
 1

IPRAIL – Intellectual Property Reuse-based
Analog IC Layout Automation*

Nuttorn Jangkrajarng, Sambuddha Bhattacharya, Roy Hartono,

and C.-J. Richard Shi†

Mixed-Signal CAD Research Laboratory,
Department of Electrical Engineering, University of Washington

Seattle, WA 98195, USA

ABSTRACT

This paper presents a computer-aided design tool, IPRAIL, which automatically
retargets existing analog layouts for technology migration and new design specifications.
The reuse-based methodology adopted in IPRAIL utilizes expert designer knowledge
embedded in analog layouts. IPRAIL automatically extracts analog layout intellectual
properties as templates, incorporates new technology design rules and device sizes, and
generates fully functional layouts. This is illustrated by retargeting two practical
operational amplifier layouts from the TSMC 0.25um CMOS process to the TSMC
0.18um CMOS process. While manual re-design is known to take days to weeks, IPRAIL
only takes minutes and achieves comparable circuit performances.

Keywords: Analog Integrated Circuit Design; Analog Layout Automation; Layout
Symmetry; Analog Synthesis and Optimization.

1. INTRODUCTION

 With the increasing demand for smaller, cheaper, more portable electronics in
wireless communication and consumer electronics, semiconductor industry is moving
towards mixed-signal systems-on-chips. Multiple functionalities such as digital, analog,
and even radio frequency (RF), which used to reside on many different chips, are being
converged into one or a few chips. Driven also by the need to be more powerful,
semiconductor manufacturers continue to innovate technologies towards smaller and
smaller transistor feature sizes (for example from 0.25um to 0.18um to 0.13um). As a

* This research has been supported in part by U.S. Defense Advanced Projects Agency NeoCAD

Program under Grant No. 66001-01-1-8920, in part by National Science Foundation (NSF) ITR Program
under Grant No. 9985507, and in part by a grant from Conexant Systems.

† Corresponding author: Tel.: +1-206-2215291; fax: +1-206-5433842.
E-mail address: cjshi@ee.washington.edu.

 2

result, there is an increasing need in re-designing functioning mixed-signal layouts for
new technology processes.

 Due to the differences in technology process properties, migrating an available
layout to a new process requires an overall re-design and re-creation of a new layout. In
order to speed up the design process, design engineers can utilize available computer-
aided-design (CAD) tools to mitigate part of the jobs. For digital layout, designers can
employ the scalable cell libraries and the readily available automatic place and route tools
to the existing high-level VHDL or Verilog design, in order to generate a target layout.
In contrary, analog designers do not have a comparable ability, which means they have to
go through a full time-consuming cycle of redesigning, testing and drawing layouts.
Therefore, an automated re-layout tool for analog circuits will significantly accelerate the
mixed-signal circuit technology migration.

 In this paper, we present a CAD tool, called IPRAIL (Intellectual Property Reuse-
based Analog IC Layout), which automatically retargets an existing analog layout to
modestly new processes. The methodology we propose here is based on the ‘recycling’
scheme. IPRAIL uses an already fined-tuned input layout to automatically create a
structural template, and then imposes new device sizes and new technology process
design rules on the template. From this, IPRAIL generates an output layout that satisfies
all the design rules while preserving all the analog layout intellectual properties such as
device/wiring alignment, matching and symmetry. IPRAIL also preserves all unique
aspects of the input layout intended by designers. Some preliminary results of this work
were presented in [1].

 This paper is structured as follows. Section 2 exhibits issues and previous work
in analog layout automation. Section 3 illustrates the proposed IPRAIL methodology.
Section 4 explains the process of layout template extraction from an existing layout.
Section 5 describes automatic layout generation from an extracted layout template.
Section 6 presents the experimental results of IPRAIL. Section 7 points out the
limitations of IPRAIL and suggests some future work. Section 8 concludes the paper.

2. BACKGROUND

2.1 Issues in Analog Layout Automation

 The strong impact of layout geometry on circuit performance makes analog layout
design a very complicated task. Device matching and symmetry, parasitics, current
density in interconnects, thermal, and substrate effects are of utmost importance in high
performance analog circuits [2,3]. Overcoming these challenges is essential to the
success of analog layout automation. The important layout issues are briefly discussed
below.

 3

2.1.1 Matching and Symmetry

Transistors designed to behave identically may exhibit finite mismatch due to
asymmetry in their layout structures or locations. The asymmetry in transistor layouts is
caused mainly due to the differences in channel orientations and surrounding
environment of the two transistors [2]. Two transistors are deemed symmetric if their
layouts are geometric mirror images of each other. For large or stacked transistors,
layouts drawn by maintaining simple geometric mirroring may not establish acceptable
matching due to spatial variations in process parameters like oxide thickness, mobility etc.
In such cases, common-centroid configurations are often employed to cancel out the
mismatches introduced due to process gradients.

Transistor mismatch can drastically affect analog circuit performance leading to
DC offsets, finite even-order distortion and lower common-mode rejection [4]. Ensuring
layout symmetry, between transistors identical by design, demands significant designer
effort.

2.1.2 Floorplanning and Device Locations

Circuit performance may be significantly affected by the exact positioning of
certain devices and blocks with respect to the rest of the layout. Thermal and substrate
effects, together with variations in lithographic processes, demand careful floorplanning
of sensitive devices and blocks.

2.1.3. Wiring Considerations

Wiring parasitics, cross-talk and coupling can severely affect sensitive signal nets.
Conservative layout styles maintaining wire-spacing and wire-shielding are often
employed by expert layout designers for proper functioning of analog circuits. Wire-
sizing for maintaining prescribed current density and preventing electromigration are of
utmost importance in analog layout design.

2.2 Previous Work on Analog Layout Automation

2.2.1. Procedural Module Generation

The earliest approaches to analog layout automation belong to the class of
procedural module generation. These schemes usually employ a designer-constructed
geometric template that specifies all device-to-device and device-to-wiring spatial
relationships. The template generation is accomplished either through a procedural
language [5,6] or a graphical user interface [7]. The actual layout generation involves
filling up the template with correct device and wire sizes. The drawbacks of these
methods are in their limited flexibility and high cost of template generation. Recently, [8]
proposed a template-based module generation method that attempts to palliate the
flexibility issue by extensive hierarchical templating. Unfortunately, the effort required

 4

for construction of such templates exceeds the actual manual creation of custom layouts
by almost an order of magnitude.

