Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
Description

TECHNICAL FIELD

[0001] The present disclosure relates to a radio frequency identification (RFID) tag and, more specifically, to a battery-assisted power (BAP) RFID tag with an anti-tamper assembly.

BACKGROUND

[0002] Vehicles can be automatically monitored with an electronic vehicle identification system, which is done with a wireless interface between a vehicle and a monitoring device. An electronic vehicle identification system is based on a RFID transponder, or tag, that is attached to a vehicle and a reader with an antenna for interrogating with the vehicle.

[0003] A RFID transponder is used for providing remotely controllable identity information of the vehicle. With the user configurable memory in the RFID transponder, the information can be written and read remotely. A RFID transponder is commonly classified, in terms of the use they make of an internal power source, as: a passive RFID transponder which has no internal power source and uses the energy of the RF radiation transmitted by the reader; an active RFID transponder which comprises an internal power source that is used for both powering the transponder and for generating the RF energy required for transmitting a response radiation; and a battery-assisted RFID transponder (also referred to as a semi-active or a semi-passive transponder) which comprises an internal power source, where the energy of the response radiation is derived from the interrogation radiation provided by the reader and the transponder circuitry is powered by the internal power source.

[0004] A battery-assisted passive (BAP) transponder has a small battery on board and is activated when in the presence of an RFID reader. The battery powers the transponder’s return reporting signal. Of course, a passive tag is cheaper and smaller because it has no battery; instead, the tag uses the radio energy transmitted by the reader. However, to operate a passive tag, it must be illuminated with a power level roughly a thousand times stronger than for signal transmission. That makes a difference in interference and in exposure to radiation.

[0005] In the passive RFID transponder, the limitation is a reading distance while the RFID transponder needs to receive its operating power from a reader. In the active RFID transponder, the RFID transponder has a transmitter which requires more complex electronics for the functionality thus resulting in high cost and consumption of power compared to the battery-assisted RFID transponder and the passive RFID transponder. The energy required for battery-assisted RFID transponder and the passive RFID transponder to function is considerably less than for the active RFID transponder.

[0006] In some applications, an RFID transponder is associated with a single vehicle. For example, a transponder attached to a vehicle has a code that identifies the vehicle and other data associated with the vehicle, such as the registered owner, the license plate number, and/or any other information about the vehicle. Users sometime attempt to remove the transponder from the vehicle and attach it to a different vehicle, despite such transfer being prohibited by the organization issuing the transponder. As such, some transponders may be provided with a mechanism whereby the transponder cannot be removed from the vehicle without permanently and irreparably destroying the transponder. This destruction creates undesired costs and inefficiency. It may be desirable to provide an RFID transponder with a tamper-proof assembly that temporarily disables the transponder if a user attempts to remove the transponder from the vehicle with which it is associated.

SUMMARY

[0007] European Patent Application EP 1132859A2 discloses an information tag with a resonance circuit composed of a film capacitor and an antennae coil on a substrate, fixed to a surface by an adhesive. The film capacitor will be broken if an attempt is made to remove the tag from its adherend.

[0008] To address the above issues, a radio frequency identification, RFID, transponder according to claim 1 and a method of radio frequency, RFID, communication according to claim 9 is provided. The transponder is attached to an attachment surface of, for example, a vehicle. The transponder includes a break-away structure that is detachably coupled with a housing of the transponder. If someone attempts to remove the transponder from the attachment surface, the break-away structure remains with the attachment surface and becomes decoupled from the housing. When the break-away structure is decoupled, a conductive foam member separates from a capacitor on a substrate contained in the housing, thereby creating a capacitance change of the capacitor. When the capacitance change exceeds a predetermined threshold, a microcontroller provided on the substrate is scrambled, thereby disabling the transponder. The microcontroller remains scrambled until reprogrammed, thus providing evidence of tampering but also permitting re-enablement of the transponder.

