandhyala, “PILOT: A Fast Algorithm for Enhanced 3D Parasitic 
Capacitance Extraction Efficiency”, Microwave Optical technology Letters Vol. 41, 
Issue 3, pp.169-173 May 2004. 
[5] Dipanjan Gope and Vikram Jandhyala, “Oct-Tree Based Multilevel Low-Rank 
Decomposition Algorithm for Rapid 3D Parasitic Extraction”, To appear in IEEE 
Transactions on Computer-Aided Design of Integrated Circuits and Systems, Nov. 
2004. 

 
Brief description: The Pre-Determined Interaction List Oct-Tree (PILOT) algorithm is 

applied to aid fast solution of electrostatic formulation for parasitic extraction in 
circuits and computation of electrical forces in MEMS. The algorithm is based on 
low-rank compression of sub-matrices on an oct-tree framework with merged 
interactions for maximum compression. 

 
Funding Sources: NSF, SRC, and DARPA 
 
Coding language: C 
 
Platform: Visual Studio (Windows)/ Visual Studio.net (Windows)/ gcc(UNIX) 



 
Approximate number of source files: 17 
 
Input description: The code can read in neutral file format, CFDRC dtf file format, 

Ansoft meshes or ACE in-house geometry and material description files (node_list, 
patch_list, material) 

 
Control parameters:  

1. The desired accuracy (choices range between: 1e-2 to 1e-6) 
2. Pre-conditioner to be applied (choices are: diagonal, block, near-field)  

 
Available output types:  

8. The charge density distribution 
9. Capacitance matrix 
10. Time and memory Profiling 
11. Electrical forces on the structure 
 

Example:  
1. Package Structure: In the following example we consider a package structure with 56 
conducting leads as shown in figure 1a:  
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Figure 1a: Package structure with 56
leads. The package is sandwiched by a top and a bottom

ceramic layer ( ) of thickness . A dielectric
slab of ε and thickness of 10µ is placed in the space
between the leads ( ). 

The first row of the capacitance matrix obtained for the 2 cases, with and without 
dielectrics, are plotted in figure 1b using PILOT-QR and FastCap. It can be observed that 
the results demonstrate excellent match between the values obtained from the 2 different 
algorithms. It can also be noted that due to the presence of the dielectrics the coupling-
capacitances between the leads increase. 

The required memory is compared with FastCap in figure 2a.  In figure 2b, the advantage 
of PILOT is demonstrated over RMBT-QR for multiple nets for the package structure 
shown in Fig. 1a, without the dielectrics. Time taken by RMBT-QR is always more 
compared to the time taken by PILOT, by an offset amount, though they demonstrate to 



have the same slope. This observation supports an improved set-up time performance of 
PILOT compared to RMBT-QR which is emphasized for a multiple net problem. 

 

510× (b) (a) 
Figure 2: a) Memory comparison of PILOT with FastCap in the presence of
dielectrics b) The total time required by the different algorithms for
multiple right hand side solutions for the package structure in figure 7.  

 

2. Chip Structure: The second example demonstrates the computing efficiency of the 
PILOT algorithm for very large-scale problems. The test-chip structure consisting of 
meander lines, inductors, capacitors and interconnects is repeated in a 10×3 array, and 
shown in Fig. 3.  
 

 
Figure 3: The illustrated structure is generated by
placing the geometry of Fig. 9a in a 10×3 array. The
surface is meshed with 0.913 triangular patches. 

 
 
The entire structure is meshed with 0.913 million patches. The problem is setup and 
solved for 3 different excitations. In the 4 GB of memory available, PILOT was able to fit 
and run this example, and required 3.3 GB, 48 minutes for setup, and 90 minutes for 
solution with 3 right hand sides. The other solvers like Fast-Cap and RMBT-QR 
(prototype implementation of IES3) could not fit the problem with the given resources. 
 
Tool Name : Surface Integral-Based Material Region Solver for PILOT 



 
Developers :  Swagato Chakraborty 
 
Related papers:  
[1] S. Chakraborty and V.Jandhyala, “Evaluation of Green’s Function Integrals in 
Conducting Media”, Accepted for publication in IEEE.Trans. on Antennas and 
Propagations. 
[2] V. Jandhyala, Y. Wang, D. Gope, S. Chakaraborty, and R. Shi, “A surface-integral 
equation- based technique for general coupled circuit-electromagnetic simulation,” 
(invited) Proc. Progress in Electromagnetics Research Symposium, Boston, July 2002. 
 