2.2.2. Macro-cell Placement and Routing

These approaches [9-12] inherit the basic design methodologies of the digital
CAD world and adapt them to analog layout automation by incorporating performance-
based optimization. Devices are treated as flexible blocks and may be reshaped and
reoriented using slicing-tree floorplans prior to their automatic placement and routing.
The layout generation proceeds without any intervention from the layout designer. While
these methods are very general in principle, they require extensive computation and,
more importantly, fail to incorporate the expertise of analog layout designers into the
flow. Unfortunately, the lack of designer input into the automation often results in
performance degradation and forestalls the acceptance of these methods in the design
community.

3. PROPOSED AUTOMATIC ANALOG LAYOUT RETARGETING
METHODOLOGY

 The incorporation of designer experience is a major factor to the acceptance of
analog layout automation. Therefore, IPRAIL draws its inspiration from the procedural
module generation methods. In contrast to [8], IPRAIL facilitates layout reuse by
automatically generating the templates from an existing analog layout drawn by the
experienced designer. Our objective of reusing an existing layout for new process and/or
specifications is accomplished by direct extraction of the knowledge embedded in the
layout.

Figure 1: Analog layout retargeting methodology using IPRAIL

 As illustrated in Figure 1, the original layout and its technology information are
first fed into IPRAIL. The device sizes under the new specifications are obtained either
by manual simulations or from an analog circuit synthesis tool. First, IPRAIL converts

 5

the original layout into a resizable symbolic template. It then generates the new layout,
henceforth called target layout, by imposing the target process design rules and new
device sizes as constraints on the symbolic template. The entire process of automatic
creation of symbolic template and generation of target layout takes a few minutes of CPU
time.

The IPRAIL tool-suite consists of two main components: the layout template
extractor and the layout generator. Figure 2 illustrates the internal structure and interface
of IPRAIL in greater detail. First, the template extractor scans in the original layout in
Caltech Intermediate Format (CIF) [13]. In CIF, a layout is expressed in ASCII format,
which describes two-dimensional shapes on each layer based on their coordinates. The
technology process design rules associated with the input layout are obtained from the
Cadence environment [14].

Figure 2: Overview of IPRAIL structure and flow.

The layout template extractor identifies the active and passive devices, detects

device matching and symmetry, and extracts device connectivity and net-topology from
the original layout. Based on the extracted information and the technology process
design rules, it transforms the layout into a constraint-based resizable symbolic template
representation. The “symbolic layout template” is virtually an abstract representation of
the extracted layout properties, namely devices and connectivity, technology process
design rules, and analog layout integrities.

 6

The key tasks of the layout generator are to enforce new device sizes and to

resolve the symbolic layout representation for rectangle locations. This is accomplished
by a combination of linear programming and graph-based methods. The target layout is
generated in CIF.

 The direct incorporation of the embedded knowledge in the original layout as a
template ensures retention of the layout integrity. The target layout generated by IPRAIL
is checked for design-rule compliance.

4. LAYOUT TEMPLATE EXTRACTOR

 The detailed flow of template extraction is shown in Figure 3. It involves
representation of the layout in corner-stitching data structure, extraction of transistors,
nets and passive devices, generation of layout constraints, and detection of device
symmetry. Each sub-task performed by the template extractor is described below.

Figure 3: Internal flow of the layout template extractor in IPRAIL.

4.1 Layout Representation by Corner-Stitching Data Structure

IPRAIL adopts the corner-stitching data structure [15] for storing a layout. Our
preference for corner-stitching over other potential data structures, for example bins and
linked-lists, is dictated by its efficiency in fast localized searches, as described in [16].
An example of the corner-stitching data structure is shown in Figure 4. In this scheme,

 7

the entire plane of each mask layer is represented explicitly in terms of solid (gray) and
space (white) rectangles called tiles. Each tile in a layer plane is connected to other tiles
in the same plane by four stitches on its lower-left and upper-right corners, and is
organized such that maximal horizontal strips is achieved. Some of the basic corner-
stitching based operations frequently used in IPRAIL are area-enumeration for finding
all tiles in a given area, point-finding for locating a tile at a given position, and neighbor-
finding for listing all tiles adjacent to a given tile.

Figure 4: An example of the representation of a layout (one mask layer) in the corner-stitching data

structure.

4.2 Transistor and Net Extraction

A metal-oxide-semiconductor field-effect-transistor (MOSFET) in a layout is
defined as an overlap between two tiles in poly-silicon and diffusion (active) mask layers.
A transistor has three terminals, viz., the gate terminal in the poly-silicon layer and the
source and drain terminals in the diffusion layer. A net is defined as an electrical
connection between the terminals of transistors or external ports. IPRAIL currently does
not support bipolar-junction-transistor (BJT).

Extraction of transistors and nets from the layout follows the algorithm proposed
in the Magic VLSI layout system [17,18]. The usage of the corner-stitching data
structure ensures fast extraction of transistors and nets in the circuit layout. Using area
enumeration in the corner-stitching database, the extractor detects transistors by looking
for overlaps between the poly-silicon and the diffusion layers. The transistor description
stored in the database includes its orientation, size, location, and terminal information.

Once the transistors are extracted, a simple recursive algorithm detects nets in the
layout using the terminals of the transistors as starting points. The fundamental
operation involves marking all tiles that are electrically connected. The tile at the start-
point is marked first and all neighbor tiles in the same mask layer are identified. The
algorithm proceeds to one of the neighboring tiles and continues through a depth-first-
search. If vias or contacts are encountered, the search moves to the next mask layer.

 8

4.3 Extraction of Passive Devices

 Resistors in analog layouts are typically designed in the poly-silicon mask layer as
it exhibits high linearity, low capacitance to substrate and relatively small mismatches [3].
In some technologies, resistors are also constructed in the n-well or diffusion layers. The
resistor topology supported in IPRAIL consists of single unit or multiple units laid out in
parallel and connected in series, as shown in Figure 5.