[0009] In one embodiment, an RFID transponder includes a housing and a substrate contained in the housing. A microcontroller and an antenna are arranged on the substrate. The microcontroller communicates with an RFID unit, and the antenna receives and backscatters radio frequency interrogation radiation. A first side surface of the substrate includes a capacitor. A break-away structure is detachably coupled with the housing, and a conductive foam member is sandwiched between the break-away structure and the capacitor of the substrate. The conductive foam member is within a desired proximity of the capacitor. An adhesive member is configured
In another embodiment, a radio frequency identification (RFID) transponder comprises a substrate and a break-away device. The substrate is in communication with a controller and an antenna, and the antenna is arranged to receive radio frequency signals. A first side surface of the substrate includes a capacitor. The break-away device may be detachably coupled with the substrate via a conductive member positioned between the break-away structure and the capacitor of the substrate, and the conductive member may be within a desired proximity of the capacitor. The break-away structure is attached to an attachment surface so that an attachment strength between the break-away structure and the attachment surface is greater than a force required to decouple the break-away structure from the substrate. When the break-away structure is decoupled from the substrate, the conductive member separates from the capacitor and the transponder is disabled.

In another embodiment, a method of radio frequency identification (RFID) communications may include: providing a transponder comprising: a substrate, an antenna, and a break-away structure, wherein a first side surface of the substrate includes a capacitor; detachably coupling the break-away device with the substrate via a conductive member positioned between the break-away structure and the capacitor of the substrate, the break-away structure being attached to an attachment surface so that an attachment strength between the break-away structure and the attachment surface is greater than a force required to decouple the break-away structure from the substrate; decoupling the break-away structure from the substrate so that the conductive foam member moves away from the capacitor; and disabling the transponder in response to the decoupling the break-away structure from the substrate.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 illustrates an RFID system in accordance with the disclosure. Figure 3 is an enlarged view of the break-away structure of Figure 2. Figure 4 is a cross-sectional view of the RFID transponder of Figure 2.

DETAILED DESCRIPTION OF THE EMBODIMENTS

Various examples of the disclosure will now be described. The following description provides specific details for a thorough understanding and enabling description of these examples. One skilled in the art will understand, however, that the disclosure may be practiced without many of these details. Additionally, some well-known structures or functions may not be shown or described in detail, so as to avoid unnecessarily obscuring the relevant description.

The terminology used in the description presented below is intended to be interpreted in its broadest reasonable manner, even though it is being used in conjunction with a detailed description of certain specific examples of the disclosure. Certain terms may even be emphasized below; however, any terminology intended to be interpreted in any restricted manner will be overtly and specifically defined as such in this Detailed Description section.

Examples according to the disclosure may find ready application in a setting where RFID tags are placed on vehicles. These applications may include, for example, paying tolls, parking, purchasing gas, and any other application. It should be understood that, while examples of the present disclosure are discussed herein with regard to a vehicle, the present disclosure may not be so limited and could be applied to various other applications.