 
Brief description :  
 Surface integral equation based dielectric models uses two region PMCHWT 
technique[1] . The code can handle 2-D or 3-D metal structures inside or outside the 
dielectric or on the dielectric-back ground interface. Metal-Metal and Metal-Dielectric 
junctions edges are handled using additional  RWG basis functions. The conducting 
objects can be directly coupled to circuits [2] or can be excited using delta-gap sources or 
external wave excitations. 
 
Funding Sources : DARPA 
 
Coding language: C 
 
Platform:   Windows, Unix 
 
Approximate number of source files:    50 
 
Input description: 

1. The code can read in a neutral file format, CFDRC mesh (dtf), ANSOFT mesh 
and ACE in house geometry input (node_list,patch_list).  

2. Excitation (Circuit,Planewave,Dipole,Delta-Gap, etc.) 
3. Material    (Conductivity of the metal, permittivity (complex) of the dielectric) 

 
 
Control parameters : 

1. Frequency range (In linear or logarithmic steps) 
2. Output request( with corresponding parameters for the output) 
3. Debug Options 

 
 
 
 
Available output types:  

1. Circuit unknown quantities 
2. Port-pramaters (S,Z) , Q -factors 



3. EM current distribution on surface 
4. Electric and Magnetic field at a given point 
5. Far field pattern  

 
Examples: 

10−×

(a) 
Fig. 1  Coupled microstrip structure with dielectric between the trace

 
 
 
 
 
 
 
 
 

(b) (c) 

 
 
 
 
 
 
 
 
 
 
 
 

(e) (f) 
Fig. 1  Comparison of the magnitude (b-d) and phase (e-g) behavior 
using UW Solver –Dielectric model and Ansoft HFSS for different p

Tool Name: Lossy Conductor Solver for PILOT 
 
Developers :  Swagato Chakraborty 
 and the ground plane 

(d) 

(g) 
of a coupled microstrip(a) structure 
roperties of the dielectric .  



 
Related papers:  
[1] S.Chakraborty and V.Jandhyala, “Surface-Based Broadband Electromagnetic-Circuit 
Simulation of Lossy Conducting Structures in Microelectronic Circuits”, Presented in  
IEEE APS-URSI 2004, Monterey CA. 
 [2].S. Chakraborty and V. Jandhyala, “Accurate computation of vector potentials in lossy 
media,” Microwave Optical Technology Letters, vol. 36, no. 5, pp. 359-363, March 5, 
2003.  
[3]. S. Chakraborty and V.Jandhyala,"Evaluation of Green's Function Integrals in 
Conducting Media," Proc. IEEE Antennas and Propagation Society International 
Symposium, 2003, vol. 3, pp. 320-323, 22-27 June 2003. 
 
Brief description : 
Surface integral equation based solver for broad-band modeling of lossy conducting 
structures, coupled to lumped circuit elements is developed. A two region PMCHWT 
technique is used for modeling the lossy object. The Green’s function integrals are 
computed using  analytic tools [2,3] for highly damped kernels. Coupling methodology is 
incorporated  in the code describing mutual interactions between the circuit and the 
electromagnetic quantities[1].  
 
Funding Sources : DARPA 
 
Coding language: C  
 
Platform: Windows, Unix 
 
Approximate number of source files:  50 
 
Input description:  

1.   The code can read in a neutral file format, CFDRC mesh (dtf), ANSOFT mesh 
and ACE in house geometry input (node_list,patch_list).  
2.   Excitation (Circuit,Planewave,Dipole,Delta-Gap, etc.) 
3.  Material    (Conductivity of the metal, permittivity (complex) of the dielectric) 
 

 
Control parameters : 

1. Frequency range (In linear or logarithmic steps) 
2. Output request ( with corresponding parameters for the output) 
3. Debug Options 

Available output types:  
1. Circuit unknown quantities 
2. Port-pramaters (S,Z) 
3. EM current distribution on surface 
4. Volumetric current distribution in the cross section 
5. Electric and Magnetic field at a given point 
6. Far field pattern  



 
Examples: 
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Fig. 2b. Comparison between the analytical and computed skin-effect in the 
volumetric current density . The surface integral equation based Lossy Conductor 
Solver can predict the volumetric current inside the cross-section of a conductor. 
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