Resistors in the layout are detected by searching through the tiles of the nets in the

circuit. A single tile or a series of connected tiles of a net are classified as a resistor when
the resistive value exceeds a user-defined threshold. Once a resistor is detected, its parent
net is split into two. Connectivity between a resistor and the nets is maintained through
port tiles. The resistor data structure stores geometry information along with connectivity
at its ports.

Figure 5: Layouts of resistors. (a) A resistor constructed from a single tile. (b) A resistor

constructed from multiple series-connected tiles.

Figure 6: Layouts of capacitors in a P-P or MIM structure. (a) A capacitor constructed with one

pair of tiles. (b) Two capacitors laid out in common-centroid configuration.

 9

High-density linear capacitors are fabricated using a poly-silicon over another
poly-silicon (P-P) layer in a “double poly” process [3]. In absence of such structures,
capacitors are fabricated as sandwiches of two or more metal layers (M-I-M). Examples
of P-P and M-I-M capacitors are shown in Figure 6. Alternately, MOS transistors can be
used as non-linear capacitors (MOSCAP) by shorting their source and drain terminals.

In IPRAIL, capacitors are defined as overlaps of two tiles in different layers that
belong to different nets. Searching through the nets, the extractor detects capacitors
when the capacitance due to the overlap exceeds a user-defined threshold. The
MOSCAPs are detected during the transistor extraction. The geometry information and
connectivity are stored in the capacitor data structure.

During the ensuing layout generation phase, if a passive is resized, other devices

or wiring tiles may overlap with it. To prevent this, a temporary dummy tile is placed
over the device location. The tile is defined in a new dummy mask layer, and is furnished
with spacing constraints to every mask layer. This reserves exclusive space for the
passive device.

4.4 Constraint Generation for Technology Migration

The symbolic template is based on a set of geometric constraints between the tiles
in the layout. The constraints arise due to the connectivity between tiles and the
technology design rules. The connectivity-based constraint between a pair of tiles
ensures that the tiles remain electrically connected after the layout generation process.
The constraints enforced by the technology design rules belong to one of the following
three categories: (1) minimum width of a tile, (2) minimum spacing between two
electrically unconnected tiles on the same or different mask layers, and (3) minimum
extension of two overlapping tiles on different mask layers.

The constraints for the symbolic template are established independently in the
horizontal and vertical directions. Here, we describe the method for generating the
constraints in the horizontal direction. The template constraints can be formulated in an
equation form. Figure 7(a) and Figure 7(b) illustrate a layout and its corresponding
constraint-equations respectively in TSMC 0.25um CMOS technology process, where LL
is the left-most boundary and RR is the right-most boundary. Here, variables ai and pi are
associated with the left and right tile-edges of each rectangle and are used in the
constraint equations. For this example, the four different types of constraint-equations
are:

p2 – p1 ≥ min_poly_width minimum width constraint
p5 – p4 ≥ min_poly_space minimum spacing constraint
p2 – a2 ≥ min_diff_extension minimum extension constraint
p3 – p2 = 0 connectivity constraint

 10

Figure 7: Constraint-based template formulation in horizontal direction. (a) An example layout. (b)

A layout template in an equation form. (c) A layout template in a constraint graph form.

Generating constraints between every pair of tile-edges in the layout leads to

significant redundancy. For example, in Figure 8, the minimum spacing constraint
between the right tile-edge of rectangle b (represented by br) and the left tile-edge of
rectangle s (represented by sl) is not required. This is due to the existence of a minimum
width constraint in a tile d, and minimum spacing constraints between tile-edges br and dl
and between tile-edges dr and sl. This is verified from the following constraint equations:

 dl - br ≥ min_space (1)
 sl - dr ≥ min_space (2)
 dr - dl ≥ min_width (3)
(1)+(2)+(3): (dl - br) + (sl - dr) + (dr - dl) ≥ 2(min_space) + min_width
or: sl - br ≥ 2(min_space) + min_width (4)

Equation (4) is the linearly dependent on the equations (1-3) and therefore superfluous.
To prevent such redundancy, the constraint equations are generated by employing a scan-
line method [19].

 11

Figure 8: Example of the scan-line method.

 The scan-line used for generating horizontal constraints is a vertical line that
sweeps through the layout from left to right. It enumerates all tile-edges in a list sorted
by their abscissas. For a tile-edge in the sorted list, constraints are generated from that
tile-edge to all other tile-edges to its left that are “visible” (not blocked by other tiles in
the same mask layer) from it. For example in Figure 8, parts of the right tile-edges of the
rectangles a, c and d (as marked) are visible from the left tile-edge of rectangle s, whereas
the right tile-edge of rectangle b is not visible as it is blocked by rectangle d. Thus,
while processing the left tile-edge sl of rectangle s, separation constraints are generated
only for the right tile-edges ar, cr and dr of rectangles a, c and d respectively. After all
constraints from rectangle s are generated, the scan-line will move to the next rectangle
on the list. The process continues until all edges are handled. The algorithm has a worst-
case complexity O(N2), where N is the number of tiles.

The constraint-equations of the symbolic template, as defined in Figure 7(a) and
Figure 7(b), can also be represented as a weighted directed constraint graph G = [V , E].
From the constraint-equations, a graph can be constructed where the equation variables
are represented as graph vertices (V) and the equation constants as weights of the graph
edges (E). All connectivity and design rule constraints appear in one of the three
following forms: lower bound constraints, upper bound constraints and fixed weight
constraints. A lower bound constraint-equation of the form xi – xj ≥ w is represented in
the graph as a directed edge from vertex xj to vertex xi of weight w. An upper bound
constrained equation of the form xi – xj ≤ w is represented by a directed edge from
vertex xi to vertex xj of weight –w. A fixed weight constrained equation of the form xi –
xj = w is first separated into two different equations xi – xj ≥ w and xj – xi ≥ –w.
These are represented in the graph by one directed edge of weight w from vertex xj to
vertex xi and another directed edge of weight –w from vertex xi to vertex xj respectively.
Figure 7(c) shows an example of the graph constructed from the equations.

 Here, if the target layout design involves a migration to a new process technology,
the constraint-equations have to be updated with the minimum width, spacing and
extension design rules of the new technology.