Figure 1 illustrates an RFID system 100 including an RFID unit 104 and an RFID transponder 106. The RFID unit 104 is configured to read from and/or write to transponders 106 within the range 112 of the RFID unit 104. According to one embodiment, the RFID unit 104 includes a transceiver 114, a read/write module 116, a unique identifier 118 stored in memory, and an antenna. The RFID transponder 106 includes memory 108 where a code associated with the RFID transponder 106 is stored. The code of the RFID transponder 106 identifies the item it is attached to. For example, a transponder attached to a vehicle has a code that identifies the vehicle and other data associated with the vehicle, such as the registered owner, the license plate number, and/or any other information about the vehicle. The transponder code is capable of being modified to add or change the data therein. In one embodiment, a unique identifier may be added as a prefix to the code of the transponder by the RFID unit 104. In another embodiment, the unique identifier does not modify the code but instead is saved as an additional code in the transponder. Regardless, when an RFID unit 104 queries the RFID transponder 106, the RFID transponder 106 may transmit back to the...
RFID unit 104 both the code and the unique identifier. [0017] The antenna of the RFID unit 104 is designed to transmit a signal to a transponder which instructs the transponder to write the unique identifier to the transponder, such as a prefix to the previously-stored code. The transponders may be "passive" RFID tags, "active" RFID tags, or "battery assisted passive" (BAP) tags. Passive RFID tags are a type of transponder that does not contain their own power source or transmitter. When radio waves from the RFID writer reach the transponder's antenna, the energy is converted by the transponder's antenna into electricity that can power up the microcontroller in the tag (typically via inductive coupling). The passive RFID tag is then able to receive and store the unique identifier to memory at the RFID tag by modulating the RFID reader's electromagnetic waves. "Active" RFID tags have their own power source and transmitter. The power source, usually a battery, is used to run the microcontroller's circuitry and to broadcast a signal to an RFID reader. Passive RFID tags do not have as great a range as active RFID tags, but it should be understood that either type of transponder may be employed in the present application. [0018] When the RFID transponder 106 is within the range 112 of the RFID unit 104, the RFID unit 104 may receive a code stored in the memory 108 associated with the RFID transponder 106 is stored. It should be understood that the RFID unit 104 may be a RFID reader/writer that is configured to read from and write to transponders. [0019] Referring now to Figure 2, the RFID transponder 106 may be, for example, a BAP RFID transponder. The transponder 106 may include a housing 230 (Figure 4) having a top portion 232 and a bottom portion 234. According to various aspects, the top and bottom portions 232, 234 of the housing 230 can be constructed of rigid, non-flexible parts that create an enclosure around the RFID transponder. For example, the housing 230 can be constructed from plastics or fiberglass materials, but can also be constructed of any material suitable for encapsulating resonant components at ultra-high frequencies. [0020] The housing 230 contains a printed circuit board 236. The printed circuit board 236 may be a substrate, which for example is rigid or flexible and on which a microcontroller 237, a battery, and an antenna are constructed. In some aspects, the printed circuit board 236 can be replaced with a PET plastic film with an adhered conductive metal layer. It should be understood that the substrate may include a microcontroller 237, which has both an analogue part for modifying the impedance matching of an antenna circuitry and a digital part for holding the logical functions and memory which enable RFID functionalities according to the air-interface standards that are used in the RFID transponder 106. The substrate may also include a battery, for example, a 3 volt battery, attached to the microcontroller 237 by means of conductive path, such as a conductive wire between the battery and the microcontroller 237, conductive glue, or mechanical bond between the microcontroller 237 and the battery. The battery may be, for example, a thin-film battery with thickness less to 1 millimeter. The printed circuit board 236 may include an antenna arranged to receive/backscatter radio frequency interrogation radiation from/to the RFID unit 104. [0021] As shown in Figure 2, the printed circuit board 236 includes a capacitive member, or capacitor, 238 implemented on the printed circuit board 236. The microcontroller 237 is programmed to periodically probe the capacitor 238 to measure the capacitance and determine whether the capacitance of the capacitor 238 has changed. If the microcontroller 237 determines that the capacitor 238 experiences a change of capacitance that exceeds a predetermined threshold, the microcontroller 237 disables the transponder 106. [0022] The transponder 106 includes a break-away structure 240 coupleable with the bottom portion 234 of the housing 230. For example, as shown in Figure 3, the break-away structure 240 may have a raised center region 242 and a peripheral flange 244. The raised center portion 242 is sized and arranged to be received by the cutout region 250 of the bottom portion 234 of the housing 230. The center portion 242 may include a plurality of tabs 243 spaced about its periphery. The tabs 243 may extend outward of the periphery of the center portion 242 and a peripheral flange 244 remains outside the bottom portion 232 of the housing 230. As illustrated in Figure 3, the surface 246 of the raised center portion 242 includes a raised platform 248. [0023] When the top and bottom portions 232, 234 of the housing 230 are assembled to contain the printed circuit board 236, the raised centered portion 242 of the break-away structure 240 slightly enters the cutout region 250 such that the tabs 243 extending from the surface of the cutout region 250 can engage an inner surface 245 of the bottom portion 234 of the housing 230 thus removably coupling the break-away structure 240 to the housing 230. When the break-away structure 240 is coupled with the housing 230, a surface 246 of the raised center portion 242 faces the printed circuit board 236 within the housing 230, while the peripheral flange 244 remains outside the bottom portion 232 of the housing 230. As illustrated in Figure 3, the surface 246 of the raised center portion 242 includes a raised platform 248. [0024] Referring again to Figure 2, the transponder 106 includes a first conductive foam member 252 and a second conductive foam member 254. As illustrated in Figure 4, when the break-away structure 240 is coupled with the bottom portion 234 of the housing 230, the first conductive foam member 252 is positioned between the top portion 232 of the housing 230 and the capacitor 238 on a first side 233 of the printed circuit board 236 facing the top portion 232 of the housing 230. The second conductive foam member 254 is positioned between the raised platform 248 and the capacitor 238 on a second side 235 of the printed circuit board 236 facing the bottom portion 234 of the housing 230. [0025] As discussed above, the capacitor 238 is electrically incorporated into the printed circuit board 236 such that the microcontroller 237 can enable and disable the printed circuit board 236, and thus the transponder 106, depending on the capacitance of the capacitor 238.
The RFID transponder 106 includes an adhesive member 260 for coupling the transponder 106 to an attachment surface 290. The attachment surface 290 may be, for example, a windshield, dashboard, or other surface of a vehicle. In some aspects, the adhesive member 260 may be a double-sided tape such as, for example, very high bond (VHB) or ultra high bond (UHB) double-sided tape. The bonding strength of the adhesive member 260 should be selected to provide a substantially permanent connection between the transponder 106 and the attachment surface 290. As shown in Figures 1 and 4, the adhesive member 260 may be sized and arranged to couple the break-away structure 240 of the transponder with the attachment surface 290. The bonding strength of the adhesive member 260 should be sufficient to keep the break-away structure 240 coupled with the attachment surface 290 even when a force is applied to the housing 230 of the transponder that causes the bottom portion 234 of the housing 230 to become decoupled from the break-away structure 240. Thus, if a force is applied to the transponder 106 in an attempt to remove the transponder 106 from the attachment surface 290, the force will cause the bottom portion 234 of the housing 230 to become decoupled from the break-away structure 240 while the adhesive member 260 will maintain attachment between the break-away structure 240 and the attachment surface 290. When the bottom portion 234 of the housing 230 is decoupled from the break-away structure 240, the second conductive foam member 254 moves away from the capacitor 238 on the second side of the printed circuit board 236 that faces the bottom portion 234 of the housing 230. The movement of the second conductive foam member 254 away from the capacitor 238 on the second side of the printed circuit board 236 will result in a capacitance change that exceeds the predetermined threshold, and the printed circuit board 236 is disabled and the transponder 106 is inoperable. The printed circuit board 236 may also be "scrambled" when the capacitance change exceeds the predetermined threshold. The printed circuit board 236 may remain scrambled until it is reprogrammed.

According to some aspects, the break-away structure 240 may be configured as a circular shape, and the second conductive foam member 254 may be positioned off-center on the break-away structure 240 such that the break-away structure 240 must be correctly rotationally aligned relative to the printed circuit board 236 in order to sandwich the second conductive foam member 254 between the raised platform 248 and the capacitor 238 on the second side of the printed circuit board 236 facing the bottom portion 234 of the housing 230. This break-away structure 240 and the bottom portion 234 of the housing 230 may be provided with alignment markers, as would be understood by persons skilled in the art, in order to ensure proper alignment. The rotational alignment provides another mechanism for preventing tampering with the transponder 106. For example, if housing 230 is rotated relative to the break-away structure 240, which is fixedly attached to the attachment surface 290, the second conductive foam member 254 may be moved a distance away from the capacitor 238 on the second side of the printed circuit board 236 causing a capacitance change that exceeds the predetermined threshold, and the printed circuit board 236 is disabled and the transponder 106 is inoperable. The printed circuit board 236 may also be "scrambled" when the capacitance change exceeds the predetermined threshold. The printed circuit board 236 may remain scrambled until it is reprogrammed.
may remain scrambled until it is reprogrammed. The transponder is "scrambled" when the capacitance change exceeds the predetermined threshold. The printed circuit board is then disabled and the transponder is disabled. The printed circuit board 236 is then disabled and the transponder 106 is disabled.