 12

4.5 Symmetry Detection

 Detection of matching and symmetry of transistors in the layout is of utmost
importance for layout template extraction. Two transistors are considered symmetric if
they are “geometrically mirrored”. This involves equal dimension, similar horizontal or
vertical location, uniform orientation and same type.

Figure 9: Example of symmetric transistors. (a) The symmetric pairs are (M1:M2) and (M4:M5).

(b) The symmetry axis of transistor pairs M1:M2 and M4:M5.

The symmetry detection in IPRAIL is based on the algorithm described in [20].

Here, we describe the detection for horizontally aligned transistors. Consider the two
transistors M4 and M5 in Figure 9. First, all tiles belonging to transistor M4 are collected
in a list in an increasing order of the left tile-edge positions. The tiles that constitute
transistor M5 are collected in another list in a decreasing order of the right tile-edge
positions. If the contents of the two lists are matched in terms of locations, sizes, and
layers, then the two transistors are deemed symmetric and a symmetry axis is detected.
The symmetry axis for vertically aligned transistors can be obtained similarly.

The example of common-centroid topology is shown in Figure 10 where

transistors M1 and M2 are matched in a schematic diagram. In a layout, the transistors
M1 and M2 are each divided into two halves. Each half is laid out diagonally from the
other half to cancel out mismatches. Here, two symmetry axes are required to maintain
the common-centroid layout. Transistor pairs (m1:m4) and (m2:m3) are symmetric
vertically by sym1 axis. Transistor pairs (m1:m2) and (m4:m3) are symmetric horizontally
by sym2 axis.

 13

Figure 10: A common-centroid layout and symmetry axes. (a) Schematic diagram. (b) Layout.

 We extend our algorithm to the detection of symmetry between two groups of
transistors. Two groups are symmetric if there exists inter-group pair-wise matching
between horizontally or vertically aligned transistors. In some circuits, designer
intervention might be necessary for detecting matching between only a few groups of
transistors. In this interactive mode, symmetry between two groups of transistors can be
detected by drawing bounding-boxes thereby selecting each group. In IPRAIL, similar
facility for detecting symmetry in the batch mode is also provided through input text files.

Figure 11: A simplified layout of two symmetric transistors showing only diffusion (stripes) and

poly-silicon (gray) layers. Distance d1, d2 and d3 are kept equally to maintain symmetry.

For each symmetric transistor pair, three types of constraint-equations are

generated as illustrated in Figure 11. Edges of rectangle a are defined as al (left), ar
(right), ab (bottom) and at (top). Edges of rectangles b, p and q are defined similarly.
The symmetry axis is denoted by s0. The constraints generated due to the symmetric
transistors are

 2s0 – pr – ql = 0 (5)
 pr + ql – pl – qr = 0 (6)
 at – bt = 0 and ab – bb = 0 (7)

 14

Equation (5) preserves the distance d1 between left and right transistors to the
symmetry axis. Equation (6) matches the lengths d2 of the two transistors. As these
three-variable or four-variable constrained equations maintain the distance between two
variable pairs, we shall call them equi-distance constraints. Equation (7) maintains the
vertical location of both transistors and matches their widths d3.

 As for representation in the constraint graph, the fixed-weight equations “at – bt =
0” and “ab – bb = 0” can be included in the graph directly (as described in Section 4.4).
However, there are no straightforward ways to represent the equi-distance equations as
graph edges. So these constraints have to be set aside in the equation form.

5. LAYOUT GENERATOR

The layout generator in IPRAIL creates the target layout from the symbolic
template extracted from the original layout. Figure 12 shows the various steps in the
layout generation process. First, the layout generator updates the template with the
transistor and passive sizes obtained from a circuit synthesis tool. As the updated
template consists of the symmetry, connectivity and design rule constraints, the problem
of generation of the target layout from the symbolic template reduces to a symbolic
compaction problem. This is solved by a combination of linear programming and graph-
based shortest-path algorithm.

Figure 12: Internal flow of the layout generator in IPRAIL.

 15

5.1 Transistor Sizing

 For a new technology process, the new transistor widths and lengths can be added
to the constraint graph as fixed weight constraints on the gate diffusion tile and gate poly-
silicon tile, respectively. Due to changes in transistor sizes, the diffusion-metal-one
contacts at the drain and source terminals require careful handling. If the size of a
transistor is smaller in the target layout than in the original, the drain or source area may
not be able to accommodate the original number of contacts. To overcome this, the
contacts are first removed from the layout, and extra constraints are added between the
diffusion and metal-one tile-edges to preserve their overlap. Figure 13 illustrates the
constraints of the transistors laid-out horizontally. After the contacts are removed, two
constraints are added from the left-edge of metal-one to the left-edge of diffusion and
from the right-edge of diffusion to the right-edge of metal-one for connectivity. Figure
14 illustrates the constraints of the transistors laid-out vertically. After the contacts are
removed, two constraints from the left-edge of metal-one to the right-edge of the poly-
silicon and from the right-edge of diffusion to the right-edge of metal-one are added for
connectivity. In addition, one constraint from the right-edge of poly-silicon to the right-
edge of diffusion is updated, based on the number of contacts. In both cases, during the
generation of the target layout, rows of contacts are added to connect such diffusion and
metal-one tiles.

Figure 13: Contact removal in transistor resizing along the width of transistors. (a) A transistor
layout. (b) Original constraint graphs for only lower diffusion side with contacts. (c) Constraint

graphs after removing contacts.

 16

Figure 14: Contact removal in transistor resizing along the length of transistors. (a) A transistor
layout. (b) Original constraint graphs for only right diffusion side with contacts. (c) Constraint

graph after removing contacts.

5.2 Updating Passive Device Sizes

 For a new technology process, the passive device geometries and dimensions can
be changed from its original layout. Updating the passive device sizes is done by adding
constraints between the temporary dummy tile left and right tile-edge variables.
Furthermore, extra constraints have to be incorporated to the constraint graphs between
the temporary dummy tile variables and the port tile variables to keep the passive device
aligned. This maintains connection between the passive devices and the circuit nets after
the compaction process. An example of temporary dummy tile variables, port tile
variables and their constraints is described in Figure 15.