While the above description describes certain embodiments of the disclosure, and describes the best mode contemplated, no matter how detailed the above appears in text, the disclosure can be practiced in many ways. Details of the system may vary considerably in its implementation details, while still being encompassed by the disclosure disclosed herein. As noted above, particular terminology used when describing certain features or aspects of the disclosure should not be taken to imply that the terminology is being redefined herein to be restricted to any specific characteristics, features, or aspects of the disclosure with which that terminology is associated. In general, the terms used in the following claims should not be construed to limit the disclosure to the specific embodiments disclosed in the specification, unless the above Detailed Description section explicitly defines such terms. Accordingly, the actual scope of the disclosure encompasses not only the disclosed embodiments, but also all equivalent ways of practicing or implementing the disclosure under the claims.

Claims

1. A radio frequency identification, RFID, transponder (106), comprising:

 a substrate (236) disposed with a housing (230);
 a capacitor (238) coupled with the substrate;
 an antenna being arranged to receive a radio frequency interrogation signal;
 a structure (240) configured to be detachably coupled with the housing;

 characterized by:

 a conductor (252, 254) positioned between the structure and the capacitor;
 wherein an adhesive member (260) is configured to be coupled between the structure and an attachment surface (290) of an object;
 wherein the capacitor (238) is periodically probed to measure the capacitance of the capacitor;

 and

 wherein, in response to the structure (240) being decoupled from the housing (230), the adhesive member (260) causes the conductor to separate from the capacitor resulting in a capacitance change, wherein in response to determining that the capacitor (238) has experienced a change of capacitance that exceeds a predetermined threshold, the transponder (106) is disabled.

2. The RFID transponder (106) of claim 1, wherein to disable the transponder, a controller of the RFID transponder is scrambled so that the transponder is scrambled.
scrambled until the controller is reprogrammed.

3. The RFID transponder (106) of claim 1, wherein, to disable the transponder, the transponder is disconnected from a power source.

4. The RFID transponder (106) of claim 1, wherein an attachment strength of the adhesive member (260) between the structure (240) and the attachment surface (290) is greater than a force required to decouple the structure from the housing (230).

5. The RFID transponder (106) of claim 1, further comprising a microcontroller (237) that detects when the conductor (252, 254) separates from the capacitor and, in response to detecting the conductor moving away from the capacitor, disables the RFID transponder.

6. The RFID transponder (106) of claim 5, wherein the microcontroller (237) is disposed on the substrate (236) and wherein the antenna is disposed on the substrate.

7. The RFID transponder (106) of claim 1, wherein the conductor (252, 254) comprises a conductive foam structure.

8. The RFID transponder (106) of claim 1, wherein the capacitor (238) is coupled to a side surface of the substrate.

9. A method of radio frequency identification, RFID, communications, the method comprising:

 providing a transponder (106) comprising: a substrate (236), an antenna, and a structure (240), wherein a first side surface of the substrate includes a capacitor (238), and characterized by:

 detachably coupling the structure with the substrate via a conductive member (252, 254) positioned between the structure and the capacitor of the substrate, the structure being attached to an attachment surface (290) so that an attachment strength between the structure and the attachment surface is greater than a force required to decouple the structure from the substrate; periodically probing the capacitor to measure the capacitance of the capacitor; and decoupling the structure from the substrate so that the conductive member separates from the capacitor, in response to determining that the capacitor (238) has experienced a change of capacitance that exceeds a predetermined threshold,

 disabling the transponder.

10. The method of claim 9, further comprising scrambling a controller of the RFID transponder when the transponder is disabled, thereby disabling the transponder until the controller is reprogrammed.

Patentansprüche

1. Funkidentifikations(Radio Frequency Identification, RFID)-Transponder (106), umfassend:

 ein Substrat (236), das mit einem Gehäuse (230) angeordnet ist;
 einen Kondensator (238), der mit dem Substrat gekoppelt ist;
 eine Antenne, die dafür ausgelegt ist, ein Hochfrequenz-Abfragesignal zu empfangen;
 eine Struktur (240), die dafür ausgelegt ist, lösbare mit dem Gehäuse gekoppelt zu sein;

 gekennzeichnet durch:

 einen Leiter (252, 254), der zwischen der Struktur und dem Kondensator angeordnet ist;
 wobei ein haftfähiges Element (260) dafür ausgelegt ist, zwischen die Struktur und eine Befestigungsfäche (290) eines Objekts gekoppelt zu sein;
 wobei der Kondensator (238) in regelmäßigen Abständen geprüft wird, um die Kapazität des Kondensators zu messen;
 und
 wobei, in Reaktion darauf, dass die Struktur (240) vom Gehäuse (230) gelöst wird, das haftfähige Element (260) bewirkt, dass der Leiter vom Kondensator getrennt wird, was eine Veränderung der Kapazität zur Folge hat,
 wobei in Reaktion auf ein Bestimmen, dass am Kondensator (238) eine Veränderung der Kapazität vorliegt, die einen vordefinierten Schwellwert übersteigt, der Transponder (106) deaktiviert wird.

2. RFID-Transponder (106) nach Anspruch 1, wobei zum Deaktivieren des Transponders eine Steuerung des RFID-Transponders verwirbelt wird, so dass der Transponder so lange verwirbelt wird, bis die Steuerung neu programmiert ist.

3. RFID-Transponder (106) nach Anspruch 1, wobei zum Deaktivieren des Transponders der Transponder von einer Stromquelle getrennt wird.

4. RFID-Transponder (106) nach Anspruch 1, wobei eine Anhaftstärke des haftfähigen Elements (260)
zwischen der Struktur (240) und der Befestigungsfläche (290) größer ist als eine Kraft, die benötigt wird, um die Struktur vom Gehäuse (230) zu lösen.

5. RFID-Transponder (106) nach Anspruch 1, ferner einen Mikrocontroller (237) umfassend, der erkennt, wenn der Leiter (252, 254) vom Kondensator getrennt wird, und in Reaktion auf das Erkennen, dass sich der Leiter vom Kondensator weg bewegt, den RFID-Transponder deaktiviert.

6. RFID-Transponder (106) nach Anspruch 5, wobei der Mikrocontroller (237) auf dem Substrat (236) angeordnet ist und wobei die Antenne auf dem Substrat angeordnet ist.

7. RFID-Transponder (106) nach Anspruch 1, wobei der Leiter (252, 254) eine Struktur aus einem leitfähigen geschäumten Werkstoff umfasst.

8. RFID-Transponder (106) nach Anspruch 1, wobei der Kondensator (238) mit einer Seitenfläche des Substrats gekoppelt ist.

9. Verfahren zur Funkidentifikation (Radio Frequency Identification, RFID)-Kommunikation, wobei das Verfahren umfasst:

Bereitstellen eines Transponders (106), umfassend: ein Substrat (236), eine Antenne und eine Struktur (240), wobei eine erste Seitenfläche des Substrats einen Kondensator (238) aufweist, und gekennzeichnet durch:

lösbares Koppeln der Struktur mit dem Substrat über ein leitfähiges Element (252, 254), das zwischen der Struktur und dem Kondensator des Substrats angeordnet wird, wobei die Struktur so an einer Befestigungsfläche (290) angebracht wird, dass die Anhaftkraft zwischen der Struktur und der Befestigungsfläche größer ist als eine Kraft, die benötigt wird, um die Struktur vom Substrat zu lösen; in regelmäßigen Abständen Prüfen des Kondensators, um die Kapazität des Kondensators zu messen; und Lösung der Struktur vom Substrat, so dass das leitfähige Element vom Kondensator getrennt wird, in Reaktion auf das Bestimmen, dass am Kondensator (238) eine Veränderung der Kapazität vorliegt, die einen vordefinierten Schwellwert übersteigt, Deaktivieren des Transponders.