 There are two schemes for replacing a passive device. If the new device has the
same structure as the original one but is different in size, the fixed-weight constraints are
added between corresponding tile variables in the graph. If the new device has different
structure, we totally remove the passive device tile variables and their constraints. The
dummy tile is resized according to the new device boundary geometries. And the port
tiles are restricted so that they are attached to the dummy tile. The ports are positioned in
the middle, unless they are located on the same side. In this case, when generating the
output layout, the new device layout has to be created based on device geometries and
ports location and added in place of the dummy tile.

 17

Figure 15: Passive devices resizing. (a) A P-P or M-I-M capacitor layout. (b) A resistor layout. (c)
Replacing the passive device with a temporary dummy tile. (d) Constraint graphs. The minimum

width of port layer in this example is arbitrarily chosen as 3 units.

5.3 Compaction by Combined Linear Programming and Graph-Based Algorithms

 The assembled template constraint problem can be solved by applying the layout
compaction algorithm. The problem in equation form can be solved directly using linear
programming (LP) [21]. Nevertheless, it is too computationally expensive for VLSI
layouts, due to the problem size. Traditionally, graph-based compaction methods
[19,22,23] are preferred for their superior computational speed. The presence of the equi-
distance constraints resulting from symmetry detection, however, hinders the successful
application of the conventional graph-based methods. Recall the example layout of
Figure 11. The two equi-distance equations for the layout are

 2s0 – pr – ql = 0 (5)
 pr + ql – pl – qr = 0 (6)

Equation (5) preserves the distance from the left and the right transistors to the symmetry
axis. The matching of the two transistor lengths is ensured by Equation (6). As the equi-
distance equations contain three or four variables, they cannot be directly incorporated as
weighted edges into the constraint graph. Therefore, all equi-distance constraints have to
be converted into combinations of two-variable constrained equations, which can be
added to the graph. For this conversion, the optimum distances for the two-variable
equations can be obtained by a combination of linear programming and graph-based
algorithms introduced in [24].

First, a core-graph G’=[V’,E’], which is a reduced-sized equivalent graph
consisting of variables {vLL,vRR} U {vi | vi appears in equi-distance constraints}, is

 18

generated based on the original constraint-graph G. The variables vLL and vRR correspond
to the left and the right boundaries respectively. In order to keep the core-graph
equivalent to the original graph, the constraints between all variables have to be derived
from the original constraints. This is accomplished by searching the longest directed path
between vi and vj in G, for ∀ vi,vj ∈ V’ and i ≠ j. If the path exists and no vk ∈ V’ (k ≠ i,j) is
on the path, a directed edge from vj to vi with weight of the longest path length will be
added to G’. At the end of this process, the core-graph G’ possesses the same properties
as the original graph G. Next, the core-graph is converted into an LP-compatible
equations form. Incorporating these LP-equations with the equi-distance constraints, the
problem can be solved together by linear programming.

The solution from the LP problem above yields optimal values for the variables

related to the equi-distance constraints. This, in effect, converts the equations into a form
that can be added to the original constraint graph G . We obtain the following form for
equation (5), where b is a constant calculated from the optimal linear programming
solution.

 0 6 7 0s p p s b− = − = (8)

Equation (8) can then be further converted into the following form.

 0 6s p b− ≥ , 6 0p s b− ≥ − , 7 0p s b− ≥ , 0 7s p b− ≥ − (9)

Directed edges of weight b are then added from p6 to s0 and from s0 to p7 in the original
constraint graph G. Similarly, directed edges of weight –b are added from s0 to p6 and
from p7 to s0 in G. In this way, a complete constraint graph incorporating the equi-
distance constraints is constructed. And finally, we solve the compaction problem by
applying the shortest path algorithm on the complete constraint graph. In IPRAIL, the
Bellman-Ford algorithm [25] is chosen due to its ability to handle negative-weight edges.
The Bellman-Ford algorithm has the worst-case complexity of O (|V|x|E|), where |V| is
the number of vertices and |E| is the number of edges [26].

5.4 Minimization of Individual Rectangles

 The solution obtained from the shortest path algorithm can cause another problem.
The shortest path algorithm finds the minimum distance from every variable to the left-
most variable, which is the left boundary. This causes some tiles to extend excessively
toward its left. An example is illustrated in Figure 16. Such extensions introduce
unnecessary parasitic resistance and capacitance, which affect the performance of the
design adversely. Therefore, after the first feasible solution is obtained, the individual
rectangle minimization algorithm needs to be performed.

 19

Figure 16: Example of tile extensions caused by the shortest path algorithm. Shown in circles are

two metal-one rectangles: (a) not-minimized and (b) minimized.

 The individual rectangle minimization, applied in IPRAIL, is a modification of
the wire-length minimization presented in [27]. First, the algorithm locates a critical path,
which is the shortest path from the left to the right boundary in the constraint graph. The
critical path can be determined by employing the shortest path algorithm twice; first from
left to right and then from right to left. All variables that possess similar positions belong
to the critical path. Tile variables in the path are already minimized and cannot be moved.
The rest are indicated as movable tiles, whose areas will be reduced. The algorithm
attempts to shift the movable tile variables to their feasible right-most locations, if the
moves result in smaller overall tile area. To speed up the process, tile variables are
dynamically grouped and ungrouped as they are repositioned towards the right. When
the mobility of a tile variable is restricted by another tile variable in the critical path, its
optimum position is reached and the variable is not considered for any further operation.

During the process, if moving a tile variable or a group of tile variables decreases

the area of one tile and increases that of another, priority is given to the tile in the layer
with larger resistance and capacitance. This is accomplished by assigning weight
coefficients to all variables in the graph. The algorithm ends if all tile variables are
restricted by critical path or if moving the variables does not bring about any further
reduction in total tile area.

Similar to the wire-length minimization algorithm, IPRAIL’s individual rectangle

minimization has the worst-case complexity of O(N2 log N), where N is the number of
constraint edges. The average-case complexity is almost O(N).

5.5 Output CIF File Generation

 The shortest path algorithm and the individual rectangle minimization are
completed in both horizontal and vertical directions. They provide all rectangles their
new positions in the target layout. As the resizing of transistors involves the removal of
all diffusion-metal contacts, they are inserted back into the target layout. The number of
contacts to be replaced is calculated based on the diffusion-metal overlap area and the
design rules for contacts in the new technology process.