10. Verfahren nach Anspruch 9, ferner umfassend das Verwürfeln einer Steuerung des RFID-Transponders, wenn der Transponder deaktiviert ist, wodurch der Transponder so lange zu deaktiviert wird, bis die Steuerung neu programmiert ist.

Revendications

1. Transpondeur d'identification par radiofréquence, RFID, (106) comprenant:

un substrat (236) disposé avec un boîtier (230); un condensateur (238) coupé au substrat; une antenne étant arrangée pour recevoir un signal d'interrogation radiofréquence; une structure (240) configurée pour être couplée de manière amovible avec le boîtier; caractérisé par:

un conducteur (252, 254) positionné entre la structure et le condensateur; où un élément adhésif (260) est configuré pour être couplé entre la structure et une surface de fixation (290) d'un objet; où le condensateur (238) est sondé de manière périodique pour mesurer la capaciance du condensateur; et où, en réponse à la structure (240) étant découpée du boîtier (230), l'élément adhésif (260) amène le conducteur à se séparer du condensateur, ce qui conduit à un changement de la capacitance, où, en réponse à la détermination que le condensateur (238) a subi un changement de capacitance qui dépasse un seuil prédéterminé, le transpondeur (106) est désactivé.

2. Transpondeur RFID (106) selon la revendication 1, dans lequel, pour désactiver le transpondeur, un contrôleur du transpondeur RFID est brouillé de manière à ce que le transpondeur soit brouillé jusqu'à ce que le contrôleur soit reprogrammé.

3. Transpondeur RFID (106) selon la revendication 1, dans lequel, pour désactiver le transpondeur, le transpondeur est déconnecté d'une source d'alimentation.

4. Transpondeur RFID (106) selon la revendication 1, dans lequel une résistance de fixation de l'élément adhésif (260) entre la structure (240) et la surface de fixation (290) est supérieure à une force nécessaire pour découpler la structure du boîtier (230).

5. Transpondeur RFID (106) selon la revendication 1, comprenant en outre un microcontrôleur (237) qui détecte à quel moment le conducteur (252, 254) se sépare du condensateur et, en réponse à la détect-
tion que le conducteur s’écarte du condensateur, désactive le transpondeur RFID.

6. Transpondeur RFID (106) selon la revendication 5, dans lequel le microcontrôleur (237) est disposé sur le substrat (236) et où l’antenne est disposée sur le substrat.

7. Transpondeur RFID (106) selon la revendication 1, dans lequel le conducteur (252, 254) comprend une structure en mousse conductrice.

8. Transpondeur RFID (106) selon la revendication 1, dans lequel le condensateur (238) est couplé à une surface latérale du substrat.

9. Procédé de communication d’identification par radiofréquence, RFID, le procédé comprenant l’étape suivante :

 pourvoir un transpondeur (106) comprenant : un substrat (236), une antenne et une structure (240), où une première surface latérale du substrat comprend un condensateur (238), et le procédé est caractérisé par les étapes suivantes :

 coupler de manière amovible la structure avec le substrat par l’intermédiaire d’un élément conducteur (252, 254) positionné entre la structure et le condensateur du substrat, la structure étant fixée à une surface de fixation (290) de manière à ce qu’une résistance de fixation entre la structure et la surface de fixation soit supérieure à une force nécessaire pour découpler la structure du substrat ;

 sonder périodiquement le condensateur pour mesurer la capacitance du condensateur ;

 découpler la structure du substrat de manière à ce que l’élément conducteur se sépare du condensateur,

 en réponse à la détermination que le condensateur (238) a subi un changement de capacitance qui dépasse un seuil prédéterminé, désactiver le transpondeur.

10. Procédé selon la revendication 9, comprenant en outre de brouiller un contrôleur du transpondeur RFID lorsque le transpondeur est désactivé, en désactivant par ce moyen le transpondeur jusqu’à ce que le contrôleur soit reprogrammé.
FIG. 1
REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

• EP 1132859 A2 [0007]