 20

 As for the passive devices, in case there is a change in device configuration, the
original set of tiles is removed from the constraint problem. Thus, new tiles need to be re-
constructed based on the new device geometries and device configurations. Finally, the
tiles are inserted in their exact positions depending on the temporary dummy tiles. It may
be necessary to rotate or flip the tile structures so the devices are aligned with their ports.

6. EXAMPLES OF LAYOUT RETARGETING USING IPRAIL

The IPRAIL-based methodology of retargeting layouts is presented for a single-
ended folded-cascode operational amplifier and a two-stage Miller-compensated
operational amplifier. Both circuit layouts are initially designed in the TSMC 0.25um
CMOS process and are retargeted to the TSMC 0.18um CMOS process. The new device
sizes are obtained from design and simulation of the circuit netlist in the target process.

 For both examples, the layout description files in CIF and the original and target
technology design rules from Cadence environment are imported to IPRAIL. Once the
retargeting process is finished, the regenerated layouts are design-rule checked (DRC).
Both original and target layout netlists are extracted and simulated in Hspice to compare
their functionalities and performances.

6.1 Single Ended Folded Cascode Operational Amplifier

Figure 17 illustrates the schematic of a single-ended folded-cascode operational
amplifier. The design consists of 14 transistors. Figure 18 shows the original layout in
TSMC 0.25um CMOS process. The transistors are represented in multi-finger structures,
which cause the layout to contain 43 distinct unit transistors.

The target layout is generated by IPRAIL, focusing on three main factors. First,
three symmetrical axes between transistors are taken into account, depicted as A, B and C
in the layout. Second is a set of design rules in TSMC 0.18um CMOS process. Last, the
new transistor sizes are compiled based on the evaluation and simulation of the schematic
netlist in the new process, such that the desired specifications are met.

 We employ IPRAIL to retarget the original layout following two different
schemes; first, keeping the original device sizes (denoted as original-device-size), and
then, imposing the new device sizes (denoted as new-device-size), listed in Table 1. In
both schemes, the symmetry axes and the new technology process are supported. The
result of original-device-size layout and new-device-size layout are presented in Figure
19 and Figure 20 respectively. The statistics on the performances and silicon areas are
summarized in Table 2.

 21

Figure 17: Schematic of a single-output folded-cascode opamp.

Table 1: Transistors sizes of a folded-cascode opamp.

total width (um) / total length (um) Transistors

0.25um 0.18um
original-device-size

0.18um
new-device-size

M1, M2 48.0 / 1.2 48.0 / 1.2 33.6 / 1.4

M3, M13 96.0 / 1.2 96.0 / 1.2 56.0 / 1.4

M4, M5 63.6 / 1.2 63.6 / 1.2 15.2 / 0.9

M6, M7 63.6 / 1.2 63.6 / 1.2 15.2 / 0.9

M8, M9 31.2 / 1.2 31.2 / 1.2 6.6 / 1.3

M10, M11 41.4 / 1.2 41.4 / 1.2 36.4 / 1.3

M12 41.4 / 1.2 41.4 / 1.2 36.4 / 1.3

M14 13.8 / 1.2 13.8 / 1.2 6.0 / 0.9

 22

Figure 18: Original layout of a folded cascode opamp in TSMC 0.25um. ‘A’, ‘B’ and ‘C’ are

symmetrical transistor block pairs.

Figure 19: Target layout of a folded cascode opamp in TSMC 0.18um. Original transistor sizes are
retained.

 23

Figure 20: Target layout of a folded cascode opamp in TSMC 0.18um. Transistors are resized

according to Table 1.

Table 2: Performances comparison of a folded-cascode opamp.

 0.25um 0.18um
original-device-size

0.18um
new-device-size

Vdd 2.5 V 1.8 V 1.8 V

Load Cap. 1.0 pF 0.7 pF 0.7 pF

Gain 60.9 dB 61.9 dB 60.6 dB

Bandwidth 51.7 MHz 71.7 MHz 63.5 MHz

Phase Margin 63 deg 42 deg 71 deg

Gain Margin 12.5 dB 12.4 dB 10.5 dB

Power 1.48 mW 1.07 mW 0.88mW

Area 4826.70 um2 2995.75 um2 2045.16 um2

6.2 Two-Stage Miller-Compensated Operational Amplifier

Figure 21 shows the two-stage Miller-compensated operational amplifier that consists of
8 transistors. Its original layout in TSMC 0.25um CMOS process is illustrated in Figure
22. The compensation capacitor is designed using the MOSCAP and the compensation
resistor is laid out on the poly-silicon mask layer. With the multi-finger structures in both
transistors and MOSCAP, the layout contains 48 distinct unit transistors.

 24

 Similar to the folded-cascode opamp, we employ IPRAIL twice; first with
original-device-size, and then, with new-device-size, whose dimensions are listed in
Table 3. The target layouts in TSMC 0.18um CMOS process are illustrated in Figure 23
and Figure 24 for the original-device-size and new-device-size respectively. Table 4
summarizes the performances and area comparison.

Figure 21: Schematic of a two-stage Miller-compensated opamp.

Table 3: Devices sizes of a two-stage opamp.

total width (um) / total length (um) Transistors
or

Resistors
0.25um 0.18um

original-device-size
0.18um

new-device-size

M1, M2 90.0 / 0.3 90.0 / 0.3 80.0 / 0.3

M3 21.5 / 0.6 21.5 / 0.6 21.0 / 0.6

M4, M5 17.1 / 0.3 17.1 / 0.3 17.1 / 0.3

M6 90.0 / 0.6 90.0 / 0.6 90.0 / 0.6

M7 420.0 / 0.6 420.0 / 0.6 210.0 / 0.4

M8 6.0 / 0.6 6.0 / 0.6 6.0 / 0.6

Cc 200.0 / 2.1 200.0 / 2.1 260.0 / 2.0

Rc 1.35 / 19.2 1.35 / 19.2 1.4 / 45.2

 25

Figure 22: Original layout of a two-stage opamp in TSMC 0.25um. ‘A’ is a symmetrical transistor

block pair.

Figure 23: Target layout of a two-stage opamp in TSMC 0.18um. Original transistor sizes are

retained.

 26

Figure 24: Target layout of a two-stage opamp in TSMC 0.18um. Transistors are resized according

to Table 3.

Table 4: Performances comparison of a two-stage opamp.

 0.25um 0.18um
original-device-size

0.18um
new-device-size

Vdd 2.5 V 1.8 V 1.8 V

Load Cap. 1.0pF 0.7pF 0.7pF

Gain 57.7 dB 44.0 dB 64.3 dB

Bandwidth 135 MHz 237 MHz 106 MHz

Phase Margin 50 deg 44 deg 87 deg

Gain Margin 9.6 dB 9.9 dB 17.4 dB

Power 4.82 mW 3.56 mW 3.46 mW

Area 3650.40 um2 2673.30 um2 2820.00 um2

 The runtime on the folded cascade opamp is 39.2 seconds and on the two-stage
opamp is 37.6 seconds on a 440MHz SUN Ultrasparc10 workstation. For each example,
the time elapsed on both the original-device-size and new-device-size cases are the same.

7. LIMITATIONS AND FUTURE WORK OF IPRAIL

 As the methodology in the current version of IPRAIL is based on recycling of the
original layout, there are a few limitations. First, the target technology process has to
cover all the layers presented in the original layout; this is what we called modestly new
process migration. Second, the new device sizes given to the tool cannot be arbitrary,
and has to be resizable on the layout. In particular, if two transistors share the same drain
diffusion rectangle, the widths of both transistors have to be the same. Otherwise, it will

 27

result in an over-constrained problem. Last, creating a symbolic template directly from
the original layout may limit design configuration. If there is a change in voltage level in
the target technology, it may adversely affect the performance of certain design
topologies, as well as the compactness of the target layouts. In the current version of
IPRAIL, we assume the circuit topology, along with the transistor structures, remains the
same when migrating to a modestly new process. Despite these limitations, we have
found that IPRAIL is a useful tool for a lot of practical retargeting problems.

 While IPRAIL accomplishes the retargeting of the two different operational
amplifier layouts fairly easily, several extensions can enhance the benefits of this tool.
First, wire-sizing based on current-density and electromigraion can be introduced.
Second, an extension to hierarchical retargeting can significantly reduce the solution time
for large analog blocks. Third, a multi-finger transistor generation with different number
of fingers will allow retargeting the layout with more efficient devices, thereby also
improving the overall compactness of the layout. Fourth, the recent progress in
representing analog device floorplan and placement with non-slicing topologies [28] can
be leveraged in generating efficient templates.

 In the current version of IPRAIL, only three categories of design rules – minimum
width, minimum spacing, and minimum extension – are considered. Although these
design rules are adequate for the technology processes shown in the examples, they may
not be sufficient in more recent technology processes. Moreover, there may be
technology specific design rules based on structures or population. Thus some
modifications might be required. For example, the spacing of vias in one technology is
based on the number of vias populated into that particular metal connection. For such
case, after generating the structural template, all via-populated areas have to be evaluated
and the constraint-weights have to be updated based on the design rules.

8. CONCLUSIONS

 An automatic analog layout tool, IPRAIL, which is capable of re-targeting the
layout to different technology processes, is presented. Layout recycling through
symmetry detection and layout integrity conservation scheme is used in order to preserve
the analog layout property. Additionally, IPRAIL considers new device sizes to satisfy
new specifications as part of the retargeting process. IPRAIL has been applied
successfully to migrate some practical CMOS analog circuit layouts.

ACKNOWLEDGEMENTS

 The authors would like to thank Youcef Bourai and Bo Wan for their participation
in the early phase of the IPRAIL project, and also Kiyong Choi and Jinho Park for
valuable discussions on circuit examples.

 28

REFERENCES
[1] N. Jangkrajarng, S. Bhattacharya, R. Hartono, and C-J. R. Shi, “Automatic Analog

Layout Retargeting for New Processes and Device Sizes”, Proceedings of IEEE
International Symposium on Circuits and Systems, pp. 704-707, May 2003.

[2] M. J. M. Pelgrom, A. C. J. Duinmaijer and A. P. G. Welbers, “Matching Properties
of MOS Transistors”, IEEE Journal of Solid State Circuits, vol. 24, pp. 1433-1440,
October 1989.

[3] A. Hastings, The Art of Analog Layout, Prentice Hall Incorporate, 2001.

[4] B. Razavi, Design of Analog CMOS Integrated Circuits, McGraw Hill, 2001

[5] H. Koh, C. Sequin and P. Gray, “OPASYN: A Compiler for CMOS Operational
Amplifiers”, IEEE Transactions on Computer-Aided-Design of Integrated Circuits
and Systems, vol. 9, pp. 113-125, February 1990.

[6] H. Onodera, H. kanbara and K. Tamaru, “Operational-Amplifier Compilation with
Performance Optimization”, IEEE Journal of Solid State Circuits, vol. 25, pp. 466-
473, April 1990.

[7] J. D. Conway and G. G. Schrooten, “An Automatic Layout Generator for Analog
Circuits”, Proceedings of European Design Automation Conference, pp. 513-519,
March 1992.

[8] R. Castro-Lopez, F. V. Fernandez, F. Medeiro and A. Rodriguez-Vazquez,
“Generation of Technology-Independent Retargetable Analog Blocks”,
International Journal of Analog Integrated Circuits and Signal Processing, Kluwer
Academic Publishers, vol. 33, pp. 157-170, December 2002.

[9] M. Aktuna, R. A. Rutenbar, and L. R. Carley, “Device-Level Early Floorplanning
Algorithms for RF Circuits”, IEEE Transactions on Computer-Aided-Design of
Integrated Circuits and Systems, vol. 18, no. 4, pp. 375-388, April 1999.

[10] J. M. Cohn, D.J. Garrod, R. A. Rutenbar and L. R. Carley, “KOAN/ANAGRAM
II: New Tools for Device-Level Analog Placement and Routing”, IEEE Journal of
Solid State Circuits, vol. 26, pp. 330-342, March 1991.

[11] K. Lampaert, G. Gielen and W. M. Sansen, “A Performance-Driven Placement
Tool for Analog Integrated Circuits”, IEEE Journal of Solid State Circuits, vol. 30,
pp. 773-780, July 1995.

[12] E. Malavasi, E. Charbon, E. Felt and A. Sangiovanni-Vincentelli, “Automation of
IC Layout with Analog Constraints”, IEEE Transactions on Computer-Aided-
Design of Integrated Circuits and Systems, vol. 15, pp. 923-942, August 1996.

[13] S. Rubin, Computer Aids for VLSI Design, Appendix B, Addison-Wesley, 1987.

[14] Virtuoso Layout Editor User Guide, Version 4.4.6, Cadence Design Systems
Incorporated, 2000.

[15] J. K. Ousterhout, “Corner Stitching: A Data-Structuring Technique for VLSI
Layout Tools”, IEEE Transactions on Computer-Aided-Design of Integrated
Circuits and Systems, vol. 3, pp. 87-100, January 1984.

[16] D. Marple, M. Smulders and H. Hegen, “Tailor: A Layout System Based on
Trapezoidal Corner Stitching”, IEEE Transactions on Computer-Aided-Design of
Integrated Circuits and Systems, vol. 9, no. 1, pp. 66–90, January 1990.

 29

[17] J. K. Ousterhout, G. T. Hamachi, R. N. Mayo, W. S. Scott and G. S. Taylor,
“Magic: A VLSI Layout System”, Proceedings of IEEE/ACM Design Automation
Conference, pp. 152-159, June 1984.

[18] W. S. Scott and J. K. Ousterhout, “Magic’s Circuit Extractor”, Proceedings of
IEEE/ACM Design Automation Conference, pp. 286-292, June 1985.

[19] S. L. Lin and J. Allen, “Minplex – A Compactor that Minimizes the Bounding
Rectangle and Individual Rectangles in a Layout”, Proceedings of IEEE/ACM
Design Automation Conference, pp. 123-130, June 1986.

[20] Y. Bourai and C. J. R. Shi, “Symmetry Detection for Automatic Analog Layout
Recycling”, Proceedings of Asian and South Pacific Design Automation
Conference, pp. 5-8, January 1999.

[21] D. Luenberger, Linear and Nonlinear Programming 2nd Edition, Addison-Wesley,
1984.

[22] D. Boyer, “Symbolic Layout Compaction Review”, Proceedings of IEEE/ACM
Design Automation Conference, pp. 383-389, June 1988.

[23] C. Bamji and R. Varadarajan, Leaf Cell and Hierarchical Compaction Techniques,
Kluwer Academic Publishers, 1997.

[24] R. Okuda, T. Sato, H. Onodera and K. Tamaru, “An Efficient Algorithm for
Layout Compaction Problem with Symmetry Constraints”, Proceedings of
International Conference on Computer-Aided-Design, pp. 148-151, November
1989.

[25] T. H. Cormen, C. E. Leiserson and R. L. Rivest, Introduction to Algorithms, MIT
Press, 1990.

[26] N. Sherwani, Algorithms for VLSI Physical Design Automation, Kluwer Academic
Publishers, 1999.

[27] G. Lakhani and R. Varadarajan, “A Wire-Length Minimization Algorithm for
Circuit Layout Compaction”, Proceedings of International Symposium on Circuits
and Systems, pp. 276-279, May 1987.

[28] F. Balasa, “Device-level Placement for Analog Layout: An Opportunity for Non-
slicing Topological Representations”, Proceedings of Asia and South-Pacific
Design Automation Conference, pp. 281-286, January 2001.

Nuttorn Jangkrajarng received the B.Eng. degree in Electrical Engineering from
Chulalongkorn University, Bangkok, Thailand, in 1997, and the MSEE. degree in
Electrical Engineering from University of Washington, Seattle, WA, in 1999. He
has joined the Mixed-Signal CAD Research Laboratory at the University of
Washington and is currently working toward his Ph.D. degree. His research
interests are in the field of mixed-signal VLSI and analog IC design automation.

 30

Sambuddha Bhattacharya received his B.Eng. in Electrical Engineering from
Birla Institute of Technology and Science, Pilani, India, in 1997. He received his
M.S. in Electrical Engineering from the University of Washington, Seattle, in 2002.
He has held position as an application engineer with Synopsys, India, and worked
on placement, routing and timing convergence issues in digital design. He is
currently working towards his Ph.D. degree in Electrical Engineering at the
University of Washington. His research interests are in analog design automation
techniques and timing and noise issues in digital circuits.

Roy Hartono received the B.S. in Electrical Engineering from University of
Washington in 2002. He is currently pursuing the M.S. in Electrical Engineering
from University of Washington. Since 2002, he has joined the Mixed-Signal CAD
Research Laboratory at the University of Washington. His interests are in VLSI
design and automation.

C.-J. Richard Shi (M’91-SM’99) is currently an Associate Professor in Electrical
Engineering at the University of Washington. His research interests include several
aspects of the computer-aided design and test of integrated circuits and systems,
with particular emphasis on analog/mixed-signal and deep-submicron circuit
modeling, simulation and design automation.
 Dr. Shi is a key contributor to IEEE std 1076.1-1999 (VHDL-AMS) language
standard for the description and simulation of mixed-signal circuits and systems.
He founded IEEE International Workshop on Behavioral Modeling and Simulation
(BMAS) in 1997, and has served on the technical program committees of several
international conferences. Dr. Shi has authored or co-authored over 100 papers

published in international journals and conferences, and has served as the principal investigator of research
projects supported by DARPA, SRC and NSF with over $8M funding.

Dr. Shi received a Best Paper Award from the IEEE/ACM Design Automation Conference, a Best
Paper Award from the IEEE VLSI Test Symposium, a National Science Foundation CAREER Award, and
a Doctoral Prize from the Natural Science and Engineering Research Council of Canada. He has been an
Associate Editor, as well as a Guest Editor, of the IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II,
ANALOG AND DIGITAL SIGNAL PROCESSING. He is currently an Associate Editor of IEEE Transactions on
Computer-Aided Design of Integrate Circuits and Systems.

